Measuring stress field without constitutive equation

•Data Driven Identification technique is applied to measured displacements and forces.•Experimental stress field is determined without presupposing constitutive equation.•Practical solutions to use Digital Image Correlation raw data are provided.•The technique is applied to a perforated elastomer sh...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of materials Vol. 136; p. 103087
Main Authors: Dalémat, Marie, Coret, Michel, Leygue, Adrien, Verron, Erwan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2019
Elsevier
Subjects:
ISSN:0167-6636, 1872-7743
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Data Driven Identification technique is applied to measured displacements and forces.•Experimental stress field is determined without presupposing constitutive equation.•Practical solutions to use Digital Image Correlation raw data are provided.•The technique is applied to a perforated elastomer sheet under large strain. The present paper proposes a coupled experimental-numerical protocol to measure heterogeneous stress fields in a model-free framework. This work contributes to developing the emerging realm of mechanics without constitutive equation. In fact, until now these types of simulations have been missing database of real and rich material behaviour. The technique consists in coupling Digital Image Correlation (DIC) measurements and the Data Driven Identification (DDI) algorithm, recently developed by Leygue et al. (Data–based derivation of material response. Computer Methods in Applied Mechanics and Engineering, 331, 184–196 (2018)). This algorithm identifies the mechanical response of a material, i.e. stress–strain data, without postulating any constitutive equation, but with the help of a large database of displacement fields and loading conditions. The only governing equation used in this algorithm is the mechanical equilibrium. The bias induced by the choice and the calibration of a constitutive model is thus removed. In the above-mentioned paper, the relevance of the method has been demonstrated with synthetic data issued from finite element computations. Here, its efficiency is assessed with “real” experimental data. A multi-perforated elastomer membrane is uniaxially stretched in large strain. Practical challenges are addressed when using the DDI algorithm, especially those due to unmeasured data during experiments. Easy-to-implement solutions are proposed and the DDI technique is successfully applied: heterogeneous stress fields are computed from real data. Considering that the material is elastic, its strain energy density is then measured. Good agreement with standard uniaxial tensile experimental results validates the approach on real data.
AbstractList The present paper proposes a coupled experimental-numerical protocol to measure heterogeneous stress fields in a model-free framework. This work contributes to developing the emerging realm of mechanics without constitu-tive equation. In fact, until now these types of simulations have been missing database of real and rich material behaviour. The technique consists in coupling Digital Image Correlation (DIC) measurements and the Data Driven Identification (DDI) algorithm, recently developed by Leygue et al.(Data-based derivation of material response. Computer Methods in Applied Mechanics and Engineering 331, 184-196 (2018)). This algorithm identifies the mechanical response of a material, i.e. stress-strain data, without postulating any constitutive equation, but with the help of a large database of displacement fields and loading conditions. The only governing equation used in this algorithm is the mechanical equilibrium. The bias induced by the choice and the calibration of a constitutive model is thus removed. In the above-mentioned paper, the relevance of the method has been demonstrated with synthetic data issued from finite element computations. Here, its efficiency is assessed with "real" experimental data. A multi-perforated elastomer membrane is uniaxially stretched in large strain. Practical challenges are addressed when using the DDI algorithm, especially those due to unmeasured data during experiments. Easy-to-implement solutions are proposed and the DDI technique is successfully applied: heterogeneous stress fields are computed from real data. Considering that the material is elastic, its strain energy density is then measured. Good agreement with standard uniaxial tensile experimental results validates the approach on real data.
•Data Driven Identification technique is applied to measured displacements and forces.•Experimental stress field is determined without presupposing constitutive equation.•Practical solutions to use Digital Image Correlation raw data are provided.•The technique is applied to a perforated elastomer sheet under large strain. The present paper proposes a coupled experimental-numerical protocol to measure heterogeneous stress fields in a model-free framework. This work contributes to developing the emerging realm of mechanics without constitutive equation. In fact, until now these types of simulations have been missing database of real and rich material behaviour. The technique consists in coupling Digital Image Correlation (DIC) measurements and the Data Driven Identification (DDI) algorithm, recently developed by Leygue et al. (Data–based derivation of material response. Computer Methods in Applied Mechanics and Engineering, 331, 184–196 (2018)). This algorithm identifies the mechanical response of a material, i.e. stress–strain data, without postulating any constitutive equation, but with the help of a large database of displacement fields and loading conditions. The only governing equation used in this algorithm is the mechanical equilibrium. The bias induced by the choice and the calibration of a constitutive model is thus removed. In the above-mentioned paper, the relevance of the method has been demonstrated with synthetic data issued from finite element computations. Here, its efficiency is assessed with “real” experimental data. A multi-perforated elastomer membrane is uniaxially stretched in large strain. Practical challenges are addressed when using the DDI algorithm, especially those due to unmeasured data during experiments. Easy-to-implement solutions are proposed and the DDI technique is successfully applied: heterogeneous stress fields are computed from real data. Considering that the material is elastic, its strain energy density is then measured. Good agreement with standard uniaxial tensile experimental results validates the approach on real data.
ArticleNumber 103087
Author Coret, Michel
Dalémat, Marie
Verron, Erwan
Leygue, Adrien
Author_xml – sequence: 1
  givenname: Marie
  surname: Dalémat
  fullname: Dalémat, Marie
  email: marie.dalemat@ec-nantes.fr
– sequence: 2
  givenname: Michel
  surname: Coret
  fullname: Coret, Michel
– sequence: 3
  givenname: Adrien
  surname: Leygue
  fullname: Leygue, Adrien
– sequence: 4
  givenname: Erwan
  surname: Verron
  fullname: Verron, Erwan
BackLink https://hal.science/hal-02415371$$DView record in HAL
BookMark eNqFkEFLwzAUx4NMcJt-BKFXD51J0_a1eJAxnBMmXvQc0uTVZXStJunEb29mhwcvOz14_H9_3vtNyKjtWiTkmtEZoyy_3c52qDY76WcJZWXYcVrAGRmzApIYIOUjMg45iPOc5xdk4tyWUpqVGYxJ-ozS9da075HzFp2LaoONjr6M33S9j1TXOm98780eI_zspTdde0nOa9k4vDrOKXlbPrwuVvH65fFpMV_HipfUx2kBZQ2phrLiTGVVuEsXCJoDgEoKQKQVpSHBMiySrNIllVWiqzrnicrylE_JzdC7kY34sGYn7bfopBGr-VocdjQJLAe2ZyGbDVllO-cs1n8Ao-KgSWzFUZM4aBKDpsDd_eOU8b9feitNc5K-H2gMGvYGrXDKYKtQG4vKC92ZEw0_l1iIaQ
CitedBy_id crossref_primary_10_1016_j_cma_2023_116694
crossref_primary_10_1016_j_cma_2021_114354
crossref_primary_10_1093_jom_ufac037
crossref_primary_10_1016_j_ijrmms_2025_106030
crossref_primary_10_32604_cmc_2020_012911
crossref_primary_10_1016_j_cma_2025_118273
crossref_primary_10_1016_j_jmps_2024_105895
crossref_primary_10_1016_j_finel_2022_103895
crossref_primary_10_1016_j_cma_2021_113855
crossref_primary_10_1016_j_taml_2020_01_038
crossref_primary_10_1016_j_cma_2020_113499
crossref_primary_10_1016_j_mechmat_2025_105382
crossref_primary_10_1007_s13160_024_00657_3
crossref_primary_10_1007_s00466_021_02090_6
crossref_primary_10_1016_j_cma_2024_117694
crossref_primary_10_1016_j_cma_2025_118289
crossref_primary_10_1016_j_taml_2024_100549
crossref_primary_10_1016_j_ijimpeng_2024_105083
crossref_primary_10_1016_j_taml_2021_100289
crossref_primary_10_1111_str_12370
crossref_primary_10_1007_s13160_020_00423_1
crossref_primary_10_1016_j_cma_2022_115225
crossref_primary_10_5802_crmeca_303
crossref_primary_10_1007_s00466_023_02395_8
crossref_primary_10_3390_ma14164439
crossref_primary_10_1111_str_12410
crossref_primary_10_1016_j_cma_2022_115867
crossref_primary_10_1016_j_cma_2024_117525
crossref_primary_10_1016_j_mtcomm_2020_101321
crossref_primary_10_1007_s00466_022_02255_x
crossref_primary_10_1016_j_cma_2021_113756
crossref_primary_10_1002_prep_202300287
crossref_primary_10_1038_s41524_022_00752_4
crossref_primary_10_1016_j_polymertesting_2024_108521
crossref_primary_10_1007_s11831_024_10196_2
crossref_primary_10_1007_s11340_024_01106_5
crossref_primary_10_1016_j_jmps_2022_105076
crossref_primary_10_1007_s11340_024_01140_3
crossref_primary_10_1016_j_compstruc_2025_107944
crossref_primary_10_1002_zamm_202100482
crossref_primary_10_1016_j_mechmat_2022_104529
crossref_primary_10_1016_j_cma_2023_116366
crossref_primary_10_1186_s40323_024_00281_3
crossref_primary_10_1016_j_cma_2022_114959
crossref_primary_10_1007_s11071_025_11163_7
crossref_primary_10_1016_j_ijmecsci_2023_108127
crossref_primary_10_1111_str_12473
crossref_primary_10_3390_polym12112628
crossref_primary_10_1111_str_12434
Cites_doi 10.1016/j.cma.2015.09.004
10.1007/s11831-016-9197-9
10.1016/j.cma.2013.04.007
10.1016/j.polymertesting.2008.05.011
10.1016/j.cma.2017.08.027
10.1007/s11340-017-0329-4
10.1016/j.cma.2017.11.013
10.1016/j.optlaseng.2008.05.005
10.1016/j.ijsolstr.2012.09.002
10.1016/j.cma.2019.02.016
10.1016/j.jbiomech.2013.05.003
10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
10.1016/j.cma.2017.07.039
10.5254/1.3547969
10.1002/nme.5721
10.1007/s11340-012-9603-7
10.1002/nme.5716
10.1016/j.compstruc.2017.07.031
10.1016/j.jcp.2016.05.003
10.1002/nme.905
10.1016/j.cma.2016.02.001
10.1016/j.ijnonlinmec.2004.10.005
10.1007/s11340-008-9148-y
ContentType Journal Article
Copyright 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.mechmat.2019.103087
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7743
ExternalDocumentID oai:HAL:hal-02415371v1
10_1016_j_mechmat_2019_103087
S0167663619302376
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c390t-4879f74d79b31c5b030d8e7d3777c287ee0b00f7415e825bd90ab2dbf632c5643
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477685800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6636
IngestDate Tue Oct 14 20:42:40 EDT 2025
Tue Nov 18 22:33:16 EST 2025
Sat Nov 29 07:22:56 EST 2025
Fri Feb 23 02:27:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data Driven Identification
Digital image correlation
Stress measurements
Elastomer
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-4879f74d79b31c5b030d8e7d3777c287ee0b00f7415e825bd90ab2dbf632c5643
ORCID 0000-0002-9700-0220
0000-0003-0714-822X
0000-0003-4944-318X
OpenAccessLink https://hal.science/hal-02415371
ParticipantIDs hal_primary_oai_HAL_hal_02415371v1
crossref_primary_10_1016_j_mechmat_2019_103087
crossref_citationtrail_10_1016_j_mechmat_2019_103087
elsevier_sciencedirect_doi_10_1016_j_mechmat_2019_103087
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Mechanics of materials
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sutton, Orteu, Schreier (bib0032) 2009
Ayensa-Jiménez, Doweidar, Sanz-Herrera, Doblaré (bib0002) 2018; 328
Kirchdoerfer, Ortiz (bib0014) 2016; 304
Leygue, Coret, Réthoré, Stainier, Verron (bib0018) 2018; 331
O’Leary, Doyle, McGloughlin (bib0027) 2013; 46
Avril, Bonnet, Bretelle, Grédiac, Hild, Ienny, Latourte, Lemosse, Pagano, Pagnacco, Pierron (bib0001) 2008; 48
Furukawa, Yagawa (bib0006) 1998; 43
Eggersmann, Kirchdoerfer, Reese, Stainier, Ortiz (bib0005) 2019; 350
MacQueen, others (bib0021) 1967
Réthoré, Elguedj, Coret, Chaudet, Combescure, others (bib0028) 2013; 50
Berry, Linoff (bib0003) 1997
Ibáñez Pinillo, Abisset-Chavanne, Aguado, González, Cueto, Chinesta (bib0011) 2018; 25
Kanno, Y., 2018. Mixed-integer programming formulation of a Data-Driven solver in computational elasticity, 2018, arXiv:1810.04394v1.
Shen, Chandrashekhara, Breig, Oliver (bib0031) 2005; 40
Meng, Breitkopf, Raghavan, Mauvoisin, Bartier, Hernot (bib0023) 2015; 297
Sutton, Yan, Tiwari, Schreier, Orteu (bib0033) 2008; 46
Hild, Roux (bib0009) 2012; 52
Nguyen, Keip (bib0026) 2018; 194
Grédiac, Pierron, Avril, Toussaint (bib0007) 2006; 42
Kirchdoerfer, Ortiz (bib0015) 2017; 326
Leygue, Seghir, Réthoré, Coret, Verron, Stainier (bib0019) 2019
Hashash, Jung, Ghaboussi (bib0008) 2004; 59
Jones, Iadicola (bib0012) 2018
Ling, Jones, Templeton (bib0020) 2016; 318
Réthoré, Leygue, Coret, Stainier, Verron (bib0029) 2018; 113
Kirchdoerfer, Ortiz (bib0016) 2018; 113
Seghir, Pierron (bib0030) 2018; 58
Latorre, Montáns (bib0017) 2018
Millán, Arroyo (bib0025) 2013; 261–262
Marckmann, Verron (bib0022) 2006; 79
Dalémat, Coret, Leygue, Verron (bib0004) 2019
Meunier, Chagnon, Favier, Orgéas, Vacher (bib0024) 2008; 27
Holzapfel (bib0010) 2000
10.1016/j.mechmat.2019.103087_bib0013
Avril (10.1016/j.mechmat.2019.103087_bib0001) 2008; 48
Grédiac (10.1016/j.mechmat.2019.103087_bib0007) 2006; 42
Kirchdoerfer (10.1016/j.mechmat.2019.103087_bib0015) 2017; 326
Eggersmann (10.1016/j.mechmat.2019.103087_bib0005) 2019; 350
Shen (10.1016/j.mechmat.2019.103087_bib0031) 2005; 40
MacQueen (10.1016/j.mechmat.2019.103087_bib0021) 1967
Nguyen (10.1016/j.mechmat.2019.103087_bib0026) 2018; 194
Réthoré (10.1016/j.mechmat.2019.103087_bib0028) 2013; 50
Kirchdoerfer (10.1016/j.mechmat.2019.103087_bib0016) 2018; 113
Furukawa (10.1016/j.mechmat.2019.103087_bib0006) 1998; 43
Dalémat (10.1016/j.mechmat.2019.103087_bib0004) 2019
Meng (10.1016/j.mechmat.2019.103087_bib0023) 2015; 297
Réthoré (10.1016/j.mechmat.2019.103087_bib0029) 2018; 113
Sutton (10.1016/j.mechmat.2019.103087_bib0032) 2009
Leygue (10.1016/j.mechmat.2019.103087_bib0018) 2018; 331
Marckmann (10.1016/j.mechmat.2019.103087_bib0022) 2006; 79
Ibáñez Pinillo (10.1016/j.mechmat.2019.103087_bib0011) 2018; 25
Leygue (10.1016/j.mechmat.2019.103087_bib0019) 2019
Meunier (10.1016/j.mechmat.2019.103087_bib0024) 2008; 27
Sutton (10.1016/j.mechmat.2019.103087_bib0033) 2008; 46
O’Leary (10.1016/j.mechmat.2019.103087_bib0027) 2013; 46
Holzapfel (10.1016/j.mechmat.2019.103087_bib0010) 2000
Jones (10.1016/j.mechmat.2019.103087_bib0012) 2018
Kirchdoerfer (10.1016/j.mechmat.2019.103087_bib0014) 2016; 304
Hashash (10.1016/j.mechmat.2019.103087_bib0008) 2004; 59
Berry (10.1016/j.mechmat.2019.103087_bib0003) 1997
Seghir (10.1016/j.mechmat.2019.103087_bib0030) 2018; 58
Hild (10.1016/j.mechmat.2019.103087_bib0009) 2012; 52
Ayensa-Jiménez (10.1016/j.mechmat.2019.103087_bib0002) 2018; 328
Ling (10.1016/j.mechmat.2019.103087_bib0020) 2016; 318
Latorre (10.1016/j.mechmat.2019.103087_bib0017) 2018
Millán (10.1016/j.mechmat.2019.103087_bib0025) 2013; 261–262
References_xml – volume: 40
  start-page: 875
  year: 2005
  end-page: 890
  ident: bib0031
  article-title: Finite element analysis of V-ribbed belts using neural network based hyperelastic material model
  publication-title: Int. J. Non-Linear Mech.
– volume: 331
  start-page: 184
  year: 2018
  end-page: 196
  ident: bib0018
  article-title: Data-based derivation of material response
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 79
  start-page: 835
  year: 2006
  end-page: 858
  ident: bib0022
  article-title: Comparison of hyperelastic models for rubber-like materials
  publication-title: Rubber Chem. Technol.
– reference: Kanno, Y., 2018. Mixed-integer programming formulation of a Data-Driven solver in computational elasticity, 2018, arXiv:1810.04394v1.
– year: 2018
  ident: bib0017
  article-title: Experimental data reduction for hyperelasticity
  publication-title: Comput. Struct.
– volume: 326
  start-page: 622
  year: 2017
  end-page: 641
  ident: bib0015
  article-title: Data Driven computing with noisy material data sets
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2019
  ident: bib0004
  article-title: Reliability of the Data-Driven Identification algorithm with respect to incomplete input data
  publication-title: in Constitutive Models for Rubber XI, Huneau B., Le Cam J.-B., Marco Y., Verron E. editors, 2019, CRC Press, London, 311–316. ISBN: 978-0-367-34258-6
– volume: 59
  start-page: 989
  year: 2004
  end-page: 1005
  ident: bib0008
  article-title: Numerical implementation of a neural network based material model in finite element analysis
  publication-title: Int. J. Numer. Methods Eng.
– volume: 43
  start-page: 195
  year: 1998
  end-page: 219
  ident: bib0006
  article-title: Implicit constitutive modelling for viscoplasticity using neural networks
  publication-title: Int. J. Numer. Methods Eng.
– year: 1997
  ident: bib0003
  article-title: Data Mining Techniques: For Marketing, Sales, and Customer Support
– volume: 328
  start-page: 752
  year: 2018
  end-page: 774
  ident: bib0002
  article-title: A new reliability-based Data-Driven approach for noisy experimental data with physical constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib0019
  article-title: Non-parametric material state field extraction from full field measurements
  publication-title: Comput. Mech.
– volume: 27
  start-page: 765
  year: 2008
  end-page: 777
  ident: bib0024
  article-title: Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber
  publication-title: Polym. Test.
– volume: 52
  start-page: 1503
  year: 2012
  end-page: 1519
  ident: bib0009
  article-title: Comparison of local and global approaches to digital image correlation
  publication-title: Exp. Mech.
– volume: 297
  start-page: 239
  year: 2015
  end-page: 257
  ident: bib0023
  article-title: Identification of material properties using indentation test and shape manifold learning approach
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 350
  start-page: 81
  year: 2019
  end-page: 99
  ident: bib0005
  article-title: Model-free Data-Driven inelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 46
  start-page: 746
  year: 2008
  end-page: 757
  ident: bib0033
  article-title: The effect of out-of-plane motion on 2d and 3d digital image correlation measurements
  publication-title: Opt. Lasers Eng.
– volume: 48
  start-page: 381
  year: 2008
  ident: bib0001
  article-title: Overview of identification methods of mechanical parameters based on full-field measurements
  publication-title: Exp. Mech.
– volume: 318
  start-page: 22
  year: 2016
  end-page: 35
  ident: bib0020
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
– volume: 261–262
  start-page: 118
  year: 2013
  end-page: 131
  ident: bib0025
  article-title: Nonlinear manifold learning for model reduction in finite elastodynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 50
  start-page: 73
  year: 2013
  end-page: 85
  ident: bib0028
  article-title: Robust identification of elasto-plastic constitutive law parameters from digital images using 3d kinematics
  publication-title: Int. J. Solids Struct.
– volume: 304
  start-page: 81
  year: 2016
  end-page: 101
  ident: bib0014
  article-title: Data-driven computational mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 113
  start-page: 1810
  year: 2018
  end-page: 1826
  ident: bib0029
  article-title: Computational measurements of stress fields from digital images
  publication-title: Int. J. Numer. Methods Eng.
– year: 2000
  ident: bib0010
  article-title: Nonlinear Solid Mechanics
– year: 2018
  ident: bib0012
  article-title: A Good Practices Guide for Digital Image Correlation
  publication-title: Technical Report
– volume: 46
  start-page: 1955
  year: 2013
  end-page: 1960
  ident: bib0027
  article-title: Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress
  publication-title: J. Biomech.
– volume: 42
  start-page: 233
  year: 2006
  end-page: 253
  ident: bib0007
  article-title: The virtual fields method for extracting constitutive parameters from full-field measurements: a review
  publication-title: Strain
– year: 2009
  ident: bib0032
  article-title: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications
– volume: 194
  start-page: 97
  year: 2018
  end-page: 115
  ident: bib0026
  article-title: A data-Driven approach to nonlinear elasticity
  publication-title: Comput. Struct.
– volume: 25
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib0011
  article-title: A manifold learning approach to Data-Driven computational elasticity and inelasticity
  publication-title: Arch. Comput. Methods Eng.
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0021
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 113
  start-page: 1697
  year: 2018
  end-page: 1710
  ident: bib0016
  article-title: Data-Driven computing in dynamics
  publication-title: Int. J. Numer. Methods Eng.
– volume: 58
  start-page: 183
  year: 2018
  end-page: 206
  ident: bib0030
  article-title: A novel image-based ultrasonic test to map material mechanical properties at high strain-rates
  publication-title: Exp. Mech.
– year: 1997
  ident: 10.1016/j.mechmat.2019.103087_bib0003
– volume: 297
  start-page: 239
  year: 2015
  ident: 10.1016/j.mechmat.2019.103087_bib0023
  article-title: Identification of material properties using indentation test and shape manifold learning approach
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.09.004
– year: 2019
  ident: 10.1016/j.mechmat.2019.103087_bib0004
  article-title: Reliability of the Data-Driven Identification algorithm with respect to incomplete input data
– volume: 25
  start-page: 47
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0011
  article-title: A manifold learning approach to Data-Driven computational elasticity and inelasticity
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-016-9197-9
– volume: 261–262
  start-page: 118
  year: 2013
  ident: 10.1016/j.mechmat.2019.103087_bib0025
  article-title: Nonlinear manifold learning for model reduction in finite elastodynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.04.007
– volume: 27
  start-page: 765
  issue: 6
  year: 2008
  ident: 10.1016/j.mechmat.2019.103087_bib0024
  article-title: Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2008.05.011
– volume: 328
  start-page: 752
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0002
  article-title: A new reliability-based Data-Driven approach for noisy experimental data with physical constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.08.027
– year: 2009
  ident: 10.1016/j.mechmat.2019.103087_bib0032
– volume: 58
  start-page: 183
  issue: 2
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0030
  article-title: A novel image-based ultrasonic test to map material mechanical properties at high strain-rates
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-017-0329-4
– volume: 331
  start-page: 184
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0018
  article-title: Data-based derivation of material response
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.11.013
– volume: 46
  start-page: 746
  issue: 10
  year: 2008
  ident: 10.1016/j.mechmat.2019.103087_bib0033
  article-title: The effect of out-of-plane motion on 2d and 3d digital image correlation measurements
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2008.05.005
– volume: 50
  start-page: 73
  issue: 1
  year: 2013
  ident: 10.1016/j.mechmat.2019.103087_bib0028
  article-title: Robust identification of elasto-plastic constitutive law parameters from digital images using 3d kinematics
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.09.002
– volume: 350
  start-page: 81
  year: 2019
  ident: 10.1016/j.mechmat.2019.103087_bib0005
  article-title: Model-free Data-Driven inelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.02.016
– volume: 46
  start-page: 1955
  issue: 11
  year: 2013
  ident: 10.1016/j.mechmat.2019.103087_bib0027
  article-title: Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.05.003
– year: 2000
  ident: 10.1016/j.mechmat.2019.103087_bib0010
– volume: 43
  start-page: 195
  issue: 2
  year: 1998
  ident: 10.1016/j.mechmat.2019.103087_bib0006
  article-title: Implicit constitutive modelling for viscoplasticity using neural networks
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
– volume: 326
  start-page: 622
  year: 2017
  ident: 10.1016/j.mechmat.2019.103087_bib0015
  article-title: Data Driven computing with noisy material data sets
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.07.039
– volume: 79
  start-page: 835
  issue: 5
  year: 2006
  ident: 10.1016/j.mechmat.2019.103087_bib0022
  article-title: Comparison of hyperelastic models for rubber-like materials
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547969
– volume: 113
  start-page: 1810
  issue: 12
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0029
  article-title: Computational measurements of stress fields from digital images
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5721
– volume: 52
  start-page: 1503
  issue: 9
  year: 2012
  ident: 10.1016/j.mechmat.2019.103087_bib0009
  article-title: Comparison of local and global approaches to digital image correlation
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9603-7
– year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0012
  article-title: A Good Practices Guide for Digital Image Correlation
– volume: 113
  start-page: 1697
  issue: 11
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0016
  article-title: Data-Driven computing in dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5716
– volume: 194
  start-page: 97
  year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0026
  article-title: A data-Driven approach to nonlinear elasticity
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.07.031
– volume: 42
  start-page: 233
  issue: 4
  year: 2006
  ident: 10.1016/j.mechmat.2019.103087_bib0007
  article-title: The virtual fields method for extracting constitutive parameters from full-field measurements: a review
  publication-title: Strain
– volume: 318
  start-page: 22
  year: 2016
  ident: 10.1016/j.mechmat.2019.103087_bib0020
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.003
– year: 2018
  ident: 10.1016/j.mechmat.2019.103087_bib0017
  article-title: Experimental data reduction for hyperelasticity
  publication-title: Comput. Struct.
– ident: 10.1016/j.mechmat.2019.103087_bib0013
– volume: 59
  start-page: 989
  issue: 7
  year: 2004
  ident: 10.1016/j.mechmat.2019.103087_bib0008
  article-title: Numerical implementation of a neural network based material model in finite element analysis
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.905
– volume: 304
  start-page: 81
  year: 2016
  ident: 10.1016/j.mechmat.2019.103087_bib0014
  article-title: Data-driven computational mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.02.001
– volume: 40
  start-page: 875
  issue: 6
  year: 2005
  ident: 10.1016/j.mechmat.2019.103087_bib0031
  article-title: Finite element analysis of V-ribbed belts using neural network based hyperelastic material model
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2004.10.005
– start-page: 1
  year: 2019
  ident: 10.1016/j.mechmat.2019.103087_bib0019
  article-title: Non-parametric material state field extraction from full field measurements
  publication-title: Comput. Mech.
– start-page: 281
  year: 1967
  ident: 10.1016/j.mechmat.2019.103087_bib0021
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 48
  start-page: 381
  issue: 4
  year: 2008
  ident: 10.1016/j.mechmat.2019.103087_bib0001
  article-title: Overview of identification methods of mechanical parameters based on full-field measurements
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-008-9148-y
SSID ssj0005957
Score 2.5024753
Snippet •Data Driven Identification technique is applied to measured displacements and forces.•Experimental stress field is determined without presupposing...
The present paper proposes a coupled experimental-numerical protocol to measure heterogeneous stress fields in a model-free framework. This work contributes to...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103087
SubjectTerms Data Driven Identification
Digital image correlation
Elastomer
Engineering Sciences
Materials
Stress measurements
Title Measuring stress field without constitutive equation
URI https://dx.doi.org/10.1016/j.mechmat.2019.103087
https://hal.science/hal-02415371
Volume 136
WOSCitedRecordID wos000477685800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005957
  issn: 0167-6636
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbo4wAHBBTElocixDXFea3j46oqaqulQmqp9hat7UnZqqQlu9uWf8-MH0lRQaVIXKLIiWPHM5qMJ998w9h7UIobPuSxSgzEeWLquDRpEuvS6OEU8trYcm_HY3FwUE4m8rOv2Tq35QRE05TX1_Liv4oa21DYlDp7D3F3D8UGPEeh4xHFjse_EvwnG_VzYQKbB2JBajbgShhkfe7hAQQZgu_LXjKhrhNQMjCRN9Ov9-nCzbmPaJ-5f-t4xef6zDrd2KacyADGhw67MYYfJ0sXODVEqxzaj6FtfSmR9sprqQ9AJD3CykfFQmZMD0OygUo0wOjNeJprZ1xLQd68o2XqrK-75ZYld0GF061v-NL4RgTCk8QQwP33-VeS7EMaj4ZDf5QT0GeFraWikGjn1kZ7O5P9HvYjHftrmF-f1fXht4P9yV9Z-Roi79YTOXrCHvstRDRyon_KHkDzjD26QSy5wfJOCSKnBJFVgsgrQXRTCaKgBM_Zl487R9u7sa-PEetM8kWMe01Zi9wIqbJEFwrna0oQJhNCaNwJA3A0qjX5jFCmhTKST1VqVD3MUl2gK_qCrTbnDbxkkTBa5lCkkE6HOTdCKVMrBZAJ_AQUSg9YHlah0p48nmqYnFUBJXha-cWraPEqt3gDttV1u3DsKXd1KMMSV94FdK5dhXpxV9d3KJJuGKJN3x2NK2rj5KZmIrlMNv_9-a_Yw177X7PVRbuEN2xdXy5m8_atV7Of7mePUg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+stress+field+without+constitutive+equation&rft.jtitle=Mechanics+of+materials&rft.au=Dal%C3%A9mat%2C+Marie&rft.au=Coret%2C+Michel&rft.au=Leygue%2C+Adrien&rft.au=Verron%2C+Erwan&rft.date=2019-09-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.eissn=1872-7743&rft.volume=136&rft_id=info:doi/10.1016%2Fj.mechmat.2019.103087&rft.externalDocID=S0167663619302376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon