An efficient and provable sequential quadratic programming method for American and swing option pricing

A sequential quadratic programming numerical method is proposed for American option pricing based on the variational inequality formulation. The variational inequality is discretized using the θ-method in time and the finite element method in space. The resulting system of algebraic inequalities at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 316; číslo 1; s. 19 - 35
Hlavní autoři: Shen, Jinye, Huang, Weizhang, Ma, Jingtang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2024
Témata:
ISSN:0377-2217
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A sequential quadratic programming numerical method is proposed for American option pricing based on the variational inequality formulation. The variational inequality is discretized using the θ-method in time and the finite element method in space. The resulting system of algebraic inequalities at each time step is solved through a sequence of box-constrained quadratic programming problems, with the latter being solved by a globally and quadratically convergent, large-scale suitable reflective Newton method. It is proved that the sequence of quadratic programming problems converges with a constant rate under a mild condition on the time step size. The method is general in solving the variational inequalities for the option pricing with many styles of optimal stopping and complex underlying asset models. In particular, swing options and stochastic volatility and jump diffusion models are studied. Numerical examples are presented to confirm the effectiveness of the method. •A fast sequential quadratic programming method (SQPM) is developed.•The convergence of the SQPM is proved.•The SQPM can solve non-symmetric variational inequalities.•The SQPM is efficient for solving general classes of American and swing options.
AbstractList A sequential quadratic programming numerical method is proposed for American option pricing based on the variational inequality formulation. The variational inequality is discretized using the θ-method in time and the finite element method in space. The resulting system of algebraic inequalities at each time step is solved through a sequence of box-constrained quadratic programming problems, with the latter being solved by a globally and quadratically convergent, large-scale suitable reflective Newton method. It is proved that the sequence of quadratic programming problems converges with a constant rate under a mild condition on the time step size. The method is general in solving the variational inequalities for the option pricing with many styles of optimal stopping and complex underlying asset models. In particular, swing options and stochastic volatility and jump diffusion models are studied. Numerical examples are presented to confirm the effectiveness of the method. •A fast sequential quadratic programming method (SQPM) is developed.•The convergence of the SQPM is proved.•The SQPM can solve non-symmetric variational inequalities.•The SQPM is efficient for solving general classes of American and swing options.
Author Ma, Jingtang
Huang, Weizhang
Shen, Jinye
Author_xml – sequence: 1
  givenname: Jinye
  surname: Shen
  fullname: Shen, Jinye
  email: jyshen@swufe.edu.cn
  organization: School of Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
– sequence: 2
  givenname: Weizhang
  surname: Huang
  fullname: Huang, Weizhang
  email: whuang@ku.edu
  organization: Department of Mathematics, University of Kansas, Lawrence, Kansas, USA
– sequence: 3
  givenname: Jingtang
  surname: Ma
  fullname: Ma, Jingtang
  email: mjt@swufe.edu.cn
  organization: School of Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxLsOHFqiU1V8ZIqsYG15dqT4CixW9st4u9JKCsWXY00o3N15yzQzHkHCN1RklNC-X2XQ-dDXpCC5ZTmhBYzNCesrrOioPU1WsTYEUJoRas5atcOQ9NYbcElrJzB--BPatcDjnA4jkurenw4KhNUsnq6tkENg3UtHiB9eoMbH_B6gGC1cr8J8Wu6-n2y3o3AmO3aG3TVqD7C7d9coo-nx_fNS7Z9e37drLeZZoKkTFQKgOmyqZRgq6YBzrhihnFuFBViJypeFMBEyTQhUHJSEy1ExTSAKA03bIlW51wdfIwBGqltUlOTFJTtJSVykiQ7OUmSkyRJqRwljWjxDx27Dyp8X4YezhCMT50sBBknlRqMDaCTNN5ewn8AD46HHw
CitedBy_id crossref_primary_10_1007_s10614_024_10725_y
crossref_primary_10_1007_s10614_024_10623_3
crossref_primary_10_3390_math13122031
Cites_doi 10.1111/j.1467-9965.1992.tb00040.x
10.1093/rfs/9.1.277
10.1137/0713050
10.1016/0304-405X(76)90022-2
10.21314/JCF.1998.018
10.1007/s10915-017-0423-x
10.1007/s10915-020-01137-9
10.1016/j.amc.2017.03.038
10.1214/aoap/1060202832
10.1016/j.cam.2008.12.018
10.1016/j.ejor.2020.11.050
10.1137/S0036142900370137
10.1016/S0165-1889(97)00029-8
10.1016/j.aml.2004.06.010
10.1016/j.jbankfin.2005.04.017
10.4208/jcm.1307-m4063
10.1016/j.jedc.2021.104145
10.21314/JCF.2002.085
10.1090/S0025-5718-1977-0438707-8
10.1007/BF02591891
10.1093/rfs/3.4.547
10.1287/mnsc.48.7.917.2815
10.1111/j.1467-9965.2007.00331.x
10.1137/S1052623494240456
10.1093/rfs/11.3.627
10.1287/opre.1110.0945
10.1093/rfs/6.2.327
10.1093/rfs/9.4.1211
10.1016/j.ejor.2019.09.009
10.1137/0309028
10.1093/rfs/11.3.597
10.1063/1.3241350
10.1016/j.ejor.2020.02.006
10.1016/j.jedc.2019.103729
10.1137/S0036141003437708
10.1016/j.jedc.2007.01.016
10.1016/j.apnum.2021.11.002
10.1080/135048697334809
10.1007/BF00047211
10.1142/S0219024909005270
10.1093/rfs/14.1.113
10.1007/BF01390130
10.1002/num.20239
10.1137/17M1158872
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejor.2023.11.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EndPage 35
ExternalDocumentID 10_1016_j_ejor_2023_11_012
S0377221723008512
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
VH1
WUQ
~HD
ID FETCH-LOGICAL-c390t-95aee3c4f5a938ffe636a3d366da199b95622e3943c00e46070c9953cee94d6d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208595500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 05:34:55 EST 2025
Tue Nov 18 21:49:25 EST 2025
Sat Feb 08 15:52:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords American option
Quadratic programming
Heston model
Jump diffusion
Swing option
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-95aee3c4f5a938ffe636a3d366da199b95622e3943c00e46070c9953cee94d6d3
OpenAccessLink https://dx.doi.org/10.1016/j.ejor.2023.11.012
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_ejor_2023_11_012
crossref_primary_10_1016_j_ejor_2023_11_012
elsevier_sciencedirect_doi_10_1016_j_ejor_2023_11_012
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gyulov, Koleva (b27) 2022; 172
Recchioni, Lori, Tedeschi, Ouellette (b49) 2021; 293
Adolfsson, Chiarella, Ziogas, Ziveyi (b1) 2013
Nocedal, Wright (b46) 2006
Broadie, Detemple (b4) 1996; 9
Merton (b45) 1976; 3
Allegretto, Lin, Yang (b2) 2001; 39
Dempster, Hutton (b19) 1997; 4
Ikonen, Toivanen (b34) 2008; 24
Coleman, Li, Verma (b15) 2002; 5
Johnson (b36) 1976; 13
Li, Ye (b42) 2019; 107
Chen, Chadam (b9) 2006; 38
Feng, L., Linetsky, V., Morales, J. L., & Nocedal, J. (2009). An algorithm for linear complementarity and its application in American options pricing.
Huang, Subrahmanyam, Yu (b32) 1996; 9
(pp. 1400–1402).
Hu, Jiang, Liang (b30) 2009; 230
Zhu, Wu, Chern, Sun (b52) 2013
Rannacher (b48) 1984; 43
Chen, Shen (b10) 2020; 82
Jaillet, Lamberton, Lapeyre (b35) 1990; 21
Chen, Zhao (b11) 2013; 31
Carr, Jarrow, Myneni (b8) 1992; 2
Carmona, Touzi (b6) 2008; 18
Carr (b7) 1998; 11
Heston (b28) 1993; 6
Dai, Kwok, You (b18) 2007; 31
Broadie, Glasserman (b5) 1997; 21
Detemple, Tian (b23) 2002; 48
Chockalingam, Muthuraman (b13) 2011; 59
Chiarella, Kang, Meyer, Ziogas (b12) 2009; 12
In
Nunes, Ruas, Dias (b47) 2020; 285
Berger, Falk (b3) 1977; 31
Coleman, Li (b14) 1996; 6
Ikonen, Toivanen (b33) 2004; 17
Detemple, Laminou-Abdou, Moraux (b22) 2020; 282
Glowinski (b26) 1984
Zhou, Ma, Sun (b51) 2018; 74
Li, Huang (b41) 2017; 309
Cryer (b16) 1971; 9
Seydel (b50) 2009
Lamberton, Terenzi (b40) 2019; 10
Huang, Pang (b31) 1998; 2
Ju (b37) 1998; 11
Longstaff, Schwartz (b43) 2001; 14
Detemple (b20) 2005
Kim (b39) 1990; 4
Hilber, Reichmann, Schwab, Winter (b29) 2013
Facchinei, Pang (b24) 2003
Khaliq, Voss, Kazmi (b38) 2006; 30
Ma, Yang, Cui (b44) 2021; 128
Detemple, Feng, Tian (b21) 2003; 13
Dafermos (b17) 1983; 26
Facchinei (10.1016/j.ejor.2023.11.012_b24) 2003
Allegretto (10.1016/j.ejor.2023.11.012_b2) 2001; 39
Dempster (10.1016/j.ejor.2023.11.012_b19) 1997; 4
Gyulov (10.1016/j.ejor.2023.11.012_b27) 2022; 172
Chockalingam (10.1016/j.ejor.2023.11.012_b13) 2011; 59
Seydel (10.1016/j.ejor.2023.11.012_b50) 2009
Carmona (10.1016/j.ejor.2023.11.012_b6) 2008; 18
Detemple (10.1016/j.ejor.2023.11.012_b20) 2005
10.1016/j.ejor.2023.11.012_b25
Berger (10.1016/j.ejor.2023.11.012_b3) 1977; 31
Nocedal (10.1016/j.ejor.2023.11.012_b46) 2006
Glowinski (10.1016/j.ejor.2023.11.012_b26) 1984
Zhou (10.1016/j.ejor.2023.11.012_b51) 2018; 74
Carr (10.1016/j.ejor.2023.11.012_b8) 1992; 2
Broadie (10.1016/j.ejor.2023.11.012_b5) 1997; 21
Ju (10.1016/j.ejor.2023.11.012_b37) 1998; 11
Ma (10.1016/j.ejor.2023.11.012_b44) 2021; 128
Jaillet (10.1016/j.ejor.2023.11.012_b35) 1990; 21
Hilber (10.1016/j.ejor.2023.11.012_b29) 2013
Li (10.1016/j.ejor.2023.11.012_b42) 2019; 107
Chen (10.1016/j.ejor.2023.11.012_b11) 2013; 31
Huang (10.1016/j.ejor.2023.11.012_b32) 1996; 9
Detemple (10.1016/j.ejor.2023.11.012_b21) 2003; 13
Broadie (10.1016/j.ejor.2023.11.012_b4) 1996; 9
Detemple (10.1016/j.ejor.2023.11.012_b22) 2020; 282
Rannacher (10.1016/j.ejor.2023.11.012_b48) 1984; 43
Chen (10.1016/j.ejor.2023.11.012_b9) 2006; 38
Chiarella (10.1016/j.ejor.2023.11.012_b12) 2009; 12
Chen (10.1016/j.ejor.2023.11.012_b10) 2020; 82
Longstaff (10.1016/j.ejor.2023.11.012_b43) 2001; 14
Johnson (10.1016/j.ejor.2023.11.012_b36) 1976; 13
Nunes (10.1016/j.ejor.2023.11.012_b47) 2020; 285
Zhu (10.1016/j.ejor.2023.11.012_b52) 2013
Adolfsson (10.1016/j.ejor.2023.11.012_b1) 2013
Detemple (10.1016/j.ejor.2023.11.012_b23) 2002; 48
Kim (10.1016/j.ejor.2023.11.012_b39) 1990; 4
Dai (10.1016/j.ejor.2023.11.012_b18) 2007; 31
Merton (10.1016/j.ejor.2023.11.012_b45) 1976; 3
Coleman (10.1016/j.ejor.2023.11.012_b14) 1996; 6
Coleman (10.1016/j.ejor.2023.11.012_b15) 2002; 5
Khaliq (10.1016/j.ejor.2023.11.012_b38) 2006; 30
Carr (10.1016/j.ejor.2023.11.012_b7) 1998; 11
Cryer (10.1016/j.ejor.2023.11.012_b16) 1971; 9
Lamberton (10.1016/j.ejor.2023.11.012_b40) 2019; 10
Heston (10.1016/j.ejor.2023.11.012_b28) 1993; 6
Huang (10.1016/j.ejor.2023.11.012_b31) 1998; 2
Dafermos (10.1016/j.ejor.2023.11.012_b17) 1983; 26
Hu (10.1016/j.ejor.2023.11.012_b30) 2009; 230
Li (10.1016/j.ejor.2023.11.012_b41) 2017; 309
Recchioni (10.1016/j.ejor.2023.11.012_b49) 2021; 293
Ikonen (10.1016/j.ejor.2023.11.012_b33) 2004; 17
Ikonen (10.1016/j.ejor.2023.11.012_b34) 2008; 24
References_xml – volume: 31
  start-page: 522
  year: 2013
  end-page: 531
  ident: b11
  article-title: Estimations of the constants in inverse inequality for finite element functions
  publication-title: Journal of Computational Mathematics
– year: 2013
  ident: b52
  article-title: Derivative securities and difference methods
– volume: 31
  start-page: 619
  year: 1977
  end-page: 628
  ident: b3
  article-title: An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities
  publication-title: Mathematics of Computation
– volume: 11
  start-page: 597
  year: 1998
  end-page: 626
  ident: b7
  article-title: Randomization and the American put
  publication-title: Review of Financial Studies
– volume: 4
  start-page: 1
  year: 1997
  end-page: 20
  ident: b19
  article-title: Fast numerical valuation of American, exotic and complex options
  publication-title: Applied Mathematical Finance
– volume: 2
  start-page: 87
  year: 1992
  end-page: 106
  ident: b8
  article-title: Alternative characterizations of American put options
  publication-title: Mathematical Finance
– volume: 17
  start-page: 809
  year: 2004
  end-page: 814
  ident: b33
  article-title: Operator splitting methods for American option pricing
  publication-title: Applied Mathematics Letters
– year: 1984
  ident: b26
  article-title: Numerical methods for nonlinear variational problems
– volume: 107
  year: 2019
  ident: b42
  article-title: Pricing and exercising American options: an asymptotic expansion approach
  publication-title: Journal of Economic Dynamics and Control
– volume: 31
  start-page: 3860
  year: 2007
  end-page: 3880
  ident: b18
  article-title: Intensity-based framework and penalty formulation of optimal stopping problems
  publication-title: Journal of Economic Dynamics and Control
– volume: 14
  start-page: 113
  year: 2001
  end-page: 147
  ident: b43
  article-title: Valuing American options by simulation: a simple least-squares approach
  publication-title: Review of Financial Studies
– volume: 285
  start-page: 753
  year: 2020
  end-page: 766
  ident: b47
  article-title: Early exercise boundaries for American-style knock-out options
  publication-title: European Journal of Operational Research
– volume: 293
  start-page: 336
  year: 2021
  end-page: 360
  ident: b49
  article-title: The complete Gaussian kernel in the multi-factor heston model: Option pricing and implied volatility applications
  publication-title: European Journal of Operational Research
– year: 2003
  ident: b24
  article-title: Finite-dimensional variational inequalities and complementarity problems, Volume 1 and 2
– volume: 2
  start-page: 31
  year: 1998
  end-page: 60
  ident: b31
  article-title: Option pricng and linear complementarity
  publication-title: Journal of Computational Finance
– volume: 21
  start-page: 1323
  year: 1997
  end-page: 1352
  ident: b5
  article-title: Pricing American-style securities using simulation
  publication-title: Journal of Economic Dynamics and Control
– volume: 10
  start-page: 261
  year: 2019
  end-page: 308
  ident: b40
  article-title: Variational formulation of American option prices in the Heston model
  publication-title: SIAM Journal on Financial Mathematics
– volume: 6
  start-page: 327
  year: 1993
  end-page: 343
  ident: b28
  article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options
  publication-title: Review of Financial Studies
– volume: 24
  start-page: 104
  year: 2008
  end-page: 126
  ident: b34
  article-title: Efficient numerical methods for pricing American options under stochastic volatility
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 172
  start-page: 525
  year: 2022
  end-page: 545
  ident: b27
  article-title: Penalty method for indifference pricing of American option in a liquidity switching market
  publication-title: Applied Numerical Mathematics
– volume: 309
  start-page: 49
  year: 2017
  end-page: 67
  ident: b41
  article-title: A study on nonnegativity preservation in finite element approximation of Nagumo-type nonlinear differential equations
  publication-title: Applied Mathematics and Computation
– volume: 12
  start-page: 393
  year: 2009
  end-page: 425
  ident: b12
  article-title: The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines
  publication-title: International Journal of Theoretical and Applied Finance
– volume: 4
  start-page: 547
  year: 1990
  end-page: 572
  ident: b39
  article-title: The analytic valuation of American options
  publication-title: Review of Financial Studies
– volume: 39
  start-page: 834
  year: 2001
  end-page: 857
  ident: b2
  article-title: Finite element error estimates for a nonlocal problem in American option valuation
  publication-title: SIAM Journal on Numerical Analysis
– volume: 11
  start-page: 627
  year: 1998
  end-page: 646
  ident: b37
  article-title: Pricing by American option by approximating its early exercise boundary as a multi-piece exponential function
  publication-title: Review of Financial Studies
– volume: 21
  start-page: 263
  year: 1990
  end-page: 289
  ident: b35
  article-title: Variational inequalities and the pricing of American options
  publication-title: Acta Applicandae Mathematicae
– volume: 38
  start-page: 1613
  year: 2006
  end-page: 1641
  ident: b9
  article-title: A mathematical analysis of the optimal exercise boundary American put options
  publication-title: SIAM Journal on Mathematical Analysis
– volume: 13
  start-page: 599
  year: 1976
  end-page: 606
  ident: b36
  article-title: A convergence estimate for an approximation of a parabolic variational inequality
  publication-title: SIAM Journal on Numerical Analysis
– volume: 30
  start-page: 489
  year: 2006
  end-page: 502
  ident: b38
  article-title: A linear implicit predictor-correcto scheme for pricing American options using a penalty method approach
  publication-title: Journal of Banking and Finance
– year: 2005
  ident: b20
  article-title: American-style derivatives: valuation and computation
– year: 2013
  ident: b1
  article-title: Representation and numerical approximation of American option prices under heston stochastic volatility dynamics
– volume: 282
  start-page: 363
  year: 2020
  end-page: 385
  ident: b22
  article-title: American step options
  publication-title: European Journal of Operational Research
– year: 2006
  ident: b46
  article-title: Numerical optimization
– volume: 9
  start-page: 277
  year: 1996
  end-page: 300
  ident: b32
  article-title: Pricing and hedging American options: A recursive integration method
  publication-title: Review of Financial Studies
– volume: 230
  start-page: 583
  year: 2009
  end-page: 599
  ident: b30
  article-title: Optimal convergence rate of the explicit finite difference scheme for American option valuation
  publication-title: Journal of Computational and Applied Mathematics
– volume: 48
  start-page: 917
  year: 2002
  end-page: 937
  ident: b23
  article-title: The valuation of American options for a class of diffusion processes
  publication-title: Management Science
– volume: 59
  start-page: 793
  year: 2011
  end-page: 809
  ident: b13
  article-title: American options under stochastic volatility
  publication-title: Operations Research
– reference: Feng, L., Linetsky, V., Morales, J. L., & Nocedal, J. (2009). An algorithm for linear complementarity and its application in American options pricing.
– volume: 13
  start-page: 953
  year: 2003
  end-page: 983
  ident: b21
  article-title: The valuation of American call options on the minimum of two dividend-paying assets
  publication-title: Annals of Applied Probability
– volume: 128
  year: 2021
  ident: b44
  article-title: CTMC integral equation method for American options under stochastic local volatility models
  publication-title: Journal of Economic Dynamics and Control
– year: 2009
  ident: b50
  publication-title: Tools for computational finance
– volume: 9
  start-page: 385
  year: 1971
  end-page: 392
  ident: b16
  article-title: The solution of a quadratic programming problem using systematic overrelaxation
  publication-title: SIAM Journal on Control
– volume: 82
  year: 2020
  ident: b10
  article-title: Stability and error analysis of operator splitting methods for American options under the Black–Scholes model
  publication-title: Journal of Scientific Computing
– volume: 26
  start-page: 40
  year: 1983
  end-page: 47
  ident: b17
  article-title: An iterative scheme for variational inequalities
  publication-title: Mathematical Programming
– volume: 6
  start-page: 1040
  year: 1996
  end-page: 1058
  ident: b14
  article-title: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables
  publication-title: SIAM Journal on Optimization
– volume: 74
  start-page: 49
  year: 2018
  end-page: 69
  ident: b51
  article-title: Fast Laplace transform methods for free-boundary problems of fractional diffusion equations
  publication-title: Journal of Scientific Computing
– reference: (pp. 1400–1402).
– reference: , In
– year: 2013
  ident: b29
  article-title: Computational methods for quantitative finance: finite element methods for derivative pricing
– volume: 5
  start-page: 51
  year: 2002
  end-page: 78
  ident: b15
  article-title: A Newton method for American option pricing
  publication-title: Journal of Computational Finance
– volume: 43
  start-page: 309
  year: 1984
  end-page: 327
  ident: b48
  article-title: Finite element solution of diffusion problems with irregular data
  publication-title: Numerische Mathematik
– volume: 3
  start-page: 125
  year: 1976
  end-page: 144
  ident: b45
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: Journal of Financial Economics
– volume: 18
  start-page: 239
  year: 2008
  end-page: 268
  ident: b6
  article-title: Optimal multiple stopping and valuation of swing options
  publication-title: Mathematical Finance
– volume: 9
  start-page: 1211
  year: 1996
  end-page: 1250
  ident: b4
  article-title: American option valuation: new bounds, approximations, and a comparison of existing methods
  publication-title: Review of Financial Studies
– volume: 2
  start-page: 87
  year: 1992
  ident: 10.1016/j.ejor.2023.11.012_b8
  article-title: Alternative characterizations of American put options
  publication-title: Mathematical Finance
  doi: 10.1111/j.1467-9965.1992.tb00040.x
– volume: 9
  start-page: 277
  year: 1996
  ident: 10.1016/j.ejor.2023.11.012_b32
  article-title: Pricing and hedging American options: A recursive integration method
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/9.1.277
– volume: 13
  start-page: 599
  year: 1976
  ident: 10.1016/j.ejor.2023.11.012_b36
  article-title: A convergence estimate for an approximation of a parabolic variational inequality
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0713050
– volume: 3
  start-page: 125
  year: 1976
  ident: 10.1016/j.ejor.2023.11.012_b45
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: Journal of Financial Economics
  doi: 10.1016/0304-405X(76)90022-2
– year: 2013
  ident: 10.1016/j.ejor.2023.11.012_b29
– volume: 2
  start-page: 31
  year: 1998
  ident: 10.1016/j.ejor.2023.11.012_b31
  article-title: Option pricng and linear complementarity
  publication-title: Journal of Computational Finance
  doi: 10.21314/JCF.1998.018
– volume: 74
  start-page: 49
  year: 2018
  ident: 10.1016/j.ejor.2023.11.012_b51
  article-title: Fast Laplace transform methods for free-boundary problems of fractional diffusion equations
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-017-0423-x
– year: 2006
  ident: 10.1016/j.ejor.2023.11.012_b46
– volume: 82
  year: 2020
  ident: 10.1016/j.ejor.2023.11.012_b10
  article-title: Stability and error analysis of operator splitting methods for American options under the Black–Scholes model
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-020-01137-9
– volume: 309
  start-page: 49
  year: 2017
  ident: 10.1016/j.ejor.2023.11.012_b41
  article-title: A study on nonnegativity preservation in finite element approximation of Nagumo-type nonlinear differential equations
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2017.03.038
– volume: 13
  start-page: 953
  year: 2003
  ident: 10.1016/j.ejor.2023.11.012_b21
  article-title: The valuation of American call options on the minimum of two dividend-paying assets
  publication-title: Annals of Applied Probability
  doi: 10.1214/aoap/1060202832
– volume: 230
  start-page: 583
  year: 2009
  ident: 10.1016/j.ejor.2023.11.012_b30
  article-title: Optimal convergence rate of the explicit finite difference scheme for American option valuation
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2008.12.018
– volume: 293
  start-page: 336
  year: 2021
  ident: 10.1016/j.ejor.2023.11.012_b49
  article-title: The complete Gaussian kernel in the multi-factor heston model: Option pricing and implied volatility applications
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.11.050
– volume: 39
  start-page: 834
  year: 2001
  ident: 10.1016/j.ejor.2023.11.012_b2
  article-title: Finite element error estimates for a nonlocal problem in American option valuation
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/S0036142900370137
– volume: 21
  start-page: 1323
  year: 1997
  ident: 10.1016/j.ejor.2023.11.012_b5
  article-title: Pricing American-style securities using simulation
  publication-title: Journal of Economic Dynamics and Control
  doi: 10.1016/S0165-1889(97)00029-8
– year: 2005
  ident: 10.1016/j.ejor.2023.11.012_b20
– volume: 17
  start-page: 809
  year: 2004
  ident: 10.1016/j.ejor.2023.11.012_b33
  article-title: Operator splitting methods for American option pricing
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2004.06.010
– volume: 30
  start-page: 489
  year: 2006
  ident: 10.1016/j.ejor.2023.11.012_b38
  article-title: A linear implicit predictor-correcto scheme for pricing American options using a penalty method approach
  publication-title: Journal of Banking and Finance
  doi: 10.1016/j.jbankfin.2005.04.017
– volume: 31
  start-page: 522
  year: 2013
  ident: 10.1016/j.ejor.2023.11.012_b11
  article-title: Estimations of the constants in inverse inequality for finite element functions
  publication-title: Journal of Computational Mathematics
  doi: 10.4208/jcm.1307-m4063
– year: 1984
  ident: 10.1016/j.ejor.2023.11.012_b26
– volume: 128
  year: 2021
  ident: 10.1016/j.ejor.2023.11.012_b44
  article-title: CTMC integral equation method for American options under stochastic local volatility models
  publication-title: Journal of Economic Dynamics and Control
  doi: 10.1016/j.jedc.2021.104145
– volume: 5
  start-page: 51
  year: 2002
  ident: 10.1016/j.ejor.2023.11.012_b15
  article-title: A Newton method for American option pricing
  publication-title: Journal of Computational Finance
  doi: 10.21314/JCF.2002.085
– volume: 31
  start-page: 619
  year: 1977
  ident: 10.1016/j.ejor.2023.11.012_b3
  article-title: An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1977-0438707-8
– volume: 26
  start-page: 40
  year: 1983
  ident: 10.1016/j.ejor.2023.11.012_b17
  article-title: An iterative scheme for variational inequalities
  publication-title: Mathematical Programming
  doi: 10.1007/BF02591891
– year: 2003
  ident: 10.1016/j.ejor.2023.11.012_b24
– volume: 4
  start-page: 547
  year: 1990
  ident: 10.1016/j.ejor.2023.11.012_b39
  article-title: The analytic valuation of American options
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/3.4.547
– volume: 48
  start-page: 917
  year: 2002
  ident: 10.1016/j.ejor.2023.11.012_b23
  article-title: The valuation of American options for a class of diffusion processes
  publication-title: Management Science
  doi: 10.1287/mnsc.48.7.917.2815
– volume: 18
  start-page: 239
  year: 2008
  ident: 10.1016/j.ejor.2023.11.012_b6
  article-title: Optimal multiple stopping and valuation of swing options
  publication-title: Mathematical Finance
  doi: 10.1111/j.1467-9965.2007.00331.x
– volume: 6
  start-page: 1040
  year: 1996
  ident: 10.1016/j.ejor.2023.11.012_b14
  article-title: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623494240456
– volume: 11
  start-page: 627
  year: 1998
  ident: 10.1016/j.ejor.2023.11.012_b37
  article-title: Pricing by American option by approximating its early exercise boundary as a multi-piece exponential function
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/11.3.627
– year: 2013
  ident: 10.1016/j.ejor.2023.11.012_b1
– volume: 59
  start-page: 793
  year: 2011
  ident: 10.1016/j.ejor.2023.11.012_b13
  article-title: American options under stochastic volatility
  publication-title: Operations Research
  doi: 10.1287/opre.1110.0945
– volume: 6
  start-page: 327
  year: 1993
  ident: 10.1016/j.ejor.2023.11.012_b28
  article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/6.2.327
– volume: 9
  start-page: 1211
  year: 1996
  ident: 10.1016/j.ejor.2023.11.012_b4
  article-title: American option valuation: new bounds, approximations, and a comparison of existing methods
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/9.4.1211
– volume: 282
  start-page: 363
  year: 2020
  ident: 10.1016/j.ejor.2023.11.012_b22
  article-title: American step options
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.09.009
– volume: 9
  start-page: 385
  year: 1971
  ident: 10.1016/j.ejor.2023.11.012_b16
  article-title: The solution of a quadratic programming problem using systematic overrelaxation
  publication-title: SIAM Journal on Control
  doi: 10.1137/0309028
– volume: 11
  start-page: 597
  year: 1998
  ident: 10.1016/j.ejor.2023.11.012_b7
  article-title: Randomization and the American put
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/11.3.597
– ident: 10.1016/j.ejor.2023.11.012_b25
  doi: 10.1063/1.3241350
– volume: 285
  start-page: 753
  year: 2020
  ident: 10.1016/j.ejor.2023.11.012_b47
  article-title: Early exercise boundaries for American-style knock-out options
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.02.006
– volume: 107
  year: 2019
  ident: 10.1016/j.ejor.2023.11.012_b42
  article-title: Pricing and exercising American options: an asymptotic expansion approach
  publication-title: Journal of Economic Dynamics and Control
  doi: 10.1016/j.jedc.2019.103729
– year: 2009
  ident: 10.1016/j.ejor.2023.11.012_b50
– volume: 38
  start-page: 1613
  year: 2006
  ident: 10.1016/j.ejor.2023.11.012_b9
  article-title: A mathematical analysis of the optimal exercise boundary American put options
  publication-title: SIAM Journal on Mathematical Analysis
  doi: 10.1137/S0036141003437708
– volume: 31
  start-page: 3860
  year: 2007
  ident: 10.1016/j.ejor.2023.11.012_b18
  article-title: Intensity-based framework and penalty formulation of optimal stopping problems
  publication-title: Journal of Economic Dynamics and Control
  doi: 10.1016/j.jedc.2007.01.016
– volume: 172
  start-page: 525
  year: 2022
  ident: 10.1016/j.ejor.2023.11.012_b27
  article-title: Penalty method for indifference pricing of American option in a liquidity switching market
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/j.apnum.2021.11.002
– volume: 4
  start-page: 1
  year: 1997
  ident: 10.1016/j.ejor.2023.11.012_b19
  article-title: Fast numerical valuation of American, exotic and complex options
  publication-title: Applied Mathematical Finance
  doi: 10.1080/135048697334809
– volume: 21
  start-page: 263
  year: 1990
  ident: 10.1016/j.ejor.2023.11.012_b35
  article-title: Variational inequalities and the pricing of American options
  publication-title: Acta Applicandae Mathematicae
  doi: 10.1007/BF00047211
– year: 2013
  ident: 10.1016/j.ejor.2023.11.012_b52
– volume: 12
  start-page: 393
  year: 2009
  ident: 10.1016/j.ejor.2023.11.012_b12
  article-title: The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines
  publication-title: International Journal of Theoretical and Applied Finance
  doi: 10.1142/S0219024909005270
– volume: 14
  start-page: 113
  year: 2001
  ident: 10.1016/j.ejor.2023.11.012_b43
  article-title: Valuing American options by simulation: a simple least-squares approach
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/14.1.113
– volume: 43
  start-page: 309
  year: 1984
  ident: 10.1016/j.ejor.2023.11.012_b48
  article-title: Finite element solution of diffusion problems with irregular data
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01390130
– volume: 24
  start-page: 104
  year: 2008
  ident: 10.1016/j.ejor.2023.11.012_b34
  article-title: Efficient numerical methods for pricing American options under stochastic volatility
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.20239
– volume: 10
  start-page: 261
  year: 2019
  ident: 10.1016/j.ejor.2023.11.012_b40
  article-title: Variational formulation of American option prices in the Heston model
  publication-title: SIAM Journal on Financial Mathematics
  doi: 10.1137/17M1158872
SSID ssj0001515
Score 2.4842741
Snippet A sequential quadratic programming numerical method is proposed for American option pricing based on the variational inequality formulation. The variational...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms American option
Heston model
Jump diffusion
Quadratic programming
Swing option
Title An efficient and provable sequential quadratic programming method for American and swing option pricing
URI https://dx.doi.org/10.1016/j.ejor.2023.11.012
Volume 316
WOSCitedRecordID wos001208595500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001515
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJw4FFALC_5wA1lldiOEx8rtAg4rJBYRG-R4zhVqyUtIVsWfgU_mfGz3YVdsQcuUWUl7mO-jsefv5lB6KXMa160rWFtMpowLeuk5IImtSBcNYLUKq9ts4ni6KiczcSH0ehXyIXZnBRdV56difV_NTWMgbFN6uw1zB0nhQF4DUaHK5gdrv9k-GlnRBoLm-joywCsNjZBysmmB8ORfz2VTW-LtXqB1hdDGbh20lZ5GE9yLLH-3WqjnXdZ9-Ywfn4ppe_DWxjoA9HoKwpF5vljSAlZdD92gOWp68968dPQ2Fuy3N87H8KopykIi5LWmJ5VFAkhLlEzuF7q8izPYcw5Uu9H3ZLsCpr84ewd77A80MuVqexK6IGpx-pV2ecqa19Y8aIOMUjclpWZozJzwJaoSk3b6j1S5KIco73pu8PZ-7i6mwDQnkz5r-MTsZxm8OIn-XuwsxPAHN9Dd_zOA08dYu6jke4m6GZIfJigu6HBB_b-foJu71SrfIDm0w5HZGHABQ7Iwltk4YgsvIMs7JCFAVk4IMvOYJGFHbKwR9ZD9OnN4fHrt4nv05EoKtIhEbnUmirW5lLQsm01p1zShnLeyEyIGrbghGgqGFVpqhmHVUYJkVOIzwRreEMfoXG36vRjhAvRqCxrwXHIkuUtg_1BKsu2ZFLD1peKfZSFH7RSvoi96aVyUl1uyn30Kj6zdiVcrrw7D3aqfBDqgssKYHfFc0-u9S5P0a3tn-QZGg_9qX6ObqjNsPjWv_CY-w0PQ6zW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+provable+sequential+quadratic+programming+method+for+American+and+swing+option+pricing&rft.jtitle=European+journal+of+operational+research&rft.au=Shen%2C+Jinye&rft.au=Huang%2C+Weizhang&rft.au=Ma%2C+Jingtang&rft.date=2024-07-01&rft.issn=0377-2217&rft.volume=316&rft.issue=1&rft.spage=19&rft.epage=35&rft_id=info:doi/10.1016%2Fj.ejor.2023.11.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2023_11_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon