Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions

This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cleaner production Ročník 181; s. 584 - 598
Hlavní autoři: Li, Jun-qing, Sang, Hong-yan, Han, Yu-yan, Wang, Cun-gang, Gao, Kai-zhou
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 20.04.2018
Témata:
ISSN:0959-6526, 1879-1786
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature.
AbstractList This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature.
Author Han, Yu-yan
Wang, Cun-gang
Gao, Kai-zhou
Li, Jun-qing
Sang, Hong-yan
Author_xml – sequence: 1
  givenname: Jun-qing
  surname: Li
  fullname: Li, Jun-qing
  email: lijunqing@lcu-cs.com
  organization: School of Information Science and Engineering, Shandong Normal University, 250014, PR China
– sequence: 2
  givenname: Hong-yan
  surname: Sang
  fullname: Sang, Hong-yan
  email: sanghongyan@lcu-cs.com
  organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
– sequence: 3
  givenname: Yu-yan
  surname: Han
  fullname: Han, Yu-yan
  organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
– sequence: 4
  givenname: Cun-gang
  surname: Wang
  fullname: Wang, Cun-gang
  organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
– sequence: 5
  givenname: Kai-zhou
  surname: Gao
  fullname: Gao, Kai-zhou
  organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
BookMark eNqFkUtr3TAQhUVJoTdpf0JBy27sjvwWXZQQ8oJAN-1aWNLoXhnZciU5yc2vr92bVTZZDQznHGa-c07OJj8hIV8Z5AxY833IB-VwDj4vgHU5FDlA9YHsWNfyjLVdc0Z2wGueNXXRfCLnMQ4ArIW22pHna2OssjglOi4u2czLAVWyj0j9nOxoX_pk_UR7t_fBpsNIjQ_0cJTBamqcf6Lx4Gca1QH14uy0p-sd0uEY6dMqpxHTMlOcMOyPVPkpLuO8BcbP5KPpXcQvr_OC_Lm5_n11lz38ur2_unzIVMkhZU1bqo5pBCOBa12UveRadpUpG4CuafsWKqNlVW5ryVXBZd3Vpm2AYy1lWV6Qb6fc9a6_C8YkRhsVOtdP6JcoCqjqDgpWwSr9cZKq4GMMaISy6f_7KfTWCQZi4y0G8cpbbLwFFGLlvbrrN-452LEPx3d9P08-XCk8Wgwibn0o1DasTQjt7TsJ_wC406Qe
CitedBy_id crossref_primary_10_1016_j_cie_2023_109325
crossref_primary_10_1109_TASE_2021_3119353
crossref_primary_10_1080_00207543_2019_1624857
crossref_primary_10_1109_ACCESS_2019_2895348
crossref_primary_10_1016_j_enconman_2019_112017
crossref_primary_10_1016_j_jclepro_2021_129248
crossref_primary_10_1016_j_asoc_2024_111254
crossref_primary_10_1007_s12293_019_00283_4
crossref_primary_10_1007_s00521_020_05075_3
crossref_primary_10_1016_j_aei_2023_102233
crossref_primary_10_1016_j_swevo_2020_100660
crossref_primary_10_1109_TCYB_2019_2908485
crossref_primary_10_3233_JIFS_236874
crossref_primary_10_1007_s40747_022_00830_6
crossref_primary_10_1093_ijlct_ctab005
crossref_primary_10_1080_00207543_2024_2427344
crossref_primary_10_3390_app11167366
crossref_primary_10_3390_sym14040832
crossref_primary_10_1016_j_engappai_2024_108930
crossref_primary_10_1016_j_eswa_2023_120878
crossref_primary_10_1109_TSMC_2021_3120702
crossref_primary_10_1049_cim2_12120
crossref_primary_10_1109_ACCESS_2019_2904848
crossref_primary_10_3233_JIFS_219045
crossref_primary_10_1007_s40747_021_00400_2
crossref_primary_10_1007_s10878_025_01270_x
crossref_primary_10_1016_j_ifacol_2023_10_832
crossref_primary_10_3233_JIFS_224199
crossref_primary_10_1016_j_jclepro_2020_120491
crossref_primary_10_1016_j_eswa_2023_120846
crossref_primary_10_1177_0142331218773506
crossref_primary_10_1016_j_aej_2025_05_071
crossref_primary_10_1016_j_asoc_2019_105492
crossref_primary_10_1016_j_cor_2025_107243
crossref_primary_10_1016_j_swevo_2023_101374
crossref_primary_10_1016_j_ejor_2025_07_055
crossref_primary_10_1109_TETCI_2023_3271331
crossref_primary_10_3390_su132313317
crossref_primary_10_1016_j_cie_2021_107493
crossref_primary_10_1016_j_cie_2024_109995
crossref_primary_10_1111_itor_12662
crossref_primary_10_1016_j_comcom_2021_07_031
crossref_primary_10_3233_JIFS_18883
crossref_primary_10_1007_s00500_018_3351_2
crossref_primary_10_1186_s13662_019_2043_2
crossref_primary_10_1155_2020_9732563
crossref_primary_10_3390_sym15071409
crossref_primary_10_1109_ACCESS_2018_2866133
crossref_primary_10_1016_j_jclepro_2019_06_035
crossref_primary_10_1016_j_eswa_2024_125244
crossref_primary_10_1016_j_engappai_2021_104307
crossref_primary_10_1109_TSMC_2022_3219380
crossref_primary_10_1016_j_swevo_2021_100985
crossref_primary_10_1080_0305215X_2024_2420738
crossref_primary_10_1109_TASE_2024_3369019
crossref_primary_10_1016_j_cor_2025_107027
crossref_primary_10_1155_2020_3516149
crossref_primary_10_1080_00207543_2019_1630777
crossref_primary_10_1109_ACCESS_2020_2982570
crossref_primary_10_1109_ACCESS_2018_2889373
crossref_primary_10_1016_j_cie_2021_107456
crossref_primary_10_1051_e3sconf_202017001006
crossref_primary_10_1109_ACCESS_2021_3071729
crossref_primary_10_1016_j_asoc_2018_11_043
crossref_primary_10_3390_s19245542
crossref_primary_10_1088_1742_6596_1569_2_022094
crossref_primary_10_1155_2020_3450180
crossref_primary_10_1109_ACCESS_2020_2999680
crossref_primary_10_1016_j_jclepro_2018_11_231
crossref_primary_10_1109_ACCESS_2018_2849754
crossref_primary_10_3390_su16031114
crossref_primary_10_1007_s12293_018_00278_7
crossref_primary_10_1049_cim2_12025
crossref_primary_10_1016_j_swevo_2019_100578
crossref_primary_10_1016_j_cie_2021_107460
crossref_primary_10_1016_j_jmsy_2024_02_010
crossref_primary_10_1016_j_asoc_2022_108459
crossref_primary_10_1080_00207543_2018_1518603
crossref_primary_10_1088_1742_6596_1757_1_012132
crossref_primary_10_3390_pr13030728
crossref_primary_10_1080_00207543_2018_1501166
crossref_primary_10_1080_00207543_2022_2093680
crossref_primary_10_1080_09540091_2019_1609419
crossref_primary_10_3390_app12136456
crossref_primary_10_1016_j_knosys_2018_11_021
crossref_primary_10_1007_s40747_019_00122_6
crossref_primary_10_1109_ACCESS_2019_2917273
crossref_primary_10_1016_j_swevo_2018_12_001
crossref_primary_10_1007_s11573_020_00971_5
crossref_primary_10_1007_s11573_020_01000_1
crossref_primary_10_1109_ACCESS_2018_2849731
crossref_primary_10_1016_j_jclepro_2022_133851
crossref_primary_10_1007_s10951_025_00849_w
crossref_primary_10_1016_j_knosys_2018_08_030
crossref_primary_10_3390_app12031491
crossref_primary_10_1016_j_fuel_2020_119678
crossref_primary_10_1016_j_engappai_2019_01_013
crossref_primary_10_1109_ACCESS_2022_3212081
crossref_primary_10_1002_int_22158
crossref_primary_10_1002_int_22159
crossref_primary_10_3390_math6110220
crossref_primary_10_1016_j_aei_2021_101306
crossref_primary_10_1155_2022_2529805
crossref_primary_10_1016_j_cor_2020_105044
crossref_primary_10_1080_0952813X_2019_1673488
crossref_primary_10_1108_MD_09_2019_1239
crossref_primary_10_1109_TEVC_2021_3106168
crossref_primary_10_3390_su12104110
crossref_primary_10_1016_j_jclepro_2018_11_021
crossref_primary_10_1016_j_swevo_2024_101479
crossref_primary_10_1109_ACCESS_2019_2908227
crossref_primary_10_1007_s10878_023_01055_0
crossref_primary_10_1016_j_jclepro_2018_11_261
crossref_primary_10_1109_TSMC_2019_2907575
crossref_primary_10_1016_j_jmsy_2025_07_003
crossref_primary_10_1080_02522667_2021_1960544
crossref_primary_10_1108_GS_09_2020_0123
crossref_primary_10_3390_sym15112005
crossref_primary_10_1007_s10586_025_05513_8
crossref_primary_10_1109_ACCESS_2018_2873401
crossref_primary_10_3390_sym13122421
crossref_primary_10_1016_j_cor_2023_106521
crossref_primary_10_1007_s11573_023_01151_x
crossref_primary_10_1109_TCYB_2021_3069184
crossref_primary_10_1109_ACCESS_2018_2868971
crossref_primary_10_3390_en12204000
crossref_primary_10_1016_j_asoc_2021_107526
crossref_primary_10_1109_ACCESS_2023_3269293
crossref_primary_10_1016_j_autcon_2021_103581
crossref_primary_10_3390_su11113085
crossref_primary_10_1016_j_jclepro_2020_123364
crossref_primary_10_1016_j_engappai_2024_108572
crossref_primary_10_1155_2019_8683472
crossref_primary_10_1016_j_cie_2020_106942
crossref_primary_10_1155_2024_2122895
crossref_primary_10_1145_3674152
crossref_primary_10_1016_j_asoc_2018_10_039
crossref_primary_10_1080_0305215X_2018_1564918
crossref_primary_10_1080_00207543_2018_1504251
crossref_primary_10_3390_w11102147
crossref_primary_10_1007_s10479_023_05592_z
crossref_primary_10_1016_j_apenergy_2023_120794
crossref_primary_10_3390_en15051626
crossref_primary_10_1016_j_swevo_2018_11_009
crossref_primary_10_3233_JIFS_210198
crossref_primary_10_1080_0951192X_2022_2025618
crossref_primary_10_1109_ACCESS_2019_2908934
crossref_primary_10_1080_01605682_2019_1630327
crossref_primary_10_1109_ACCESS_2024_3494767
crossref_primary_10_3390_coatings14030368
crossref_primary_10_1016_j_physa_2018_11_018
crossref_primary_10_1016_j_ejor_2022_09_034
crossref_primary_10_1007_s12065_021_00582_1
crossref_primary_10_1109_ACCESS_2019_2924998
crossref_primary_10_1016_j_eswa_2022_117256
crossref_primary_10_1016_j_cie_2025_111050
crossref_primary_10_1080_00207543_2019_1642529
crossref_primary_10_1109_ACCESS_2018_2879600
crossref_primary_10_1016_j_swevo_2019_05_006
crossref_primary_10_1109_TSMC_2019_2916088
crossref_primary_10_1080_00207543_2024_2333943
crossref_primary_10_1016_j_cie_2022_108200
crossref_primary_10_1109_TASE_2020_2969469
crossref_primary_10_1016_j_cie_2021_107738
crossref_primary_10_1016_j_energy_2019_07_066
crossref_primary_10_1016_j_jclepro_2022_135738
crossref_primary_10_1016_j_matcom_2018_04_013
crossref_primary_10_1109_TCYB_2020_3025662
crossref_primary_10_1007_s12652_021_03330_6
crossref_primary_10_1109_TCYB_2019_2943606
crossref_primary_10_1016_j_swevo_2019_01_002
crossref_primary_10_1109_ACCESS_2018_2840512
crossref_primary_10_1007_s00500_018_3622_y
crossref_primary_10_1016_j_cie_2024_110095
crossref_primary_10_32604_cmes_2022_020307
crossref_primary_10_1109_ACCESS_2020_3041369
crossref_primary_10_1016_j_engappai_2023_105977
crossref_primary_10_1007_s40815_019_00783_y
crossref_primary_10_1016_j_suscom_2023_100900
crossref_primary_10_1016_j_suscom_2023_100901
crossref_primary_10_1038_s41598_023_33414_6
crossref_primary_10_1016_j_ejor_2022_08_009
crossref_primary_10_1016_j_cie_2020_106347
crossref_primary_10_1016_j_cor_2021_105543
crossref_primary_10_1016_j_cie_2019_07_036
crossref_primary_10_1016_j_jclepro_2019_119734
crossref_primary_10_1109_TEM_2021_3095954
crossref_primary_10_1177_0959651819827705
crossref_primary_10_1016_j_trd_2022_103409
crossref_primary_10_3390_app8091673
crossref_primary_10_3390_math7080688
crossref_primary_10_1016_j_jclepro_2018_09_086
crossref_primary_10_1080_00207543_2019_1571687
crossref_primary_10_1109_ACCESS_2019_2916468
crossref_primary_10_1080_00207543_2019_1636324
crossref_primary_10_1155_2021_8035806
crossref_primary_10_1080_00207160_2019_1566535
crossref_primary_10_1016_j_amc_2020_125533
crossref_primary_10_3390_app8071045
crossref_primary_10_1016_j_cie_2020_106570
crossref_primary_10_1016_j_swevo_2018_10_012
Cites_doi 10.1016/j.cie.2013.04.007
10.1016/j.ejor.2015.10.007
10.1016/j.cor.2009.11.001
10.1109/TEVC.2007.892759
10.1109/70.282536
10.1016/j.ins.2014.10.009
10.1109/TASE.2015.2425404
10.1016/j.ejor.2009.09.024
10.1080/00207543.2014.910627
10.1016/j.omega.2013.12.004
10.1007/s10845-014-0874-y
10.1109/TCYB.2015.2444383
10.1016/j.compind.2015.10.001
10.1016/0305-0483(83)90088-9
10.1016/j.asoc.2014.07.005
10.1109/TEVC.2013.2281535
10.1016/j.asoc.2013.03.006
10.1080/0951192X.2014.880803
10.1016/j.cor.2015.05.010
10.1016/S0377-2217(97)00333-0
10.1016/j.ijpe.2016.06.005
10.1016/j.apm.2013.07.038
10.1016/S0377-2217(98)00060-5
10.1016/j.ejor.2015.07.017
10.1016/j.jclepro.2016.03.150
10.1051/ro:2000103
10.1016/j.rcim.2013.04.001
10.1109/TEVC.2014.2339823
10.1016/j.cie.2016.05.006
10.1007/s10951-005-1640-y
10.1016/j.asoc.2012.01.011
10.1016/j.ejor.2015.05.019
10.1057/jors.1988.63
10.1016/j.cie.2015.06.002
10.1080/0952813X.2012.682752
10.1109/TEVC.2013.2240304
10.1109/TEVC.2014.2373386
10.1016/j.ins.2009.12.025
10.1109/4235.996017
10.1016/j.jclepro.2017.01.011
10.1080/00207721.2014.886742
10.1016/S0925-5273(03)00011-2
10.1016/j.ijpe.2013.01.028
10.1016/j.cirp.2014.03.011
10.1016/j.asoc.2010.12.006
10.1016/j.jclepro.2015.09.097
10.1109/TASE.2015.2495328
10.1080/00207543.2013.847983
10.1016/j.automatica.2015.09.013
10.1016/j.cor.2008.10.008
10.1080/0305215X.2012.685072
10.1016/j.asoc.2014.02.005
10.1016/j.ijpe.2012.05.015
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2018.02.004
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
EndPage 598
ExternalDocumentID 10_1016_j_jclepro_2018_02_004
S0959652618303081
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c390t-673c81de0fb09dd23ab9db84f3600867a704fdb43b9dbb9c29b585f7609e5bb33
ISICitedReferencesCount 235
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428483100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Thu Oct 02 05:56:36 EDT 2025
Tue Nov 18 21:00:00 EST 2025
Sat Nov 29 07:07:47 EST 2025
Fri Feb 23 02:44:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Hybrid flow shop scheduling problem
Energy-aware
Setup energy consumption
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-673c81de0fb09dd23ab9db84f3600867a704fdb43b9dbb9c29b585f7609e5bb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2045802140
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2045802140
crossref_citationtrail_10_1016_j_jclepro_2018_02_004
crossref_primary_10_1016_j_jclepro_2018_02_004
elsevier_sciencedirect_doi_10_1016_j_jclepro_2018_02_004
PublicationCentury 2000
PublicationDate 2018-04-20
PublicationDateYYYYMMDD 2018-04-20
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-20
  day: 20
PublicationDecade 2010
PublicationTitle Journal of cleaner production
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tran, Ng (bib49) 2013; 45
Wang, Liu (bib50) 2014; 52
Li, Pan, Tasgetiren (bib22) 2014; 38
Che, Zeng, Lyu (bib5) 2016; 129
Li, Meng, Liang, Zhao (bib23) 2015; 26
Zhang, Li (bib54) 2007; 11
Chou (bib6) 2013; 141
Gahm, Denz, Dirr, Tuma (bib15) 2016; 248
Lin, Liao (bib28) 2003; 86
Lei, Guo (bib19) 2016; 65
Li, Pan, Mao (bib26) 2016; 13
Dai, Tang, Giret, Salido, Li (bib8) 2013; 29
Marichelvam, Prabaharan, Yang (bib32) 2014; 18
Carlier, Néron (bib3) 2000; 34
Luo, Du, Huang, Chen, Li (bib30) 2013; 146
Portmann, Vignier, Dardilhac, Dezalay (bib41) 1998; 107
Tang, Dai, Salido, Giret (bib48) 2016; 81
Fu, Faust, Chachuat, Mitsos (bib14) 2015; 62
Pan, Tasgetiren, Suganthan, Chua (bib39) 2011; 181
Oĝuz, Ercan (bib36) 2005; 8
Engin, Ceran, Yilmaz (bib13) 2011; 11
Ruiz, Vázquez Rodríguez (bib45) 2010; 205
Chung, Liao (bib7) 2013; 13
Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6
Chang, Liao (bib4) 1994; 10
Liao, Tjandradjaja, Chung (bib27) 2012; 12
Ying, Lin, Wan (bib52) 2014; 52
Huang, Yang, Hsu (bib17) 2015; 46
Gupta (bib16) 1988; 39
Deb, Jain (bib9) 2014; 18
Ribas, Leisten, Framiñan (bib44) 2010; 37
Sukkerd, Wuttipornpun (bib47) 2016; 97
Bożejko, Pempera, Smutnicki (bib2) 2013; 65
Nawaz, Enscore, Ham (bib35) 1983; 11
Pan, Wang, Qian (bib38) 2009; 36
Marichelvam, Prabaharan, Yang, Geetha (bib31) 2013; 5
Riane, Artiba, Elmaghraby (bib43) 1998; 109
Zhang, Zhao, Fang, Sutherland (bib55) 2014; 63
Ding, Song, Wu (bib11) 2016; 248
Ding, Song, Zhang, Wu (bib12) 2016; 13
Li, Deb, Zhang, Kwong (bib24) 2015; 19
Lu, Gao, Li, Pan, Wang (bib29) 2017; 144
Qin, Zhang, Song (bib42) 2015
Wang, Wang, Liu, Xu (bib51) 2015; 28
Jiang, Liu, Hao, Qian (bib18) 2015; 87
Shahvari, Logendran (bib46) 2016; 179
Moradinasab, Shafaei, Rabiee, Ramezani (bib34) 2013; 25
Li, Pan (bib20) 2015; 316
Li, Pan, Wang (bib21) 2014; 24
Pan, Wang, Li, Duan (bib40) 2014; 45
Asafuddoula, Ray, Sarker (bib1) 2015; 19
Marichelvam, Prabaharan, Yang (bib33) 2014; 19
Pan (bib37) 2016; 250
Li, Pan, Duan (bib25) 2016; 46
Zhang, Chiong (bib53) 2016; 112
Zhang (10.1016/j.jclepro.2018.02.004_bib53) 2016; 112
Huang (10.1016/j.jclepro.2018.02.004_bib17) 2015; 46
Deb (10.1016/j.jclepro.2018.02.004_bib9) 2014; 18
Dai (10.1016/j.jclepro.2018.02.004_bib8) 2013; 29
Zhang (10.1016/j.jclepro.2018.02.004_bib54) 2007; 11
Ruiz (10.1016/j.jclepro.2018.02.004_bib45) 2010; 205
Che (10.1016/j.jclepro.2018.02.004_bib5) 2016; 129
Moradinasab (10.1016/j.jclepro.2018.02.004_bib34) 2013; 25
Tran (10.1016/j.jclepro.2018.02.004_bib49) 2013; 45
Lin (10.1016/j.jclepro.2018.02.004_bib28) 2003; 86
Ding (10.1016/j.jclepro.2018.02.004_bib11) 2016; 248
Lei (10.1016/j.jclepro.2018.02.004_bib19) 2016; 65
Lu (10.1016/j.jclepro.2018.02.004_bib29) 2017; 144
Gupta (10.1016/j.jclepro.2018.02.004_bib16) 1988; 39
Li (10.1016/j.jclepro.2018.02.004_bib23) 2015; 26
Shahvari (10.1016/j.jclepro.2018.02.004_bib46) 2016; 179
Li (10.1016/j.jclepro.2018.02.004_bib24) 2015; 19
Ribas (10.1016/j.jclepro.2018.02.004_bib44) 2010; 37
Gahm (10.1016/j.jclepro.2018.02.004_bib15) 2016; 248
Liao (10.1016/j.jclepro.2018.02.004_bib27) 2012; 12
Chou (10.1016/j.jclepro.2018.02.004_bib6) 2013; 141
Marichelvam (10.1016/j.jclepro.2018.02.004_bib32) 2014; 18
Luo (10.1016/j.jclepro.2018.02.004_bib30) 2013; 146
Zhang (10.1016/j.jclepro.2018.02.004_bib55) 2014; 63
Engin (10.1016/j.jclepro.2018.02.004_bib13) 2011; 11
Li (10.1016/j.jclepro.2018.02.004_bib22) 2014; 38
Fu (10.1016/j.jclepro.2018.02.004_bib14) 2015; 62
Li (10.1016/j.jclepro.2018.02.004_bib21) 2014; 24
Wang (10.1016/j.jclepro.2018.02.004_bib50) 2014; 52
Marichelvam (10.1016/j.jclepro.2018.02.004_bib31) 2013; 5
Li (10.1016/j.jclepro.2018.02.004_bib20) 2015; 316
Asafuddoula (10.1016/j.jclepro.2018.02.004_bib1) 2015; 19
Li (10.1016/j.jclepro.2018.02.004_bib25) 2016; 46
Deb (10.1016/j.jclepro.2018.02.004_bib10) 2002; 6
Wang (10.1016/j.jclepro.2018.02.004_bib51) 2015; 28
Pan (10.1016/j.jclepro.2018.02.004_bib39) 2011; 181
Riane (10.1016/j.jclepro.2018.02.004_bib43) 1998; 109
Li (10.1016/j.jclepro.2018.02.004_bib26) 2016; 13
Portmann (10.1016/j.jclepro.2018.02.004_bib41) 1998; 107
Bożejko (10.1016/j.jclepro.2018.02.004_bib2) 2013; 65
Sukkerd (10.1016/j.jclepro.2018.02.004_bib47) 2016; 97
Qin (10.1016/j.jclepro.2018.02.004_bib42) 2015
Pan (10.1016/j.jclepro.2018.02.004_bib37) 2016; 250
Carlier (10.1016/j.jclepro.2018.02.004_bib3) 2000; 34
Chang (10.1016/j.jclepro.2018.02.004_bib4) 1994; 10
Ding (10.1016/j.jclepro.2018.02.004_bib12) 2016; 13
Marichelvam (10.1016/j.jclepro.2018.02.004_bib33) 2014; 19
Jiang (10.1016/j.jclepro.2018.02.004_bib18) 2015; 87
Ying (10.1016/j.jclepro.2018.02.004_bib52) 2014; 52
Nawaz (10.1016/j.jclepro.2018.02.004_bib35) 1983; 11
Chung (10.1016/j.jclepro.2018.02.004_bib7) 2013; 13
Oĝuz (10.1016/j.jclepro.2018.02.004_bib36) 2005; 8
Pan (10.1016/j.jclepro.2018.02.004_bib38) 2009; 36
Tang (10.1016/j.jclepro.2018.02.004_bib48) 2016; 81
Pan (10.1016/j.jclepro.2018.02.004_bib40) 2014; 45
References_xml – volume: 129
  start-page: 565
  year: 2016
  end-page: 577
  ident: bib5
  article-title: An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs
  publication-title: J. Clean. Prod.
– volume: 18
  start-page: 301
  year: 2014
  end-page: 305
  ident: bib32
  article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib9
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 248
  start-page: 744
  year: 2016
  end-page: 757
  ident: bib15
  article-title: Energy-efficient scheduling in manufacturing companies: a review and research framework
  publication-title: Eur. J. Oper. Res.
– volume: 38
  start-page: 1111
  year: 2014
  end-page: 1132
  ident: bib22
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
– volume: 11
  start-page: 3056
  year: 2011
  end-page: 3065
  ident: bib13
  article-title: An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems
  publication-title: Appl. Soft Comput.
– volume: 181
  start-page: 2455
  year: 2011
  end-page: 2468
  ident: bib39
  article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem
  publication-title: Inf. Sci.
– volume: 144
  start-page: 228
  year: 2017
  end-page: 238
  ident: bib29
  article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm
  publication-title: J. Clean. Prod.
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: bib24
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 5
  start-page: 15
  year: 2013
  end-page: 29
  ident: bib31
  article-title: Solving hybrid flow shop scheduling problems using bat algorithm
  publication-title: Int. J. Logist. Econ. Glob.
– volume: 107
  start-page: 389
  year: 1998
  end-page: 400
  ident: bib41
  article-title: Branch and bound crossed with GA to solve hybrid flowshops
  publication-title: Eur. J. Oper. Res.
– volume: 63
  start-page: 37
  year: 2014
  end-page: 40
  ident: bib55
  article-title: Energy-conscious flow shop scheduling under time-of-use electricity tariffs
  publication-title: CIRP Ann. - Manuf. Technol.
– volume: 109
  start-page: 321
  year: 1998
  end-page: 329
  ident: bib43
  article-title: A hybrid three-stage flowshop problem: efficient heuristics to minimize makespan
  publication-title: Eur. J. Oper. Res.
– volume: 179
  start-page: 239
  year: 2016
  end-page: 258
  ident: bib46
  article-title: Hybrid flow shop batching and scheduling with a bi-criteria objective
  publication-title: Int. J. Prod. Econ.
– volume: 10
  start-page: 112
  year: 1994
  end-page: 122
  ident: bib4
  article-title: Scheduling flexible flow shops with no setup effects
  publication-title: IEEE Trans. Robot. Autom.
– volume: 97
  start-page: 157
  year: 2016
  end-page: 169
  ident: bib47
  article-title: Hybrid genetic algorithm and tabu search for finite capacity material requirement planning system in flexible flow shop with assembly operations
  publication-title: Comput. Ind. Eng.
– volume: 65
  start-page: 76
  year: 2016
  end-page: 82
  ident: bib19
  article-title: Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration
  publication-title: Comput. Oper. Res.
– volume: 28
  start-page: 307
  year: 2015
  end-page: 320
  ident: bib51
  article-title: An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem
  publication-title: Int. J. Comput. Integrated Manuf.
– volume: 316
  start-page: 487
  year: 2015
  end-page: 502
  ident: bib20
  article-title: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm
  publication-title: Inf. Sci.
– volume: 39
  start-page: 359
  year: 1988
  end-page: 364
  ident: bib16
  article-title: Two-stage, hybrid flow shop scheduling problem
  publication-title: J. Oper. Res. Soc.
– volume: 12
  start-page: 1755
  year: 2012
  end-page: 1764
  ident: bib27
  article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 81
  start-page: 82
  year: 2016
  end-page: 95
  ident: bib48
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Comput. Ind.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib54
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 87
  start-page: 518
  year: 2015
  end-page: 531
  ident: bib18
  article-title: A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry
  publication-title: Comput. Ind. Eng.
– volume: 250
  start-page: 702
  year: 2016
  end-page: 714
  ident: bib37
  article-title: An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling
  publication-title: Eur. J. Oper. Res.
– volume: 205
  start-page: 1
  year: 2010
  end-page: 18
  ident: bib45
  article-title: The hybrid flow shop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 46
  start-page: 3010
  year: 2015
  end-page: 3018
  ident: bib17
  article-title: Multi-objective two-stage multiprocessor flow shop scheduling–a subgroup particle swarm optimisation approach
  publication-title: Int. J. Syst. Sci.
– volume: 45
  start-page: 483
  year: 2013
  end-page: 502
  ident: bib49
  article-title: A hybrid water flow algorithm for multi-objective flexible flow shop scheduling problems
  publication-title: Eng. Optim.
– volume: 24
  start-page: 63
  year: 2014
  end-page: 77
  ident: bib21
  article-title: A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: bib1
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 873
  year: 2015
  end-page: 890
  ident: bib23
  article-title: A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines
  publication-title: J. Intell. Manuf.
– volume: 86
  start-page: 133
  year: 2003
  end-page: 143
  ident: bib28
  article-title: A case study in a two-stage hybrid flow shop with setup time and dedicated machines
  publication-title: Int. J. Prod. Econ.
– volume: 37
  start-page: 1439
  year: 2010
  end-page: 1454
  ident: bib44
  article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective
  publication-title: Comput. Oper. Res.
– volume: 13
  start-page: 1138
  year: 2016
  end-page: 1154
  ident: bib12
  article-title: Parallel machine scheduling under time-of-use electricity prices: new models and optimization approaches
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 19
  start-page: 93
  year: 2014
  end-page: 101
  ident: bib33
  article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 5735
  year: 2014
  end-page: 5747
  ident: bib52
  article-title: Bi-objective reentrant hybrid flowshop scheduling: an iterated Pareto greedy algorithm
  publication-title: Int. J. Prod. Res.
– volume: 34
  start-page: 1
  year: 2000
  end-page: 25
  ident: bib3
  article-title: An exact method for solving the multi-processor flow-shop
  publication-title: Rairo-Oper. Res.
– volume: 146
  start-page: 423
  year: 2013
  end-page: 439
  ident: bib30
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost
  publication-title: Int. J. Prod. Econ.
– volume: 62
  start-page: 184
  year: 2015
  end-page: 192
  ident: bib14
  article-title: Local optimization of dynamic programs with guaranteed satisfaction of path constraints
  publication-title: Automatica
– volume: 13
  start-page: 3729
  year: 2013
  end-page: 3736
  ident: bib7
  article-title: An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 207
  year: 2013
  end-page: 225
  ident: bib34
  article-title: No-wait two stage hybrid flow shop scheduling with genetic and adaptive imperialist competitive algorithms
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 932
  year: 2016
  end-page: 949
  ident: bib26
  article-title: Hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 112
  start-page: 3361
  year: 2016
  end-page: 3375
  ident: bib53
  article-title: Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption
  publication-title: J. Clean. Prod.
– volume: 65
  start-page: 466
  year: 2013
  end-page: 474
  ident: bib2
  article-title: Parallel tabu search algorithm for the hybrid flow shop problem
  publication-title: Comput. Ind. Eng.
– volume: 11
  start-page: 91
  year: 1983
  end-page: 95
  ident: bib35
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
– volume: 36
  start-page: 2498
  year: 2009
  end-page: 2511
  ident: bib38
  article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems
  publication-title: Comput. Oper. Res.
– year: 2015
  ident: bib42
  article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time
  publication-title: J. Intell. Manuf.
– volume: 8
  start-page: 323
  year: 2005
  end-page: 351
  ident: bib36
  article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: J. Sched.
– volume: 248
  start-page: 758
  year: 2016
  end-page: 771
  ident: bib11
  article-title: Carbon-efficient scheduling of flow shops by multi-objective optimization
  publication-title: Eur. J. Oper. Res.
– volume: 141
  start-page: 137
  year: 2013
  end-page: 145
  ident: bib6
  article-title: Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks
  publication-title: Int. J. Prod. Econ.
– volume: 29
  start-page: 418
  year: 2013
  end-page: 429
  ident: bib8
  article-title: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm
  publication-title: Robot. Cim-Int. Manuf
– volume: 45
  start-page: 42
  year: 2014
  end-page: 56
  ident: bib40
  article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation
  publication-title: Omega-Int. J. Manage. S.
– volume: 52
  start-page: 1495
  year: 2014
  end-page: 1508
  ident: bib50
  article-title: Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method
  publication-title: Int. J. Prod. Res.
– volume: 46
  start-page: 1311
  year: 2016
  end-page: 1324
  ident: bib25
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE. T. Cyber.
– volume: 65
  start-page: 466
  issue: 3
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib2
  article-title: Parallel tabu search algorithm for the hybrid flow shop problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2013.04.007
– volume: 250
  start-page: 702
  issue: 3
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib37
  article-title: An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.10.007
– volume: 37
  start-page: 1439
  issue: 8
  year: 2010
  ident: 10.1016/j.jclepro.2018.02.004_bib44
  article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.11.001
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.jclepro.2018.02.004_bib54
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 10
  start-page: 112
  issue: 2
  year: 1994
  ident: 10.1016/j.jclepro.2018.02.004_bib4
  article-title: Scheduling flexible flow shops with no setup effects
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.282536
– volume: 316
  start-page: 487
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib20
  article-title: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.009
– volume: 13
  start-page: 932
  issue: 2
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib26
  article-title: Hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2425404
– volume: 205
  start-page: 1
  year: 2010
  ident: 10.1016/j.jclepro.2018.02.004_bib45
  article-title: The hybrid flow shop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.09.024
– volume: 52
  start-page: 5735
  issue: 19
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib52
  article-title: Bi-objective reentrant hybrid flowshop scheduling: an iterated Pareto greedy algorithm
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.910627
– volume: 45
  start-page: 42
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib40
  article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation
  publication-title: Omega-Int. J. Manage. S.
  doi: 10.1016/j.omega.2013.12.004
– volume: 26
  start-page: 873
  issue: 5
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib23
  article-title: A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0874-y
– volume: 46
  start-page: 1311
  issue: 6
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib25
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE. T. Cyber.
  doi: 10.1109/TCYB.2015.2444383
– volume: 5
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib31
  article-title: Solving hybrid flow shop scheduling problems using bat algorithm
  publication-title: Int. J. Logist. Econ. Glob.
– volume: 81
  start-page: 82
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib48
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.10.001
– volume: 11
  start-page: 91
  issue: 1
  year: 1983
  ident: 10.1016/j.jclepro.2018.02.004_bib35
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
  doi: 10.1016/0305-0483(83)90088-9
– volume: 24
  start-page: 63
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib21
  article-title: A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.07.005
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib9
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 13
  start-page: 3729
  issue: 8
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib7
  article-title: An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.03.006
– volume: 28
  start-page: 307
  issue: 3
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib51
  article-title: An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2014.880803
– volume: 65
  start-page: 76
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib19
  article-title: Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.05.010
– volume: 107
  start-page: 389
  issue: 2
  year: 1998
  ident: 10.1016/j.jclepro.2018.02.004_bib41
  article-title: Branch and bound crossed with GA to solve hybrid flowshops
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(97)00333-0
– volume: 179
  start-page: 239
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib46
  article-title: Hybrid flow shop batching and scheduling with a bi-criteria objective
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.06.005
– volume: 38
  start-page: 1111
  issue: 3
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib22
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.07.038
– volume: 109
  start-page: 321
  issue: 2
  year: 1998
  ident: 10.1016/j.jclepro.2018.02.004_bib43
  article-title: A hybrid three-stage flowshop problem: efficient heuristics to minimize makespan
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00060-5
– volume: 248
  start-page: 744
  issue: 3
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib15
  article-title: Energy-efficient scheduling in manufacturing companies: a review and research framework
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.07.017
– volume: 129
  start-page: 565
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib5
  article-title: An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.03.150
– volume: 34
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.jclepro.2018.02.004_bib3
  article-title: An exact method for solving the multi-processor flow-shop
  publication-title: Rairo-Oper. Res.
  doi: 10.1051/ro:2000103
– volume: 29
  start-page: 418
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib8
  article-title: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm
  publication-title: Robot. Cim-Int. Manuf
  doi: 10.1016/j.rcim.2013.04.001
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib1
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– volume: 97
  start-page: 157
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib47
  article-title: Hybrid genetic algorithm and tabu search for finite capacity material requirement planning system in flexible flow shop with assembly operations
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.05.006
– volume: 8
  start-page: 323
  issue: 4
  year: 2005
  ident: 10.1016/j.jclepro.2018.02.004_bib36
  article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: J. Sched.
  doi: 10.1007/s10951-005-1640-y
– volume: 12
  start-page: 1755
  issue: 6
  year: 2012
  ident: 10.1016/j.jclepro.2018.02.004_bib27
  article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.01.011
– volume: 248
  start-page: 758
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib11
  article-title: Carbon-efficient scheduling of flow shops by multi-objective optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.05.019
– volume: 39
  start-page: 359
  year: 1988
  ident: 10.1016/j.jclepro.2018.02.004_bib16
  article-title: Two-stage, hybrid flow shop scheduling problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1988.63
– volume: 87
  start-page: 518
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib18
  article-title: A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.06.002
– volume: 25
  start-page: 207
  issue: 2
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib34
  article-title: No-wait two stage hybrid flow shop scheduling with genetic and adaptive imperialist competitive algorithms
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2012.682752
– volume: 18
  start-page: 301
  issue: 2
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib32
  article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2240304
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib24
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 181
  start-page: 2455
  year: 2011
  ident: 10.1016/j.jclepro.2018.02.004_bib39
  article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.12.025
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.jclepro.2018.02.004_bib10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 144
  start-page: 228
  year: 2017
  ident: 10.1016/j.jclepro.2018.02.004_bib29
  article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.011
– volume: 46
  start-page: 3010
  issue: 16
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib17
  article-title: Multi-objective two-stage multiprocessor flow shop scheduling–a subgroup particle swarm optimisation approach
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2014.886742
– volume: 86
  start-page: 133
  issue: 2
  year: 2003
  ident: 10.1016/j.jclepro.2018.02.004_bib28
  article-title: A case study in a two-stage hybrid flow shop with setup time and dedicated machines
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/S0925-5273(03)00011-2
– volume: 146
  start-page: 423
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib30
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2013.01.028
– year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib42
  article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time
  publication-title: J. Intell. Manuf.
– volume: 63
  start-page: 37
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib55
  article-title: Energy-conscious flow shop scheduling under time-of-use electricity tariffs
  publication-title: CIRP Ann. - Manuf. Technol.
  doi: 10.1016/j.cirp.2014.03.011
– volume: 11
  start-page: 3056
  issue: 3
  year: 2011
  ident: 10.1016/j.jclepro.2018.02.004_bib13
  article-title: An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.12.006
– volume: 112
  start-page: 3361
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib53
  article-title: Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.09.097
– volume: 13
  start-page: 1138
  year: 2016
  ident: 10.1016/j.jclepro.2018.02.004_bib12
  article-title: Parallel machine scheduling under time-of-use electricity prices: new models and optimization approaches
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2495328
– volume: 52
  start-page: 1495
  issue: 5
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib50
  article-title: Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2013.847983
– volume: 62
  start-page: 184
  year: 2015
  ident: 10.1016/j.jclepro.2018.02.004_bib14
  article-title: Local optimization of dynamic programs with guaranteed satisfaction of path constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.09.013
– volume: 36
  start-page: 2498
  year: 2009
  ident: 10.1016/j.jclepro.2018.02.004_bib38
  article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.10.008
– volume: 45
  start-page: 483
  issue: 4
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib49
  article-title: A hybrid water flow algorithm for multi-objective flexible flow shop scheduling problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.685072
– volume: 19
  start-page: 93
  year: 2014
  ident: 10.1016/j.jclepro.2018.02.004_bib33
  article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.005
– volume: 141
  start-page: 137
  issue: 1
  year: 2013
  ident: 10.1016/j.jclepro.2018.02.004_bib6
  article-title: Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2012.05.015
SSID ssj0017074
Score 2.6386797
Snippet This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 584
SubjectTerms algorithms
energy
Energy-aware
Hybrid flow shop scheduling problem
Multi-objective optimization
Setup energy consumption
Title Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions
URI https://dx.doi.org/10.1016/j.jclepro.2018.02.004
https://www.proquest.com/docview/2045802140
Volume 181
WOSCitedRecordID wos000428483100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvGQkxCVy8ebt42rVVUGrwqEryslK4qQPdZNsH0v3x_BfmYmdpOqCdjlwiSrHcZJ-XzzjGc8MIR_CCHRWVwnmZZnNXKEcFnGRMlcpJUCAKD_iVbGJYDgMx2PxrdP5VcfCXC2CPA-3W1H-V6ihDcDG0Nl_gLsZFBrgN4AOR4AdjncCvl8lhUAXf7VZkBXxXE9qVgHTw4WJu7SixaRYztbTi2qj4fQaI7esbFH8tFbTorRg0QtCyMSqVzVnTBzcKl1vSivVIYNJFcBZtka_m2ouPF0EnXEUpTPVNnuAZjosJGeXtfxEU48xYA-KfMKuW-4OtKX2x2a38bvpfAKDTCIziLFhHIXojrH5njHS93TsfDsvH1llDxQk5ulC1WaO9XRNOSOuzbkbkkAbJea9ObwmvCFu4gt1dla3FX21u3_4VZ6en53JUX88-lheMixKhs57U6HlHjmwA7hRlxwcf-6PvzRuqoDrNN_147chYp_-eOe_KT97akCl24wek0cGLXqsyfSEdNL8KXm4k6ryGdk2tKJ7tKK7tKINrSjQimpaUaQVRVrRlla0phVFWtGKVlTTiu7S6jk5P-2PTgbMVO1giSP4GmNJElgEpTyLuVDKdqJYqDh0M8fH9XMQBdzNVOw62ByLxBYxLFmzwIcpwotjx3lBunmRpy8JRRe7J9xAZJjY0uexCIMUegovhDVhpA6JW_-dMjEp7bGyykLWexfn0qAgEQXJbQkoHJJec1mpc7rcdkFYYyWNYqoVTglsu-3S9zW2EiZu9MbBR1dsVhLrQISYsZC_ukOf1-RB--G8Id31cpO-JfeTq_VstXxnePkbhKDCkA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multi-objective+optimization+algorithm+for+hybrid+flow+shop+scheduling+problems+with+setup+energy+consumptions&rft.jtitle=Journal+of+cleaner+production&rft.au=Li%2C+Jun-qing&rft.au=Sang%2C+Hong-yan&rft.au=Han%2C+Yu-yan&rft.au=Wang%2C+Cun-gang&rft.date=2018-04-20&rft.issn=0959-6526&rft.volume=181+p.584-598&rft.spage=584&rft.epage=598&rft_id=info:doi/10.1016%2Fj.jclepro.2018.02.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon