On the emerging potential of quantum annealing hardware for combinatorial optimization

Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental benchmarking studies have indicated that quantum annealing hardware does not provide an irrefutable performance gain over state-of-the-art opt...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of heuristics Ročník 30; číslo 5-6; s. 325 - 358
Hlavní autori: Tasseff, Byron, Albash, Tameem, Morrell, Zachary, Vuffray, Marc, Lokhov, Andrey Y., Misra, Sidhant, Coffrin, Carleton
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2024
Springer Nature B.V
Springer
Predmet:
ISSN:1381-1231, 1572-9397
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental benchmarking studies have indicated that quantum annealing hardware does not provide an irrefutable performance gain over state-of-the-art optimization methods. However, as this hardware continues to evolve, each new iteration brings improved performance and warrants further benchmarking. To that end, this work conducts an optimization performance assessment of D-Wave Systems’ Advantage Performance Update computer, which can natively solve sparse unconstrained quadratic optimization problems with over 5,000 binary decision variables and 40,000 quadratic terms. We demonstrate that classes of contrived problems exist where this quantum annealer can provide run time benefits over a collection of established classical solution methods that represent the current state-of-the-art for benchmarking quantum annealing hardware. Although this work does not present strong evidence of an irrefutable performance benefit for this emerging optimization technology, it does exhibit encouraging progress, signaling the potential impacts on practical optimization tasks in the future.
AbstractList Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental benchmarking studies have indicated that quantum annealing hardware does not provide an irrefutable performance gain over state-of-the-art optimization methods. However, as this hardware continues to evolve, each new iteration brings improved performance and warrants further benchmarking. To that end, this work conducts an optimization performance assessment of D-Wave Systems’ Advantage Performance Update computer, which can natively solve sparse unconstrained quadratic optimization problems with over 5,000 binary decision variables and 40,000 quadratic terms. We demonstrate that classes of contrived problems exist where this quantum annealer can provide run time benefits over a collection of established classical solution methods that represent the current state-of-the-art for benchmarking quantum annealing hardware. Although this work does not present strong evidence of an irrefutable performance benefit for this emerging optimization technology, it does exhibit encouraging progress, signaling the potential impacts on practical optimization tasks in the future.
Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental benchmarking studies have indicated that quantum annealing hardware does not provide an irrefutable performance gain over state-of-the-art optimization methods. However, as this hardware continues to evolve, each new iteration brings improved performance and warrants further benchmarking. To that end, this work conducts an optimization performance assessment of D-Wave Systems’ Advantage Performance Update computer, which can natively solve sparse unconstrained quadratic optimization problems with over 5,000 binary decision variables and 40,000 quadratic terms. We demonstrate that classes of contrived problems exist where this quantum annealer can provide run time benefits over a collection of established classical solution methods that represent the current state-of-the-art for benchmarking quantum annealing hardware. Although this work does not present strong evidence of an irrefutable performance benefit for this emerging optimization technology, it does exhibit encouraging progress, signaling the potential impacts on practical optimization tasks in the future.
Author Lokhov, Andrey Y.
Morrell, Zachary
Vuffray, Marc
Albash, Tameem
Coffrin, Carleton
Misra, Sidhant
Tasseff, Byron
Author_xml – sequence: 1
  givenname: Byron
  surname: Tasseff
  fullname: Tasseff, Byron
  organization: Los Alamos National Laboratory
– sequence: 2
  givenname: Tameem
  surname: Albash
  fullname: Albash, Tameem
  organization: University of New Mexico
– sequence: 3
  givenname: Zachary
  surname: Morrell
  fullname: Morrell, Zachary
  organization: Los Alamos National Laboratory
– sequence: 4
  givenname: Marc
  surname: Vuffray
  fullname: Vuffray, Marc
  organization: Los Alamos National Laboratory
– sequence: 5
  givenname: Andrey Y.
  surname: Lokhov
  fullname: Lokhov, Andrey Y.
  organization: Los Alamos National Laboratory
– sequence: 6
  givenname: Sidhant
  surname: Misra
  fullname: Misra, Sidhant
  organization: Los Alamos National Laboratory
– sequence: 7
  givenname: Carleton
  orcidid: 0000-0003-3238-1699
  surname: Coffrin
  fullname: Coffrin, Carleton
  email: cjc@lanl.gov
  organization: Los Alamos National Laboratory
BackLink https://www.osti.gov/biblio/2426409$$D View this record in Osti.gov
BookMark eNp9kF1LwzAUhoNMcJv-Aa-KXlfz0abJpQy_YLAb9TakabJltMmWpIj-ertVELzYVQ7kfc55eWZg4rzTAFwjeIcgrO4jghXBOcRFDnlJYF6egSkqK5xzwqvJMBOGcoQJugCzGLcQQs5KMgUfK5eljc50p8PaunW280m7ZGWbeZPte-lS32XSOS3bw_dGhuZTBp0ZHzLlu9o6mXw45nfJdvZbJuvdJTg3so366vedg_enx7fFS75cPb8uHpa5IhymnBLETNVAZDjjpsSUYkXKkqtK1Q1pOC2oRFQrY4hUdSGxbBinpChqpFilDJmDm3Gvj8mKqGzSaqP8UFclgQtMC8iH0O0Y2gW_73VMYuv74IZegiBUIcrY4GwO8JhSwccYtBG7YDsZvgSC4iBZjJLFIFkcJYsDxP5BQ4WjgRSkbU-jZETjcMetdfhrdYL6AYkRk5g
CitedBy_id crossref_primary_10_1016_j_ejor_2024_12_032
crossref_primary_10_1016_j_future_2025_107934
crossref_primary_10_1103_PhysRevApplied_23_054049
crossref_primary_10_3390_math12182850
crossref_primary_10_1007_s11227_025_07320_9
crossref_primary_10_1038_s44335_025_00028_2
crossref_primary_10_1109_ACCESS_2025_3554024
crossref_primary_10_1007_s10732_025_09564_3
crossref_primary_10_1038_s44335_025_00032_6
crossref_primary_10_21468_SciPostPhys_19_2_062
crossref_primary_10_1038_s41534_025_01020_1
Cites_doi 10.1103/PhysRevX.8.031016
10.1007/PL00011151
10.1007/978-1-4613-0303-9_33
10.1038/s41567-022-01741-6
10.1143/JPSJ.5.435
10.1103/PhysRevX.6.031015
10.1007/s10479-022-04634-2
10.1109/ASP-DAC47756.2020.9045100
10.1103/PhysRevA.94.062106
10.1088/0305-4470/30/15/013
10.1088/2058-9565/aabd9b
10.1103/PhysRevA.91.042314
10.1038/s42254-021-00313-6
10.1007/BF02650179
10.1126/science.aah5178
10.48550/arXiv.1701.04579
10.1143/JPSJ.65.1604
10.1103/PhysRevA.94.022337
10.1109/TQE.2021.3050449
10.1038/nature10012
10.3389/fphy.2014.00005
10.48550/arXiv.1409.3934
10.1126/sciadv.aav2372
10.1093/biomet/57.1.97
10.1007/s10107-005-0637-9
10.1038/nphys2900
10.1088/1742-5468/2006/03/p03018
10.48550/arXiv.2003.00133
10.1103/PhysRevA.92.042325
10.1007/s10288-019-00424-y
10.1103/PhysRevD.19.2349
10.1103/PhysRevLett.57.2607
10.1088/0953-2048/23/10/105014
10.1007/978-3-030-19212-9_11
10.1063/1.1917749
10.1088/1361-6633/ab85b8
10.1088/0953-2048/23/6/065004
10.1103/PhysRevB.82.024511
10.1103/PRXQuantum.3.020317
10.1063/1.1699114
10.1063/1.1703954
10.1145/2482767.2482797
10.1287/ijoc.2017.0798
10.1093/acprof:oso/9780198570837.001.0001
10.1287/ijoc.2021.1065
10.48550/arXiv.1306.1202
10.1016/0009-2614(94)00117-0
10.48550/arXiv.2111.13628
10.1103/PhysRevLett.115.077201
10.1007/978-94-015-7744-1_2
10.1007/BF01343193
10.1007/s11128-010-0200-3
10.1126/sciadv.abh0952
10.1007/s11128-008-0082-9
10.1007/s10601-020-09315-0
10.48550/arXiv.1401.7087
10.1103/PhysRevE.100.043311
10.1126/science.1252319
10.1007/s10878-014-9734-0
10.1103/PhysRevE.58.5355
10.48550/arXiv.1508.05087
10.1109/TQE.2021.3092710
10.48550/arXiv.quant-ph/0001106
10.1103/physrevresearch.2.043163
10.1126/science.1068774
10.1023/B:ANOR.0000039522.58036.68
10.1109/26.768759
10.1103/PhysRevB.39.11828
10.1088/2058-9565/ac4d1b
10.1088/2058-9565/aac8b2
10.1063/1.2798382
10.1126/science.1057726
10.48550/arXiv.quant-ph/0201031
10.1007/s10479-022-04695-3
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
OTOTI
DOI 10.1007/s10732-024-09530-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1572-9397
EndPage 358
ExternalDocumentID 2426409
10_1007_s10732_024_09530_5
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2037755
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Los Alamos National Laboratory
  grantid: 20210114ER
  funderid: http://dx.doi.org/10.13039/100008902
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
OTOTI
ID FETCH-LOGICAL-c390t-6318f7d01f989f52662c3559c7cbd3d9646a16ecff3acb4a2ad896344b1c87cf3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001282673200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1381-1231
IngestDate Mon Jan 27 02:26:15 EST 2025
Tue Dec 02 05:41:47 EST 2025
Tue Nov 18 21:37:32 EST 2025
Sat Nov 29 06:01:09 EST 2025
Fri Feb 21 02:37:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Quantum annealing
Ising
Optimization
Quadratic
QUBO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-6318f7d01f989f52662c3559c7cbd3d9646a16ecff3acb4a2ad896344b1c87cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Science Foundation (NSF)
89233218CNA000001; 2037755; 20210114ER
LA-UR-22-29705
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-3238-1699
0000000332381699
OpenAccessLink https://link.springer.com/10.1007/s10732-024-09530-5
PQID 3117168895
PQPubID 26068
PageCount 34
ParticipantIDs osti_scitechconnect_2426409
proquest_journals_3117168895
crossref_primary_10_1007_s10732_024_09530_5
crossref_citationtrail_10_1007_s10732_024_09530_5
springer_journals_10_1007_s10732_024_09530_5
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
– name: United States
PublicationTitle Journal of heuristics
PublicationTitleAbbrev J Heuristics
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References KowalskyMAlbashTHenI3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizersQuant. Sci. Technol.20227210.1088/2058-9565/ac4d1b
LucasAIsing formulations of many NP problemsFront. Phys.201410.3389/fphy.2014.00005
van Laarhoven, P.J.M., Aarts, E.H.L. (1987). Simulated annealing, Springer Netherlands, Dordrecht, pp 7–15. https://doi.org/10.1007/978-94-015-7744-1_2
Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration. (2014). https://doi.org/10.48550/arXiv.1409.3934
Vuffray, M.: The cavity method in coding theory. Tech. rep, EPFL (2014)
Aaronson, S. (2017). Insert D-Wave post here. https://web.archive.org/web/20220305233421, Accessed 08 April 2022
DunningIGuptaSSilberholzJWhat works best when? A systematic evaluation of heuristics for max-cut and QUBOINFORMS J. Comput.201830360862410.1287/ijoc.2017.0798
King, J., Yarkoni, S., Raymond, J., et al.: Quantum annealing amid local ruggedness and global frustration. (2017). https://doi.org/10.48550/arXiv.1701.04579
PalubeckisGMultistart Tabu search strategies for the unconstrained binary quadratic optimization problemAnn. Oper. Res.20041311259282209580710.1023/B:ANOR.0000039522.58036.68
D-Wave Systems. (2022). dwave-neal. https://docs.ocean.dwavesys.com/projects/neal/en/latest. Accessed 15 Mar 2022
GloverFKochenbergerGDuYQuantum bridge analytics I: a tutorial on formulating and using QUBO models4OR2019174335371403688410.1007/s10288-019-00424-y
KochenbergerGHaoJKGloverFThe unconstrained binary quadratic programming problem: a surveyJ. Comb. Optim.20142815881321510110.1007/s10878-014-9734-0
Boothby, K., Bunyk, P., Raymond, J., et al.: Next-generation topology of D-Wave quantum processors. (2020). https://doi.org/10.48550/arXiv.2003.00133
MandràSKatzgraberHGA deceptive step towards quantum speedup detectionQuant. Sci. Technol.20183404LT0110.1088/2058-9565/aac8b2
AlbashTVinciWMishraAConsistency tests of classical and quantum models for a quantum annealerPhys. Rev. A20159110.1103/PhysRevA.91.042314
GloverFKochenbergerGMaMQuantum bridge analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchangeAnn. Oper. Res.20223141185212444721810.1007/s10479-022-04695-3
HarrisRJohnsonMWLantingTExperimental investigation of an eight-qubit unit cell in a superconducting optimization processorPhys. Rev. B20108210.1103/PhysRevB.82.024511
RayPChakrabartiBKChakrabartiASherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuationsPhys. Rev. B198939118281183210.1103/PhysRevB.39.11828
FeynmanRPSimulating physics with computersInt. J. Theor. Phys.198221646748865831110.1007/BF02650179
JobJLidarDTest-driving 1000 qubitsQuant. Sci. Technol.20183310.1088/2058-9565/aabd9b
BaccariFGogolinCWittekPVerifying the output of quantum optimizers with ground-state energy lower boundsRev. Res. Phys.202010.1103/physrevresearch.2.043163
FinnilaAGomezMSebenikCQuantum annealing: a new method for minimizing multidimensional functionsChem. Phys. Lett.1994219534334810.1016/0009-2614(94)00117-0
JohnsonMWBunykPMaibaumFA scalable control system for a superconducting adiabatic quantum optimization processorSupercond. Sci. Technol.201023610.1088/0953-2048/23/6/065004
KatzgraberHGTrebstSHuseDAFeedback-optimized parallel tempering Monte CarloJ. Stat. Mech: Theory Exp.200603P03018P0301810.1088/1742-5468/2006/03/p03018
NelsonJVuffrayMLokhovAYSingle-qubit fidelity assessment of quantum annealing hardwareIEEE Trans. Quant. Eng.2021211010.1109/TQE.2021.3092710
King, J., Yarkoni, S., Nevisi, M.M., et al.: Benchmarking a quantum annealing processor with the time-to-target metric. (2015). https://doi.org/10.48550/arXiv.1508.05087
Farhi, E., Goldstone, J., Gutmann, S.: Quantum adiabatic evolution algorithms versus simulated annealing. (2002). https://doi.org/10.48550/arXiv.quant-ph/0201031
KoneAKofkeDASelection of temperature intervals for parallel-tempering simulationsJ. Chem. Phys.20051222010.1063/1.1917749
ZaborniakTde SousaRBenchmarking Hamiltonian noise in the D-Wave quantum annealerIEEE Trans. Quant. Eng.202121610.1109/TQE.2021.3050449
D-Wave Systems. (2020). D-Wave system documentation. https://docs.dwavesys.com/docs/latest. Accessed 17 Mar 2021
KingADSuzukiSRaymondJCoherent quantum annealing in a programmable 2,000 qubit Ising chainNat. Phys.202218111324132810.1038/s41567-022-01741-6
McGeoch, C., Farre, P. (2020). The D-wave advantage system: an overview. Technical Report https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
CrossonEJLidarDAProspects for quantum enhancement with diabatic quantum annealingNat. Rev. Phys.20213746648910.1038/s42254-021-00313-6
PangYCoffrinCLokhovAYThe potential of quantum annealing for rapid solution structure identificationConstraints2021261125434760910.1007/s10601-020-09315-0
ChoiVMinor-embedding in adiabatic quantum computation: II. minor-universal graph designQuantum Inf. Process.2011103343353279407010.1007/s11128-010-0200-3
MezardMMontanariAInformation, Physics, and Computation2009OxfordOxford University Press10.1093/acprof:oso/9780198570837.001.0001
Puget JF (2013) D-Wave vs CPLEX comparison. Part 2: QUBO. https://web.archive.org/web/20170702140136/https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo?lang=en Accessed 27 April 2022
ChoiVMinor-embedding in adiabatic quantum computation: I. The parameter setting problemQuantum Inf. Process.200875193209245360410.1007/s11128-008-0082-9
CrowleyPJDGreenAGAnisotropic Landau–Lifshitz–Gilbert models of dissipation in qubitsPhys. Rev. A20169410.1103/PhysRevA.94.062106
HoudayerJA cluster Monte Carlo algorithm for 2-dimensional spin glassesEur. Phys. J. B200122447948410.1007/PL00011151
KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998585355536310.1103/PhysRevE.58.5355
BornMFockVBeweis des adiabatensatzesZ. Phys.192851316518010.1007/BF01343193
SwendsenRHWangJSReplica Monte Carlo simulation of spin-glassesPhys. Rev. Lett.1986572607260986978810.1103/PhysRevLett.57.2607
D-Wave Systems. (2024). dwave-tabu. https://docs.ocean.dwavesys.com/projects/tabu/en/latest. Accessed 07 May 2024
SantoroGEMartoňákRTosattiETheory of quantum annealing of an Ising spin glassScience200229555642427243010.1126/science.1068774
GloverFKochenbergerGHennigRQuantum bridge analytics I: a tutorial on formulating and using QUBO modelsAnn. Oper. Res.20223141141183444721710.1007/s10479-022-04634-2
Matsubara, S., Takatsu, M., Miyazawa, T., et al (2020) Digital annealer for high-speed solving of combinatorial optimization problems and its applications. In: 2020 25th Asia and South Pacific design automation conference (ASP-DAC), pp 667–672, https://doi.org/10.1109/ASP-DAC47756.2020.9045100
Shin, S.W., Smith, G., Smolin, J.A., et al. (2014). How “quantum” is the D-Wave machine? https://doi.org/10.48550/arXiv.1401.7087
Glover, F., Laguna, M. (1998). Tabu Search, Springer US, Boston, MA, pp 2093–2229. https://doi.org/10.1007/978-1-4613-0303-9_33
BerkleyAJJohnsonMWBunykPA scalable readout system for a superconducting adiabatic quantum optimization systemSuperconduct. Sci. Technol.2010231010.1088/0953-2048/23/10/105014
HukushimaKNemotoKExchange Monte Carlo method and application to spin glass simulationsJ. Phys. Soc. Jpn.19966561604160810.1143/JPSJ.65.1604
McGeoch, C.C., Wang, C. (2013). Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers. ACM, New York, CF ’13, pp. 23:1–23:11. https://doi.org/10.1145/2482767.2482797
Mohseni, M., Eppens, D., Strumpfer, J., et al.: Nonequilibrium Monte Carlo for unfreezing variables in hard combinatorial optimization. (2021). https://doi.org/10.48550/arXiv.2111.13628
GotoHTatsumuraKDixonARCombinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systemsSci. Adv.201954eaav237210.1126/sciadv.aav2372
D-Wave Systems. (2021). Clarity: a roadmap for the future of quantum computing. https://web.archive.org/web/20220320053047/https://www.dwavesys.com/media/xvjpraig/clarity-roadmap_digital_v2.pdf. Accessed 26 April 2022
JansenSRuskaiMBSeilerRBounds for the adiabatic approximation with applications to quantum computationJ. Math. Phys.20074810236277610.1063/1.2798382
MetropolisNRosenbluthAWRosenbluthMNEquation of state calculations by fast computing machinesJ. Chem. Phys.19532161087109210.1063/1.1699114
Dash, S.: A note on QUBO instances defined on Chimera graphs. (2013). https://doi.org/10.48550/arXiv.1306.1202
HenIJobJAlbashTProbing for quantum speedup in spin-glass problems with planted solutionsPhys. Rev. A20159210.1103/PhysRevA.92.042325
HonjoTSonobeTInabaK100,000-spin coherent Ising machineSci. Adv.2021740eabh095210.1126/sciadv.abh0952
FarhiEGoldstoneJGutmannSA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012925516472475183876110.1126/science.1057726
GlauberRJTime-dependent statistics of the Ising modelJ. Math. Phys.19634229430714841010.1063/1.1703954
McMahonPLMarandiAHaribaraYA fully programmable 100-spin coherent Ising machine with all-to-all connectionsScience2016354631261461710.1126/science.aah5178
DharDShuklaPSethnaJPZero-temperature hysteresis in the random-field Ising model on a Bethe latticeJ. Phys. A: Math. Gen.1997301552595267147834510.1088/0305-4470/30/15/013
JohnsonMWAminMHSGildertSQuantum annealing with manufactured spinsNature2011473734619419810.1038/nature10012
VuffrayMCoffrinCKharkovYAProgrammable quantum annealers as noisy Gibbs samplersPRX Quantum2022310.1103/PRXQuantum.3.020317
HastingsWKMonte Carlo sampling methods using Markov chains and their applicationsBiometrika197057197109336343710.1093/biomet/57.1.97
Selby A (2013) QUBO-Chimera. https://github.com/alex1770/QUBO-Chimera
FossorierMMihaljevicMImaiHReduced complexity iterative decoding of low-density parity check codes based on belief propagationIEEE Trans. Commun.199947567368010.1109/26.768759
Billio
P Ray (9530_CR74) 1989; 39
VS Denchev (9530_CR21) 2016; 6
9530_CR26
9530_CR69
V Choi (9530_CR11) 2008; 7
AD King (9530_CR52) 2022; 18
9530_CR20
JR Klauder (9530_CR55) 1979; 19
9530_CR64
S Jansen (9530_CR45) 2007; 48
9530_CR63
B Zhu (9530_CR86) 2015; 115
H Goto (9530_CR37) 2019; 5
T Kadowaki (9530_CR49) 1998; 58
9530_CR24
RP Feynman (9530_CR27) 1982; 21
9530_CR65
GE Santoro (9530_CR77) 2002; 295
A Billionnet (9530_CR7) 2007; 109
WK Hastings (9530_CR39) 1970; 57
V Choi (9530_CR12) 2011; 10
9530_CR17
N Metropolis (9530_CR67) 1953; 21
9530_CR16
J Nelson (9530_CR70) 2021; 2
HG Katzgraber (9530_CR51) 2006; 03
9530_CR59
A Kone (9530_CR57) 2005; 122
9530_CR19
9530_CR18
9530_CR53
G Gallavotti (9530_CR30) 2013
Y Pang (9530_CR72) 2021; 26
T Kato (9530_CR50) 1950; 5
AJ Berkley (9530_CR6) 2010; 23
F Baccari (9530_CR4) 2020
9530_CR54
G Palubeckis (9530_CR71) 2004; 131
T Albash (9530_CR2) 2018; 8
EJ Crosson (9530_CR14) 2021; 3
I Dunning (9530_CR23) 2018; 30
M Kowalsky (9530_CR58) 2022; 7
RJ Glauber (9530_CR32) 1963; 4
9530_CR9
I Rozada (9530_CR75) 2019; 100
D Dhar (9530_CR22) 1997; 30
9530_CR5
A Lucas (9530_CR60) 2014
T Honjo (9530_CR42) 2021; 7
MW Johnson (9530_CR47) 2010; 23
PJD Crowley (9530_CR15) 2016; 94
9530_CR83
F Glover (9530_CR36) 2022; 314
E Farhi (9530_CR25) 2001; 292
RH Swendsen (9530_CR82) 1986; 57
9530_CR81
M Mezard (9530_CR68) 2009
T Albash (9530_CR3) 2015; 91
G Kochenberger (9530_CR56) 2014; 28
T Serra (9530_CR80) 2022; 34
F Glover (9530_CR35) 2022; 314
F Glover (9530_CR34) 2019; 17
T Zaborniak (9530_CR85) 2021; 2
J Houdayer (9530_CR43) 2001; 22
S Mandrà (9530_CR61) 2018; 3
M Fossorier (9530_CR29) 1999; 47
9530_CR31
9530_CR73
S Mandrà (9530_CR62) 2016; 94
9530_CR79
9530_CR78
9530_CR33
M Born (9530_CR10) 1928; 51
C Coffrin (9530_CR13) 2019
MW Johnson (9530_CR48) 2011; 473
PL McMahon (9530_CR66) 2016; 354
R Harris (9530_CR38) 2010; 82
M Vuffray (9530_CR84) 2022; 3
K Hukushima (9530_CR44) 1996; 65
P Hauke (9530_CR40) 2020; 83
TF Rønnow (9530_CR76) 2014; 345
9530_CR1
I Hen (9530_CR41) 2015; 92
S Boixo (9530_CR8) 2014; 10
A Finnila (9530_CR28) 1994; 219
J Job (9530_CR46) 2018; 3
References_xml – reference: SerraTHuangTRaghunathanAUTemplate-based minor embedding for adiabatic quantum optimizationINFORMS J. Comput.2022341427439440147910.1287/ijoc.2021.1065
– reference: MetropolisNRosenbluthAWRosenbluthMNEquation of state calculations by fast computing machinesJ. Chem. Phys.19532161087109210.1063/1.1699114
– reference: AlbashTLidarDADemonstration of a scaling advantage for a quantum annealer over simulated annealingPhys. Rev. X2018810.1103/PhysRevX.8.031016
– reference: D-Wave Systems. (2021). Clarity: a roadmap for the future of quantum computing. https://web.archive.org/web/20220320053047/https://www.dwavesys.com/media/xvjpraig/clarity-roadmap_digital_v2.pdf. Accessed 26 April 2022
– reference: ZaborniakTde SousaRBenchmarking Hamiltonian noise in the D-Wave quantum annealerIEEE Trans. Quant. Eng.202121610.1109/TQE.2021.3050449
– reference: HaukePKatzgraberHGLechnerWPerspectives of quantum annealing: methods and implementationsRep. Prog. Phys.202083510.1088/1361-6633/ab85b8
– reference: MezardMMontanariAInformation, Physics, and Computation2009OxfordOxford University Press10.1093/acprof:oso/9780198570837.001.0001
– reference: KoneAKofkeDASelection of temperature intervals for parallel-tempering simulationsJ. Chem. Phys.20051222010.1063/1.1917749
– reference: Shin, S.W., Smith, G., Smolin, J.A., et al. (2014). How “quantum” is the D-Wave machine? https://doi.org/10.48550/arXiv.1401.7087
– reference: Farhi, E., Goldstone, J., Gutmann, S., et al.: Quantum computation by adiabatic evolution. (2000). https://doi.org/10.48550/arXiv.quant-ph/0001106
– reference: JohnsonMWAminMHSGildertSQuantum annealing with manufactured spinsNature2011473734619419810.1038/nature10012
– reference: van Laarhoven, P.J.M., Aarts, E.H.L. (1987). Simulated annealing, Springer Netherlands, Dordrecht, pp 7–15. https://doi.org/10.1007/978-94-015-7744-1_2
– reference: HastingsWKMonte Carlo sampling methods using Markov chains and their applicationsBiometrika197057197109336343710.1093/biomet/57.1.97
– reference: BillionnetAElloumiSUsing a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Programm.200710915568229403410.1007/s10107-005-0637-9
– reference: GloverFKochenbergerGDuYQuantum bridge analytics I: a tutorial on formulating and using QUBO models4OR2019174335371403688410.1007/s10288-019-00424-y
– reference: LucasAIsing formulations of many NP problemsFront. Phys.201410.3389/fphy.2014.00005
– reference: AlbashTVinciWMishraAConsistency tests of classical and quantum models for a quantum annealerPhys. Rev. A20159110.1103/PhysRevA.91.042314
– reference: JansenSRuskaiMBSeilerRBounds for the adiabatic approximation with applications to quantum computationJ. Math. Phys.20074810236277610.1063/1.2798382
– reference: KingADSuzukiSRaymondJCoherent quantum annealing in a programmable 2,000 qubit Ising chainNat. Phys.202218111324132810.1038/s41567-022-01741-6
– reference: D-Wave Systems. (2022). dwave-neal. https://docs.ocean.dwavesys.com/projects/neal/en/latest. Accessed 15 Mar 2022
– reference: JohnsonMWBunykPMaibaumFA scalable control system for a superconducting adiabatic quantum optimization processorSupercond. Sci. Technol.201023610.1088/0953-2048/23/6/065004
– reference: Vuffray, M.: The cavity method in coding theory. Tech. rep, EPFL (2014)
– reference: DharDShuklaPSethnaJPZero-temperature hysteresis in the random-field Ising model on a Bethe latticeJ. Phys. A: Math. Gen.1997301552595267147834510.1088/0305-4470/30/15/013
– reference: ZhuBOchoaAJKatzgraberHGEfficient cluster algorithm for spin glasses in any space dimensionPhys. Rev. Lett.201511510.1103/PhysRevLett.115.077201
– reference: D-Wave Systems. (2020). D-Wave system documentation. https://docs.dwavesys.com/docs/latest. Accessed 17 Mar 2021
– reference: CrossonEJLidarDAProspects for quantum enhancement with diabatic quantum annealingNat. Rev. Phys.20213746648910.1038/s42254-021-00313-6
– reference: Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration. (2014). https://doi.org/10.48550/arXiv.1409.3934
– reference: FossorierMMihaljevicMImaiHReduced complexity iterative decoding of low-density parity check codes based on belief propagationIEEE Trans. Commun.199947567368010.1109/26.768759
– reference: JobJLidarDTest-driving 1000 qubitsQuant. Sci. Technol.20183310.1088/2058-9565/aabd9b
– reference: Aaronson, S. (2017). Insert D-Wave post here. https://web.archive.org/web/20220305233421, Accessed 08 April 2022
– reference: GlauberRJTime-dependent statistics of the Ising modelJ. Math. Phys.19634229430714841010.1063/1.1703954
– reference: Matsubara, S., Takatsu, M., Miyazawa, T., et al (2020) Digital annealer for high-speed solving of combinatorial optimization problems and its applications. In: 2020 25th Asia and South Pacific design automation conference (ASP-DAC), pp 667–672, https://doi.org/10.1109/ASP-DAC47756.2020.9045100
– reference: DenchevVSBoixoSIsakovSVWhat is the computational value of finite-range tunneling?Phys. Rev. X2016610.1103/PhysRevX.6.031015
– reference: GotoHTatsumuraKDixonARCombinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systemsSci. Adv.201954eaav237210.1126/sciadv.aav2372
– reference: Dash, S.: A note on QUBO instances defined on Chimera graphs. (2013). https://doi.org/10.48550/arXiv.1306.1202
– reference: HarrisRJohnsonMWLantingTExperimental investigation of an eight-qubit unit cell in a superconducting optimization processorPhys. Rev. B20108210.1103/PhysRevB.82.024511
– reference: FinnilaAGomezMSebenikCQuantum annealing: a new method for minimizing multidimensional functionsChem. Phys. Lett.1994219534334810.1016/0009-2614(94)00117-0
– reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998585355536310.1103/PhysRevE.58.5355
– reference: HenIJobJAlbashTProbing for quantum speedup in spin-glass problems with planted solutionsPhys. Rev. A20159210.1103/PhysRevA.92.042325
– reference: ChoiVMinor-embedding in adiabatic quantum computation: I. The parameter setting problemQuantum Inf. Process.200875193209245360410.1007/s11128-008-0082-9
– reference: Selby A (2013) QUBO-Chimera. https://github.com/alex1770/QUBO-Chimera
– reference: SwendsenRHWangJSReplica Monte Carlo simulation of spin-glassesPhys. Rev. Lett.1986572607260986978810.1103/PhysRevLett.57.2607
– reference: CoffrinCNagarajanHBentRRousseauLMStergiouKEvaluating Ising processing units with integer programmingIntegration of Constraint Programming, Artificial Intelligence, and Operations Research2019ChamSpringer International Publishing16318110.1007/978-3-030-19212-9_11
– reference: NelsonJVuffrayMLokhovAYSingle-qubit fidelity assessment of quantum annealing hardwareIEEE Trans. Quant. Eng.2021211010.1109/TQE.2021.3092710
– reference: FarhiEGoldstoneJGutmannSA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012925516472475183876110.1126/science.1057726
– reference: D-Wave Systems. (2024). dwave-tabu. https://docs.ocean.dwavesys.com/projects/tabu/en/latest. Accessed 07 May 2024
– reference: KochenbergerGHaoJKGloverFThe unconstrained binary quadratic programming problem: a surveyJ. Comb. Optim.20142815881321510110.1007/s10878-014-9734-0
– reference: BaccariFGogolinCWittekPVerifying the output of quantum optimizers with ground-state energy lower boundsRev. Res. Phys.202010.1103/physrevresearch.2.043163
– reference: ChoiVMinor-embedding in adiabatic quantum computation: II. minor-universal graph designQuantum Inf. Process.2011103343353279407010.1007/s11128-010-0200-3
– reference: Beasley, J.E.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Tech. rep, Management School, Imperial College (1998)
– reference: KatzgraberHGTrebstSHuseDAFeedback-optimized parallel tempering Monte CarloJ. Stat. Mech: Theory Exp.200603P03018P0301810.1088/1742-5468/2006/03/p03018
– reference: BoixoSRønnowTFIsakovSVEvidence for quantum annealing with more than one hundred qubitsNat. Phys.201410321822410.1038/nphys2900
– reference: GloverFKochenbergerGMaMQuantum bridge analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchangeAnn. Oper. Res.20223141185212444721810.1007/s10479-022-04695-3
– reference: KatoTOn the adiabatic theorem of quantum mechanicsJ. Phys. Soc. Jpn.19505643543910.1143/JPSJ.5.435
– reference: Puget JF (2013) D-Wave vs CPLEX comparison. Part 2: QUBO. https://web.archive.org/web/20170702140136/https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo?lang=en Accessed 27 April 2022
– reference: Farhi, E., Goldstone, J., Gutmann, S.: Quantum adiabatic evolution algorithms versus simulated annealing. (2002). https://doi.org/10.48550/arXiv.quant-ph/0201031
– reference: RayPChakrabartiBKChakrabartiASherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuationsPhys. Rev. B198939118281183210.1103/PhysRevB.39.11828
– reference: Geyer, C.J. (1991). Parallel tempering. In: Keramidas, E.M., Kaufman, S.M. (eds) Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface. American Statistical Association, New York, p 156
– reference: McGeoch, C.C., Wang, C. (2013). Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers. ACM, New York, CF ’13, pp. 23:1–23:11. https://doi.org/10.1145/2482767.2482797
– reference: RozadaIAramonMMachtaJEffects of setting temperatures in the parallel tempering Monte Carlo algorithmPhys. Rev. E201910010.1103/PhysRevE.100.043311
– reference: SantoroGEMartoňákRTosattiETheory of quantum annealing of an Ising spin glassScience200229555642427243010.1126/science.1068774
– reference: FeynmanRPSimulating physics with computersInt. J. Theor. Phys.198221646748865831110.1007/BF02650179
– reference: GallavottiGStatistical Mechanics: A Short Treatise2013New YorkSpringer Science & Business Media
– reference: HonjoTSonobeTInabaK100,000-spin coherent Ising machineSci. Adv.2021740eabh095210.1126/sciadv.abh0952
– reference: King, J., Yarkoni, S., Nevisi, M.M., et al.: Benchmarking a quantum annealing processor with the time-to-target metric. (2015). https://doi.org/10.48550/arXiv.1508.05087
– reference: KlauderJRPath integrals and stationary-phase approximationsPhys. Rev. D1979192349235610.1103/PhysRevD.19.2349
– reference: PangYCoffrinCLokhovAYThe potential of quantum annealing for rapid solution structure identificationConstraints2021261125434760910.1007/s10601-020-09315-0
– reference: GloverFKochenbergerGHennigRQuantum bridge analytics I: a tutorial on formulating and using QUBO modelsAnn. Oper. Res.20223141141183444721710.1007/s10479-022-04634-2
– reference: King, J., Yarkoni, S., Raymond, J., et al.: Quantum annealing amid local ruggedness and global frustration. (2017). https://doi.org/10.48550/arXiv.1701.04579
– reference: HukushimaKNemotoKExchange Monte Carlo method and application to spin glass simulationsJ. Phys. Soc. Jpn.19966561604160810.1143/JPSJ.65.1604
– reference: BornMFockVBeweis des adiabatensatzesZ. Phys.192851316518010.1007/BF01343193
– reference: VuffrayMCoffrinCKharkovYAProgrammable quantum annealers as noisy Gibbs samplersPRX Quantum2022310.1103/PRXQuantum.3.020317
– reference: McMahonPLMarandiAHaribaraYA fully programmable 100-spin coherent Ising machine with all-to-all connectionsScience2016354631261461710.1126/science.aah5178
– reference: MandràSZhuZWangWStrengths and weaknesses of weak-strong cluster problems: a detailed overview of state-of-the-art classical heuristics versus quantum approachesPhys. Rev. A20169410.1103/PhysRevA.94.022337
– reference: McGeoch, C., Farre, P. (2020). The D-wave advantage system: an overview. Technical Report https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
– reference: RønnowTFWangZJobJDefining and detecting quantum speedupScience2014345619542042410.1126/science.1252319
– reference: HoudayerJA cluster Monte Carlo algorithm for 2-dimensional spin glassesEur. Phys. J. B200122447948410.1007/PL00011151
– reference: CrowleyPJDGreenAGAnisotropic Landau–Lifshitz–Gilbert models of dissipation in qubitsPhys. Rev. A20169410.1103/PhysRevA.94.062106
– reference: KowalskyMAlbashTHenI3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizersQuant. Sci. Technol.20227210.1088/2058-9565/ac4d1b
– reference: Glover, F., Laguna, M. (1998). Tabu Search, Springer US, Boston, MA, pp 2093–2229. https://doi.org/10.1007/978-1-4613-0303-9_33
– reference: Boothby, K., Bunyk, P., Raymond, J., et al.: Next-generation topology of D-Wave quantum processors. (2020). https://doi.org/10.48550/arXiv.2003.00133
– reference: BerkleyAJJohnsonMWBunykPA scalable readout system for a superconducting adiabatic quantum optimization systemSuperconduct. Sci. Technol.2010231010.1088/0953-2048/23/10/105014
– reference: PalubeckisGMultistart Tabu search strategies for the unconstrained binary quadratic optimization problemAnn. Oper. Res.20041311259282209580710.1023/B:ANOR.0000039522.58036.68
– reference: MandràSKatzgraberHGA deceptive step towards quantum speedup detectionQuant. Sci. Technol.20183404LT0110.1088/2058-9565/aac8b2
– reference: DunningIGuptaSSilberholzJWhat works best when? A systematic evaluation of heuristics for max-cut and QUBOINFORMS J. Comput.201830360862410.1287/ijoc.2017.0798
– reference: Mohseni, M., Eppens, D., Strumpfer, J., et al.: Nonequilibrium Monte Carlo for unfreezing variables in hard combinatorial optimization. (2021). https://doi.org/10.48550/arXiv.2111.13628
– ident: 9530_CR31
– volume: 8
  year: 2018
  ident: 9530_CR2
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.8.031016
– volume: 22
  start-page: 479
  issue: 4
  year: 2001
  ident: 9530_CR43
  publication-title: Eur. Phys. J. B
  doi: 10.1007/PL00011151
– ident: 9530_CR33
  doi: 10.1007/978-1-4613-0303-9_33
– volume: 18
  start-page: 1324
  issue: 11
  year: 2022
  ident: 9530_CR52
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01741-6
– ident: 9530_CR83
– volume: 5
  start-page: 435
  issue: 6
  year: 1950
  ident: 9530_CR50
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.5.435
– volume: 6
  year: 2016
  ident: 9530_CR21
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.6.031015
– volume: 314
  start-page: 141
  issue: 1
  year: 2022
  ident: 9530_CR35
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-022-04634-2
– ident: 9530_CR63
  doi: 10.1109/ASP-DAC47756.2020.9045100
– volume: 94
  year: 2016
  ident: 9530_CR15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.062106
– volume: 30
  start-page: 5259
  issue: 15
  year: 1997
  ident: 9530_CR22
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/30/15/013
– ident: 9530_CR64
– ident: 9530_CR19
– volume: 3
  issue: 3
  year: 2018
  ident: 9530_CR46
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aabd9b
– volume: 91
  year: 2015
  ident: 9530_CR3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.042314
– volume: 3
  start-page: 466
  issue: 7
  year: 2021
  ident: 9530_CR14
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00313-6
– volume: 21
  start-page: 467
  issue: 6
  year: 1982
  ident: 9530_CR27
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF02650179
– volume: 354
  start-page: 614
  issue: 6312
  year: 2016
  ident: 9530_CR66
  publication-title: Science
  doi: 10.1126/science.aah5178
– ident: 9530_CR54
  doi: 10.48550/arXiv.1701.04579
– volume: 65
  start-page: 1604
  issue: 6
  year: 1996
  ident: 9530_CR44
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.65.1604
– volume: 94
  year: 2016
  ident: 9530_CR62
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.022337
– volume: 2
  start-page: 1
  year: 2021
  ident: 9530_CR85
  publication-title: IEEE Trans. Quant. Eng.
  doi: 10.1109/TQE.2021.3050449
– volume: 473
  start-page: 194
  issue: 7346
  year: 2011
  ident: 9530_CR48
  publication-title: Nature
  doi: 10.1038/nature10012
– year: 2014
  ident: 9530_CR60
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00005
– ident: 9530_CR79
  doi: 10.48550/arXiv.1409.3934
– volume: 5
  start-page: eaav2372
  issue: 4
  year: 2019
  ident: 9530_CR37
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2372
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 9530_CR39
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 109
  start-page: 55
  issue: 1
  year: 2007
  ident: 9530_CR7
  publication-title: Math. Programm.
  doi: 10.1007/s10107-005-0637-9
– volume: 10
  start-page: 218
  issue: 3
  year: 2014
  ident: 9530_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2900
– volume: 03
  start-page: P03018
  year: 2006
  ident: 9530_CR51
  publication-title: J. Stat. Mech: Theory Exp.
  doi: 10.1088/1742-5468/2006/03/p03018
– ident: 9530_CR9
  doi: 10.48550/arXiv.2003.00133
– volume: 92
  year: 2015
  ident: 9530_CR41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042325
– volume: 17
  start-page: 335
  issue: 4
  year: 2019
  ident: 9530_CR34
  publication-title: 4OR
  doi: 10.1007/s10288-019-00424-y
– volume: 19
  start-page: 2349
  year: 1979
  ident: 9530_CR55
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.19.2349
– volume: 57
  start-page: 2607
  year: 1986
  ident: 9530_CR82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2607
– volume: 23
  issue: 10
  year: 2010
  ident: 9530_CR6
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/23/10/105014
– start-page: 163
  volume-title: Integration of Constraint Programming, Artificial Intelligence, and Operations Research
  year: 2019
  ident: 9530_CR13
  doi: 10.1007/978-3-030-19212-9_11
– ident: 9530_CR16
– volume: 122
  issue: 20
  year: 2005
  ident: 9530_CR57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1917749
– volume: 83
  issue: 5
  year: 2020
  ident: 9530_CR40
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab85b8
– volume: 23
  issue: 6
  year: 2010
  ident: 9530_CR47
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/23/6/065004
– volume: 82
  year: 2010
  ident: 9530_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.024511
– volume: 3
  year: 2022
  ident: 9530_CR84
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.020317
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 9530_CR67
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 4
  start-page: 294
  issue: 2
  year: 1963
  ident: 9530_CR32
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1703954
– ident: 9530_CR65
  doi: 10.1145/2482767.2482797
– volume: 30
  start-page: 608
  issue: 3
  year: 2018
  ident: 9530_CR23
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2017.0798
– volume-title: Information, Physics, and Computation
  year: 2009
  ident: 9530_CR68
  doi: 10.1093/acprof:oso/9780198570837.001.0001
– volume: 34
  start-page: 427
  issue: 1
  year: 2022
  ident: 9530_CR80
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2021.1065
– ident: 9530_CR20
  doi: 10.48550/arXiv.1306.1202
– volume: 219
  start-page: 343
  issue: 5
  year: 1994
  ident: 9530_CR28
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00117-0
– ident: 9530_CR69
  doi: 10.48550/arXiv.2111.13628
– volume: 115
  year: 2015
  ident: 9530_CR86
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.077201
– ident: 9530_CR59
  doi: 10.1007/978-94-015-7744-1_2
– volume: 51
  start-page: 165
  issue: 3
  year: 1928
  ident: 9530_CR10
  publication-title: Z. Phys.
  doi: 10.1007/BF01343193
– volume: 10
  start-page: 343
  issue: 3
  year: 2011
  ident: 9530_CR12
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-010-0200-3
– ident: 9530_CR17
– volume: 7
  start-page: eabh0952
  issue: 40
  year: 2021
  ident: 9530_CR42
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh0952
– volume: 7
  start-page: 193
  issue: 5
  year: 2008
  ident: 9530_CR11
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-008-0082-9
– ident: 9530_CR78
– volume: 26
  start-page: 1
  issue: 1
  year: 2021
  ident: 9530_CR72
  publication-title: Constraints
  doi: 10.1007/s10601-020-09315-0
– ident: 9530_CR81
  doi: 10.48550/arXiv.1401.7087
– volume: 100
  year: 2019
  ident: 9530_CR75
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.043311
– volume: 345
  start-page: 420
  issue: 6195
  year: 2014
  ident: 9530_CR76
  publication-title: Science
  doi: 10.1126/science.1252319
– volume: 28
  start-page: 58
  issue: 1
  year: 2014
  ident: 9530_CR56
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-014-9734-0
– volume: 58
  start-page: 5355
  year: 1998
  ident: 9530_CR49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.5355
– ident: 9530_CR53
  doi: 10.48550/arXiv.1508.05087
– volume: 2
  start-page: 1
  year: 2021
  ident: 9530_CR70
  publication-title: IEEE Trans. Quant. Eng.
  doi: 10.1109/TQE.2021.3092710
– ident: 9530_CR24
  doi: 10.48550/arXiv.quant-ph/0001106
– ident: 9530_CR5
– volume-title: Statistical Mechanics: A Short Treatise
  year: 2013
  ident: 9530_CR30
– year: 2020
  ident: 9530_CR4
  publication-title: Rev. Res. Phys.
  doi: 10.1103/physrevresearch.2.043163
– volume: 295
  start-page: 2427
  issue: 5564
  year: 2002
  ident: 9530_CR77
  publication-title: Science
  doi: 10.1126/science.1068774
– volume: 131
  start-page: 259
  issue: 1
  year: 2004
  ident: 9530_CR71
  publication-title: Ann. Oper. Res.
  doi: 10.1023/B:ANOR.0000039522.58036.68
– ident: 9530_CR18
– volume: 47
  start-page: 673
  issue: 5
  year: 1999
  ident: 9530_CR29
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.768759
– volume: 39
  start-page: 11828
  year: 1989
  ident: 9530_CR74
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.11828
– ident: 9530_CR1
– volume: 7
  issue: 2
  year: 2022
  ident: 9530_CR58
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/ac4d1b
– volume: 3
  start-page: 04LT01
  issue: 4
  year: 2018
  ident: 9530_CR61
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aac8b2
– volume: 48
  issue: 10
  year: 2007
  ident: 9530_CR45
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2798382
– ident: 9530_CR73
– volume: 292
  start-page: 472
  issue: 5516
  year: 2001
  ident: 9530_CR25
  publication-title: Science
  doi: 10.1126/science.1057726
– ident: 9530_CR26
  doi: 10.48550/arXiv.quant-ph/0201031
– volume: 314
  start-page: 185
  issue: 1
  year: 2022
  ident: 9530_CR36
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-022-04695-3
SSID ssj0009853
Score 2.527529
Snippet Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Annealing
Artificial Intelligence
Benchmarks
Calculus of Variations and Optimal Control; Optimization
Combinatorial analysis
Hardware
KNOWLEDGE MANAGEMENT AND PRESERVATION
Management Science
Mathematics
MATHEMATICS AND COMPUTING
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Performance assessment
State-of-the-art reviews
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BwgEOLRQqlhbkAzewiJ04tk8VQq2QkAoHQL1Zjh1LSHSz3c22f58Z12EpEr30HMexMp6Z5495D-BN6Gvtmxh5a2TDGx8i94jLeWWjlzE1dJKXxSb06ak5O7Nfy4bbulyrnGJiDtRxCLRH_r4WROxijFVHywtOqlF0ulokNO7DAyGloHn-WfMt6a7JLJQCsxLHCC1K0UwpndO15JihODGuVVzdSEyzAR3sBuj855w0p5-T3bsO_AnsFODJPlzPlKdwr1_swe4k6sCKj-_B478YCp_Bjy8LhhCRURkxyRmx5TDS_SLsaUjsYoN22Zwzj8HaU107oxquK7_qGWJhhuPDdTet6nN7DE7nperzOXw_Of728RMvUgw81LYaeYuun3SsRLLGJoVZXQZEKjbo0MU62rZpvWj7kFLtQ9d46aNB126aTgSjQ6r3YbYYFv0LYKmztCxRIuDP762yynfK1F7IKKPSeg5isoMLhaec5DJ-uS3DMtnO4esu286pObz9887ymqXj1tYHZF6HGIOIcgPdKAqjy-CwsnM4nOzoij-v3daIc3g3zYTt4_9_6-XtvR3AI5n1NahM_hBm42rTv4KH4XL8uV69zrP5N8uL-PQ
  priority: 102
  providerName: ProQuest
Title On the emerging potential of quantum annealing hardware for combinatorial optimization
URI https://link.springer.com/article/10.1007/s10732-024-09530-5
https://www.proquest.com/docview/3117168895
https://www.osti.gov/biblio/2426409
Volume 30
WOSCitedRecordID wos001282673200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_I4YM-iKLGE7j0wTdtst3dbttHJRASwnlBRfSl6bbbhETu4G4P_31nyi4HRkn0pUmzbbfpdL7Smd8AvPFNoVwZAq90XvLS-cAd2uU8M8HlIZb0kpeKTajxWJ-emkmXFLboo937J8kkqW8lu6ki56hTOGGkZVyuwTqqO03sePzpZAW1qxP2pEBdxFEuiy5V5s9r3FFHgxmy1R1T87fX0aR09jf-b7tP4UlnZLL317fiGTxoppuw0RdwYB0_b8LjW2iE2Du6gXBdPIeTj1OGXUYJxFTIiF3MWooswnVnkV0ukSLLc-ZQTDvKaGeUvfXTzRuGVjDDLaLHTf58Go9i6bzL93wBX_b3Pu8e8K4IA_eFyVpeIdNHFTIRjTZRoj7PPdooxitfhyKYqqycqBofY-F8XbrcBY1MXZa18Fr5WLyEwXQ2bV4Bi7Uhh0QKj6fSGGmkq6UunMhDHqRSQxA9LazvEMqpUMYPu8JWpkO1ON2mQ7VyCG9v5lxc43PcO3qLSGzRuiCIXE-xRL61ySzMzBC2e8rbjpMXthAEKKS1wcnvekqvPv_9X6__bfgWPMrpsqRImW0YtPNlswMP_VV7tpiPYE19_TaC9Q9748kx9g4Vx_Yo28V2Ir-PEgf8AjY8-P4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VBQk4UCgglhbwAU5gNXbsJD4ghApVq5aFQ0G9GceOpUo02e5mqfgpvpGZbMJSJHrrgXNsR4mf543tmTcAz32V5k6FwLNCKq6cD9yhX84TE5wMUdFNXldsIp9MiuNj82kNfg65MBRWOdjEzlCHxtMZ-XYqSNilKIx-Mz3jVDWKbleHEhpLWBxUP85xyzZ_vf8O5_eFlLvvj3b2eF9VgHvc37c8QxTHPCQimsJEjQQlPZKu8bkvQxpMpjInssrHmDpfKiddKBClSpXCF7mPKY57Da4rhcuBQgWTnZXIb9GpXgpkQY6MIPoknT5VL08lR0bkpPCWcH2BCEcNLugLTu5f97Id3e2u_28_6i7c6R1r9na5Eu7BWlVvwPpQtIL1NmwDbv-hwHgfvnysGbrAjNKkqVwTmzYtxU_hSE1kZwvE3eKUOSQjR3n7jHLUzt2sYujrM_wf5UlNpxZdezS-p31W6wP4fCXf-hBGdVNXj4DF0tC2SwuPk10ZbbQrdZE6IYMMOs_HIIZ5t77XYadyIN_sSkGasGKxu-2wYvUYXv7uM12qkFzaepPgZNGHIiFgTxFTvrWd85uYMWwNuLG9vZrbFWjG8GpA3urxv9_1-PLRnsHNvaMPh_Zwf3KwCbck4b-LBdqCUTtbVE_ghv_ensxnT7uVxODrVSPyF_W_VpU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VBSF6oFBAXVrABziB1Y0TJ_YBIURZURUtewBUcTGOHUuVaLLdzVLx1_h1zHgTliLRWw-cYztK_ObLnnkD8NRVaWEz73muRMYz6zy36JfzkfZW-JDRTV5sNlFMJur4WE834GdfC0Nplb1OjIraN47OyPfThIhdlNJyP3RpEdOD8avZGacOUnTT2rfTWEHkqPpxjuHb4uXhAe71MyHGbz--ece7DgPcYazf8hwRHQo_SoJWOkg0VsKhAdaucKVPvc6z3CZ55UJIrSszK6xXiNgsKxOnChdSXPcaXC8wxqTAbyq_rAl_VWTATNAicrQOSVew05XtFangaB05sb2NuLxgFAcNCvcFh_evO9po-sZb__NPuwO3O4ebvV5JyF3YqOpt2OqbWbBOt23D5h_MjPfg84eaoWvMqHya2jixWdNSXhWu1AR2tkQ8Lk-ZRSNlqZ6fUe3auZ1XDGMAhv-mPKnpNCOOR6V82lW73odPV_KtD2BQN3W1AyyUmsIxmTjc-EpLLW0pVWoT4YWXRTGEpMeAcR0_O7UJ-WbWzNKEG4PTTcSNkUN4_nvObMVOcunoXYKWQd-KCIIdZVK51kSneKSHsNdjyHR6bGHWABrCix6F68f_ftfDy1d7AjcRiOb94eRoF24JEoWYIrQHg3a-rB7BDfe9PVnMH0ehYvD1qgH5C4OiX6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+emerging+potential+of+quantum+annealing+hardware+for+combinatorial+optimization&rft.jtitle=Journal+of+heuristics&rft.au=Tasseff%2C+Byron&rft.au=Albash%2C+Tameem&rft.au=Morrell%2C+Zachary&rft.au=Vuffray%2C+Marc&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=30&rft.issue=5-6&rft.spage=325&rft.epage=358&rft_id=info:doi/10.1007%2Fs10732-024-09530-5&rft.externalDocID=10_1007_s10732_024_09530_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1231&client=summon