The Optimal Noise-Adding Mechanism in Differential Privacy

Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate information about the database. In this paper, within the classes of mechanisms oblivious of the database and the queriesqueries beyond the global...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 62; no. 2; pp. 925 - 951
Main Authors: Quan Geng, Viswanath, Pramod
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate information about the database. In this paper, within the classes of mechanisms oblivious of the database and the queriesqueries beyond the global sensitivity, we characterize the fundamental tradeoff between privacy and utility in differential privacy, and derive the optimal ϵ-differentially private mechanism for a single realvalued query function under a very general utility-maximization (or cost-minimization) framework. The class of noise probability distributions in the optimal mechanism has staircase-shaped probability density functions which are symmetric (around the origin), monotonically decreasing and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture of uniform probability distributions, providing a simple algorithmic description for the mechanism. Furthermore, the staircase mechanism naturally generalizes to discrete query output settings as well as more abstract settings. We explicitly derive the parameter of the optimal staircase mechanism for ℓ 1 and ℓ 2 cost functions. Comparing the optimal performances with those of the usual Laplacian mechanism, we show that in the high privacy regime (ϵ is small), the Laplacian mechanism is asymptotically optimal as ϵ → 0; in the low privacy regime (ϵ is large), the minimum magnitude and second moment of noise are Θ(Δe (-ϵ/2) ) and Θ(Δ 2 e (-2ϵ/3) ) as ϵ → +∞, respectively, while the corresponding figures when using the Laplacian mechanism are Δ/ϵ and 2Δ 2 /ϵ 2 , where Δ is the sensitivity of the query function. We conclude that the gains of the staircase mechanism are more pronounced in the moderate-low privacy regime.
AbstractList Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate information about the database. In this paper, within the classes of mechanisms oblivious of the database and the queriesqueries beyond the global sensitivity, we characterize the fundamental tradeoff between privacy and utility in differential privacy, and derive the optimal ϵ-differentially private mechanism for a single realvalued query function under a very general utility-maximization (or cost-minimization) framework. The class of noise probability distributions in the optimal mechanism has staircase-shaped probability density functions which are symmetric (around the origin), monotonically decreasing and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture of uniform probability distributions, providing a simple algorithmic description for the mechanism. Furthermore, the staircase mechanism naturally generalizes to discrete query output settings as well as more abstract settings. We explicitly derive the parameter of the optimal staircase mechanism for ℓ 1 and ℓ 2 cost functions. Comparing the optimal performances with those of the usual Laplacian mechanism, we show that in the high privacy regime (ϵ is small), the Laplacian mechanism is asymptotically optimal as ϵ → 0; in the low privacy regime (ϵ is large), the minimum magnitude and second moment of noise are Θ(Δe (-ϵ/2) ) and Θ(Δ 2 e (-2ϵ/3) ) as ϵ → +∞, respectively, while the corresponding figures when using the Laplacian mechanism are Δ/ϵ and 2Δ 2 /ϵ 2 , where Δ is the sensitivity of the query function. We conclude that the gains of the staircase mechanism are more pronounced in the moderate-low privacy regime.
Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate information about the database. In this paper, within the classes of mechanisms oblivious of the database and the queries beyond the global sensitivity, we characterize the fundamental tradeoff between privacy and utility in differential privacy, and derive the optimal $\epsilon $ -differentially private mechanism for a single real-valued query function under a very general utility-maximization (or cost-minimization) framework. The class of noise probability distributions in the optimal mechanism has staircase-shaped probability density functions which are symmetric (around the origin), monotonically decreasing and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture of uniform probability distributions, providing a simple algorithmic description for the mechanism. Furthermore, the staircase mechanism naturally generalizes to discrete query output settings as well as more abstract settings. We explicitly derive the parameter of the optimal staircase mechanism for $\ell _{1}$ and $\ell _{2}$ cost functions. Comparing the optimal performances with those of the usual Laplacian mechanism, we show that in the high privacy regime ( $\epsilon $ is small), the Laplacian mechanism is asymptotically optimal as $\epsilon \to 0$ ; in the low privacy regime ( $\epsilon $ is large), the minimum magnitude and second moment of noise are $\Theta (\Delta e(-{\epsilon }/{2})})$ and $\Theta (\Delta 2} e(-{2\epsilon }/{3})})$ as $\epsilon \to +\infty $ , respectively, while the corresponding figures when using the Laplacian mechanism are ${\Delta }/{\epsilon }$ and ${2\Delta 2}}/{\epsilon 2}}$ , where $\Delta $ is the sensitivity of the query function. We conclude that the gains of the staircase mechanism are more pronounced in the moderate-low privacy regime.
Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate information about the database. In this paper, within the classes of mechanisms oblivious of the database and the queries beyond the global sensitivity, we characterize the fundamental tradeoff between privacy and utility in differential privacy, and derive the optimal $epsilon $ -differentially private mechanism for a single real-valued query function under a very general utility-maximization (or cost-minimization) framework. The class of noise probability distributions in the optimal mechanism has staircase-shaped probability density functions which are symmetric (around the origin), monotonically decreasing and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture of uniform probability distributions, providing a simple algorithmic description for the mechanism. Furthermore, the staircase mechanism naturally generalizes to discrete query output settings as well as more abstract settings. We explicitly derive the parameter of the optimal staircase mechanism for $ell _...1...$ and $ell _...2...$ cost functions. Comparing the optimal performances with those of the usual Laplacian mechanism, we show that in the high privacy regime ( $epsilon $ is small), the Laplacian mechanism is asymptotically optimal as $epsilon to 0$ ; in the low privacy regime ( $epsilon $ is large), the minimum magnitude and second moment of noise are $Theta (Delta e^...(-...epsilon .../...2...)...)$ and $Theta (Delta ^...2... e^...(-...2epsilon .../...3...)...)$ as $epsilon to +infty $ , respectively, while the corresponding figures when using the Laplacian mechanism are $...Delta .../...epsilon ...$ and $...2Delta ^...2.../...epsilon ^...2...$ , where $Delta $ is the sensitivity of the query function. We conclude that the gains of the staircase mechanism are more pronounced in the moderate-low privacy regime. (ProQuest: ... denotes formulae/symbols omitted.)
Author Quan Geng
Viswanath, Pramod
Author_xml – sequence: 1
  surname: Quan Geng
  fullname: Quan Geng
  email: gengquanshine@gmail.com
  organization: Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  givenname: Pramod
  surname: Viswanath
  fullname: Viswanath, Pramod
  email: pramodv@illinois.edu
  organization: Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
BookMark eNp9kE1LAzEQQIMo2Kp3wcuCFy9bM7tJNvFW_Aa_DvUc0mRiI9tsTbaC_96ViocePA0D7w3DG5Pd2EUk5BjoBICq89n9bFJR4JOKU6ZEs0NGwHlTKsHZLhlRCrJUjMl9Ms75fVgZh2pELmYLLJ5XfViatnjqQsZy6lyIb8Uj2oWJIS-LEIur4D0mjH0YsJcUPo39OiR73rQZj37nAXm9uZ5d3pUPz7f3l9OH0taK9qWEuZyDt4Z7D85Vc-WdV5WUgjUonTQVkxJdha5prJUCLbOCc2oplRVQVx-Qs83dVeo-1ph7vQzZYtuaiN06a5AgaM2VYgN6uoW-d-sUh-80NIJJAQzkQIkNZVOXc0KvbehNH7rYJxNaDVT_JNVDUv2TVP8mHUS6Ja7SEC59_aecbJSAiH94UzPOFdTf5LWB5Q
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_ins_2019_07_001
crossref_primary_10_1109_ACCESS_2019_2919165
crossref_primary_10_3390_s20216153
crossref_primary_10_1186_s13638_019_1606_y
crossref_primary_10_1016_j_chemolab_2025_105465
crossref_primary_10_1088_1751_8121_ada0f9
crossref_primary_10_1109_TIFS_2022_3185770
crossref_primary_10_1145_3638769
crossref_primary_10_1109_JIOT_2021_3089518
crossref_primary_10_1080_01621459_2020_1773831
crossref_primary_10_1109_ACCESS_2022_3143813
crossref_primary_10_1109_TIT_2019_2894147
crossref_primary_10_1186_s42400_024_00239_3
crossref_primary_10_1016_j_cmpb_2024_108289
crossref_primary_10_1109_TMC_2021_3130060
crossref_primary_10_1109_JIOT_2021_3110961
crossref_primary_10_1109_TIT_2022_3140317
crossref_primary_10_26599_TST_2022_9010003
crossref_primary_10_1016_j_jksuci_2022_12_008
crossref_primary_10_1214_23_AOS2259
crossref_primary_10_1007_s10664_025_10656_8
crossref_primary_10_1109_ACCESS_2020_2995058
crossref_primary_10_3390_su14138074
crossref_primary_10_1109_TPWRS_2024_3422219
crossref_primary_10_1007_s10207_017_0384_y
crossref_primary_10_1109_TIFS_2023_3324769
crossref_primary_10_3390_electronics13122333
crossref_primary_10_1109_TDSC_2025_3550389
crossref_primary_10_3390_math11051260
crossref_primary_10_1007_s10207_020_00516_5
crossref_primary_10_1109_ACCESS_2017_2783322
crossref_primary_10_3390_app8112081
crossref_primary_10_1109_COMST_2019_2944748
crossref_primary_10_1109_TSP_2020_3006760
crossref_primary_10_1016_j_cose_2025_104622
crossref_primary_10_1016_j_future_2021_05_020
crossref_primary_10_1038_s41598_024_74612_0
crossref_primary_10_1016_j_neucom_2024_127986
crossref_primary_10_1109_TKDE_2018_2845388
crossref_primary_10_1109_TBDATA_2017_2715334
crossref_primary_10_1109_TIFS_2023_3306159
crossref_primary_10_1109_TIFS_2023_3341008
crossref_primary_10_1088_1757_899X_782_2_022011
crossref_primary_10_3390_math11244991
crossref_primary_10_3390_math10224338
crossref_primary_10_1214_17_STS641
crossref_primary_10_3390_math11234829
crossref_primary_10_1016_j_cnsns_2025_109249
crossref_primary_10_1007_s13218_023_00823_8
crossref_primary_10_1214_19_AOS1901
crossref_primary_10_1016_j_ins_2020_07_044
crossref_primary_10_1109_TIFS_2025_3536277
crossref_primary_10_1109_TIT_2018_2842221
crossref_primary_10_1016_j_jet_2025_105965
crossref_primary_10_1109_LSP_2020_2994820
crossref_primary_10_1109_ACCESS_2021_3124309
crossref_primary_10_1109_TIT_2019_2959976
crossref_primary_10_1016_j_automatica_2021_109732
crossref_primary_10_1016_j_cose_2018_03_002
crossref_primary_10_1109_TIT_2024_3420892
crossref_primary_10_1109_TNSE_2023_3293106
crossref_primary_10_1109_TSP_2023_3317644
crossref_primary_10_3390_math11081853
crossref_primary_10_1109_TIFS_2019_2903660
crossref_primary_10_1007_s43674_022_00049_5
crossref_primary_10_1109_JIOT_2021_3057419
Cites_doi 10.1007/978-3-642-31594-7_39
10.1145/1835804.1835868
10.1109/18.149501
10.1007/978-3-642-11799-2_26
10.1109/FOCS.2010.85
10.1109/JSTSP.2015.2425831
10.1137/1.9781611973075.90
10.1109/FOCS.2010.13
10.1007/978-3-540-79228-4_1
10.1145/2381966.2381978
10.1145/1807085.1807104
10.1145/1989323.1989348
10.1145/1806689.1806787
10.1137/1.9781611973099.15
10.1145/1810891.1810916
10.1109/FOCS.2007.66
10.1145/1536414.1536464
10.1109/ICDE.2012.16
10.1145/1993636.1993743
10.1109/ISIT.2014.6875258
10.1145/1536414.1536466
10.14778/1920841.1920970
10.1145/1806689.1806794
10.1145/1265530.1265569
10.1109/FOCS.2012.67
10.14778/2350229.2350253
10.1109/TKDE.2010.247
10.1145/1989323.1989347
10.1109/TIT.2015.2504972
10.1016/j.ins.2013.07.004
10.1007/11681878_14
10.1145/2320765.2320816
10.1137/090756090
10.1145/1806689.1806786
10.1145/1250790.1250803
10.1145/1557019.1557090
10.1145/2382196.2382264
10.1145/1807085.1807105
10.1007/978-3-642-28914-9_19
10.1198/jasa.2009.tm08651
10.1007/978-3-642-36594-2_26
10.14778/3402707.3402749
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2015.2504967
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 951
ExternalDocumentID 3951422001
10_1109_TIT_2015_2504967
7345591
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1422278
  funderid: 10.13039/100000001
– fundername: University of Illinois at Urbana–Champaign
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c390t-81b8b1fca5ff1dd2b9fdf9288647e8d8a2488ed2ed77cc86ec4c6550c008210d3
IEDL.DBID RIE
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369309900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Wed Oct 01 08:53:40 EDT 2025
Mon Jun 30 06:45:55 EDT 2025
Tue Nov 18 22:27:34 EST 2025
Sat Nov 29 03:31:35 EST 2025
Tue Aug 26 16:40:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Data privacy
randomized algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-81b8b1fca5ff1dd2b9fdf9288647e8d8a2488ed2ed77cc86ec4c6550c008210d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1764861418
PQPubID 36024
PageCount 27
ParticipantIDs crossref_citationtrail_10_1109_TIT_2015_2504967
ieee_primary_7345591
proquest_journals_1764861418
crossref_primary_10_1109_TIT_2015_2504967
proquest_miscellaneous_1816035994
PublicationCentury 2000
PublicationDate 2016-Feb.
2016-2-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref14
ref53
ref52
ref11
ref54
blum (ref38) 2011
soria-comas (ref55) 2011
ref17
ref16
ref19
nikolov (ref4) 2012
gupta (ref44) 2012
ref51
lindell (ref21) 2011
ref50
andrés (ref27) 2012
ref45
ref48
ref47
ref41
ref43
ref8
ref7
ref9
ref3
karwa (ref46) 2011; 4
ref6
beimel (ref49) 2010; 5978
ref5
sarathy (ref30) 2011; 4
kairouz (ref10) 2015
hardt (ref42) 2012
ref34
ref37
dwork (ref36) 2010
ref31
ref33
ref32
ref1
ref39
dwork (ref2) 2006; 3876
hsu (ref40) 2012
chaudhuri (ref23) 2008
ref24
ref26
dwork (ref18) 2006
ref25
ref20
ref22
ref28
ref29
lei (ref35) 2011
hardt (ref12) 2012
References_xml – start-page: 486
  year: 2006
  ident: ref18
  article-title: Our data, ourselves: Privacy via distributed noise generation
  publication-title: Proc 24th Annu Int Conf Theory Appl Cryptogr Techn (EUROCRYPT)
– ident: ref39
  doi: 10.1007/978-3-642-31594-7_39
– ident: ref33
  doi: 10.1145/1835804.1835868
– ident: ref50
  doi: 10.1109/18.149501
– volume: 5978
  start-page: 437
  year: 2010
  ident: ref49
  article-title: Bounds on the sample complexity for private learning and private data release
  publication-title: Theory of Cryptography
  doi: 10.1007/978-3-642-11799-2_26
– year: 2012
  ident: ref27
  article-title: Geo-indistinguishability: Differential privacy for location-based systems
– ident: ref26
  doi: 10.1109/FOCS.2010.85
– ident: ref53
  doi: 10.1109/JSTSP.2015.2425831
– ident: ref37
  doi: 10.1137/1.9781611973075.90
– ident: ref7
  doi: 10.1109/FOCS.2010.13
– ident: ref1
  doi: 10.1007/978-3-540-79228-4_1
– ident: ref15
  doi: 10.1145/2381966.2381978
– ident: ref5
  doi: 10.1145/1807085.1807104
– ident: ref31
  doi: 10.1145/1989323.1989348
– ident: ref24
  doi: 10.1145/1806689.1806787
– ident: ref43
  doi: 10.1137/1.9781611973099.15
– volume: 4
  start-page: 1
  year: 2011
  ident: ref30
  article-title: Evaluating laplace noise addition to satisfy differential privacy for numeric data
  publication-title: Trans Data Privacy
– ident: ref16
  doi: 10.1145/1810891.1810916
– ident: ref52
  doi: 10.1109/FOCS.2007.66
– ident: ref6
  doi: 10.1145/1536414.1536464
– start-page: 1
  year: 2010
  ident: ref36
  article-title: Pan-private streaming algorithms
  publication-title: Proc ICS
– year: 2012
  ident: ref40
  article-title: Differential privacy for the analyst via private equilibrium computation
– ident: ref47
  doi: 10.1109/ICDE.2012.16
– ident: ref22
  doi: 10.1145/1993636.1993743
– ident: ref9
  doi: 10.1109/ISIT.2014.6875258
– year: 2011
  ident: ref38
  article-title: Fast private data release algorithms for sparse queries
– ident: ref19
  doi: 10.1145/1536414.1536466
– start-page: 152
  year: 2011
  ident: ref21
  article-title: A practical application of differential privacy to personalized online advertising
  publication-title: IACR Cryptology ePrint Archive
– ident: ref51
  doi: 10.14778/1920841.1920970
– start-page: 361
  year: 2011
  ident: ref35
  article-title: Differentially private m-estimators
  publication-title: Proc 23rd Annu Conf Neural Inf Process Syst
– ident: ref20
  doi: 10.1145/1806689.1806794
– ident: ref17
  doi: 10.1145/1265530.1265569
– ident: ref41
  doi: 10.1109/FOCS.2012.67
– ident: ref34
  doi: 10.14778/2350229.2350253
– ident: ref14
  doi: 10.1109/TKDE.2010.247
– start-page: 289
  year: 2008
  ident: ref23
  article-title: Privacy-preserving logistic regression
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1145/1989323.1989347
– ident: ref54
  doi: 10.1109/TIT.2015.2504972
– year: 2012
  ident: ref42
  article-title: Beyond worst-case analysis in private singular vector computation
– year: 2011
  ident: ref55
  article-title: Work Session on Statistical Data Confidentiality
– start-page: 2348
  year: 2012
  ident: ref12
  article-title: A simple and practical algorithm for differentially private data release
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 351
  year: 2012
  ident: ref4
  article-title: The geometry of differential privacy: The sparse and approximate cases
  publication-title: Proc 45th Annu ACM Symp Theory Comput (STOC)
– ident: ref56
  doi: 10.1016/j.ins.2013.07.004
– volume: 3876
  start-page: 265
  year: 2006
  ident: ref2
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: Theory of Cryptography
  doi: 10.1007/11681878_14
– ident: ref32
  doi: 10.1145/2320765.2320816
– ident: ref28
  doi: 10.1137/090756090
– ident: ref3
  doi: 10.1145/1806689.1806786
– ident: ref48
  doi: 10.1145/1250790.1250803
– ident: ref13
  doi: 10.1145/1557019.1557090
– ident: ref29
  doi: 10.1145/2382196.2382264
– ident: ref8
  doi: 10.1145/1807085.1807105
– start-page: 339
  year: 2012
  ident: ref44
  article-title: Iterative constructions and private data release
  publication-title: Proc 9th Theory Cryptogr Conf
  doi: 10.1007/978-3-642-28914-9_19
– ident: ref11
  doi: 10.1198/jasa.2009.tm08651
– ident: ref45
  doi: 10.1007/978-3-642-36594-2_26
– start-page: 1376
  year: 2015
  ident: ref10
  article-title: The composition theorem for differential privacy
  publication-title: Proc Int Conf Mach Learn (ICML)
– volume: 4
  start-page: 1146
  year: 2011
  ident: ref46
  article-title: Private analysis of graph structure
  publication-title: Proc VLDB Endowment
  doi: 10.14778/3402707.3402749
SSID ssj0014512
Score 2.5829852
Snippet Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 925
SubjectTerms Asymptotic properties
Context
Data privacy
Density
Information theory
Laplace equations
Noise
Optimization
Privacy
Probability
Probability distribution
Queries
randomized algorithm
Sensitivity
Staircases
Title The Optimal Noise-Adding Mechanism in Differential Privacy
URI https://ieeexplore.ieee.org/document/7345591
https://www.proquest.com/docview/1764861418
https://www.proquest.com/docview/1816035994
Volume 62
WOSCitedRecordID wos000369309900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAHV1fF9UUFL4J1-8jm4U18oKDrHlbxVtI8oKBd2Yfgv3fSzVZBEbwVmqRlJl9mJpPMB3AkOI0UlWmIKCQhsZKFQuY2lBqtn404M9XWxdMd6_X487PoN-CkvgtjjKkOn5lT91jl8vVQTd1WWYelBB1gjHUWGKOzu1p1xoB041ll8BgBjDHHPCUZic7gduDOcHVPXbkuUTHKf5mgilPlx0JcWZfr5v_-aw1WvRcZnM_Uvg4NU7agOWdoCDxgW7DyrdzgBpzhnAgecI14xb69YTE24bl2tiu4N-4CcDF-DYoyuPScKYj9l6A_Kt6l-tiEx-urwcVN6LkTQpWKaBKiN8rz2CrZtTbWOsmF1VYknFPCDNdcJohcoxOjGVOKU6OIohitKOcTxJFOt2CxHJZmGwLBpZJUJ6nG0EpzkxMiqSuzo9D451a0oTMXZ6Z8YXHHb_GSVQFGJDJUQOYUkHkFtOG47vE2K6rxR9sNJ_C6nZd1G_bmGss86sZZzCjh6G_EvA2H9WvEi0uCyNIMp9iGO2LtrhBk5_eRd2EZv-9PZu_B4mQ0NfuwpN4nxXh0UE26T5Gq0xo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBalWszxW8CK7dR3Y38VZ8YLGtHqp4W7J5wIJupQ_Bf-9km66CInhb2CSETL7MTGYyH8AJo7EnYh66iELiEs0Tl_FMu1yi9tMeTVR5dfHUTfp9-vzMHmpwVr2FUUqVyWfq3HyWsXw5FFNzVdZKQoIGMPo6ixEhgTd7rVXFDEjkz2qD-whh9DrmQUmPtQadgcniis5NwS5Wcsp_KaGSVeXHUVzql5v6_2a2DmvWjnTaM8FvQE0VDajPORocC9kGrH4rOLgJF7grnHs8JV6xb3-Yj5XblkZ7OT1lngDn41cnL5wry5qC6H9xHkb5OxcfW_B4cz24vHUte4IrQuZNXLRHaeZrwSOtfSmDjGmpWUBpTBJFJeUBYlfJQMkkEYLGShARo78ijFXgezLchoViWKgdcBjlgscyCCU6V5KqjBAem0I7AtV_plkTWvPlTIUtLW4YLl7S0sXwWIoCSI0AUiuAJpxWPd5mZTX-aLtpFrxqZ9e6CftziaUWd-PUT2JC0eLwaROOq9-IGBMG4YUaTrENNdTaEWNk9_eRj2D5dtDrpt1O_24PVnAuNk97HxYmo6k6gCXxPsnHo8NyA34CtiDWYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Optimal+Noise-Adding+Mechanism+in+Differential+Privacy&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Quan+Geng&rft.au=Viswanath%2C+Pramod&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=62&rft.issue=2&rft.spage=925&rft.epage=951&rft_id=info:doi/10.1109%2FTIT.2015.2504967&rft.externalDocID=7345591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon