An interval multiobjective approach considering irrigation canal system conditions for managing irrigation water

In order to consider irrigation canal system conditions in irrigation-water management, this study developed an interval multiobjective approach for helping irrigation-water managers solve the multiobjective problem under interval uncertainty in the process of allocating limited irrigation water. Ir...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cleaner production Ročník 211; s. 293 - 302
Hlavní autoři: Zhang, Fan, Guo, Shanshan, Zhang, Chenglong, Guo, Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 20.02.2019
Témata:
ISSN:0959-6526, 1879-1786
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to consider irrigation canal system conditions in irrigation-water management, this study developed an interval multiobjective approach for helping irrigation-water managers solve the multiobjective problem under interval uncertainty in the process of allocating limited irrigation water. Irrigation canal system conditions in this study mainly refer to canals distribution reflected by topological relations between canals and irrigation districts, and canals seepage estimated by multiple linear regression model. The proposed approach could address the conflicting objectives under interval uncertainty and help irrigation-water managers obtain more practical allocation schemes. This approach was applied to the middle reaches of Heihe River basin for allocating limited irrigation water among multiple irrigation districts (IDs) to demonstrate its applicability and practicality. Through the proposed approach, three different objectives were coordinated. These obtained results can not only display the amount of water allocated to each ID and canal but also show the amount of seepage from canals and field. From the optimized results, local water managers could obtain both better irrigation-water allocation scheme and find out the limited points of canals for IDs’ future development. Additionally, two comparisons illustrated that the results obtained by proposed approach are more practical than single objective with the same constraints and the interval multiobjective programming (IMP) model without considering canal system conditions in allocating irrigation water among IDs. This approach is valuable for improving the feasibility of optimal results in irrigation-water management, and it provides a possible way to take these important factors into account for related researches. •An interval multiobjective approach is developed considering irrigation canal system conditions.•The proposed approach can improve the practicality of the optimized schemes in practice.•This approach is applied to a case study for planning limited irrigation water.•The results offer operable allocation schemes for local irrigation-water managers to improve agricultural production ability.
AbstractList In order to consider irrigation canal system conditions in irrigation-water management, this study developed an interval multiobjective approach for helping irrigation-water managers solve the multiobjective problem under interval uncertainty in the process of allocating limited irrigation water. Irrigation canal system conditions in this study mainly refer to canals distribution reflected by topological relations between canals and irrigation districts, and canals seepage estimated by multiple linear regression model. The proposed approach could address the conflicting objectives under interval uncertainty and help irrigation-water managers obtain more practical allocation schemes. This approach was applied to the middle reaches of Heihe River basin for allocating limited irrigation water among multiple irrigation districts (IDs) to demonstrate its applicability and practicality. Through the proposed approach, three different objectives were coordinated. These obtained results can not only display the amount of water allocated to each ID and canal but also show the amount of seepage from canals and field. From the optimized results, local water managers could obtain both better irrigation-water allocation scheme and find out the limited points of canals for IDs’ future development. Additionally, two comparisons illustrated that the results obtained by proposed approach are more practical than single objective with the same constraints and the interval multiobjective programming (IMP) model without considering canal system conditions in allocating irrigation water among IDs. This approach is valuable for improving the feasibility of optimal results in irrigation-water management, and it provides a possible way to take these important factors into account for related researches. •An interval multiobjective approach is developed considering irrigation canal system conditions.•The proposed approach can improve the practicality of the optimized schemes in practice.•This approach is applied to a case study for planning limited irrigation water.•The results offer operable allocation schemes for local irrigation-water managers to improve agricultural production ability.
In order to consider irrigation canal system conditions in irrigation-water management, this study developed an interval multiobjective approach for helping irrigation-water managers solve the multiobjective problem under interval uncertainty in the process of allocating limited irrigation water. Irrigation canal system conditions in this study mainly refer to canals distribution reflected by topological relations between canals and irrigation districts, and canals seepage estimated by multiple linear regression model. The proposed approach could address the conflicting objectives under interval uncertainty and help irrigation-water managers obtain more practical allocation schemes. This approach was applied to the middle reaches of Heihe River basin for allocating limited irrigation water among multiple irrigation districts (IDs) to demonstrate its applicability and practicality. Through the proposed approach, three different objectives were coordinated. These obtained results can not only display the amount of water allocated to each ID and canal but also show the amount of seepage from canals and field. From the optimized results, local water managers could obtain both better irrigation-water allocation scheme and find out the limited points of canals for IDs’ future development. Additionally, two comparisons illustrated that the results obtained by proposed approach are more practical than single objective with the same constraints and the interval multiobjective programming (IMP) model without considering canal system conditions in allocating irrigation water among IDs. This approach is valuable for improving the feasibility of optimal results in irrigation-water management, and it provides a possible way to take these important factors into account for related researches.
Author Guo, Shanshan
Guo, Ping
Zhang, Chenglong
Zhang, Fan
Author_xml – sequence: 1
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
– sequence: 2
  givenname: Shanshan
  surname: Guo
  fullname: Guo, Shanshan
– sequence: 3
  givenname: Chenglong
  surname: Zhang
  fullname: Zhang, Chenglong
– sequence: 4
  givenname: Ping
  surname: Guo
  fullname: Guo, Ping
  email: guop@cau.edu.cn
BookMark eNqFkUtLxDAUhYMoOD5-gtClm4656SMJLkTEFwhudB2u6e2Y0qZj0hnx35txZjUb4UIg-c5JzskJO_SjJ8YugM-BQ33VzTvb0zKMc8FBzQHSwAGbgZI6B6nqQzbjutJ5XYn6mJ3E2HEOkstyxpa3PnN-orDGPhtW_eTGj47s5NaU4TJ5ov3M7Oijayg4v8hcCG6BCfOZRZ9E8SdONGyYxm22Y9aOIRvS2WKP_8Z0zxk7arGPdL5bT9n7w_3b3VP-8vr4fHf7kttC8ykXKLUSKD7Koi5FSem5wgLwAgtqpYQWeY1StboqhbLY6LqqSrAKU3TZKlmcssutb8rwtaI4mcFFS32PnsZVNEIIrrRWZZ3QaovaMMYYqDXL4AYMPwa42TRsOrNr2GwaNgBpIOmu93TWTX9Rp4Cu_1d9s1VTamHtKJhoHXlLjQvpA0wzun8cfgHZ_p9U
CitedBy_id crossref_primary_10_3390_agronomy14081645
crossref_primary_10_1016_j_agsy_2020_102848
crossref_primary_10_1016_j_jhydrol_2021_127394
crossref_primary_10_1007_s12517_022_09692_1
crossref_primary_10_1002_ird_3028
crossref_primary_10_1016_j_jclepro_2019_06_183
crossref_primary_10_1016_j_agwat_2022_107759
crossref_primary_10_1016_j_jhydrol_2025_133579
crossref_primary_10_1016_j_scitotenv_2019_133593
crossref_primary_10_1016_j_jclepro_2021_127001
crossref_primary_10_1016_j_jclepro_2020_123386
crossref_primary_10_1007_s11269_022_03208_y
crossref_primary_10_3390_su132112314
crossref_primary_10_1016_j_jhydrol_2020_124785
crossref_primary_10_1016_j_jenvman_2022_116996
crossref_primary_10_1016_j_agwat_2023_108344
crossref_primary_10_1016_j_jenvman_2024_123164
crossref_primary_10_1016_j_resconrec_2019_104665
crossref_primary_10_1016_j_iot_2023_100830
crossref_primary_10_1016_j_jconhyd_2022_104020
crossref_primary_10_3233_JIFS_220780
crossref_primary_10_1016_j_agwat_2019_105692
crossref_primary_10_1038_s41598_025_96692_2
crossref_primary_10_1016_j_ejrh_2025_102532
crossref_primary_10_1016_j_advwatres_2024_104704
crossref_primary_10_1002_ird_3095
crossref_primary_10_1016_j_jclepro_2020_121792
crossref_primary_10_1016_j_jconhyd_2021_103816
crossref_primary_10_1016_j_jenvman_2020_111383
crossref_primary_10_3390_app14031189
crossref_primary_10_1016_j_jconhyd_2022_103958
crossref_primary_10_1016_j_agwat_2022_107961
crossref_primary_10_1016_j_agwat_2022_107687
crossref_primary_10_1093_comjnl_bxab097
crossref_primary_10_1016_j_agwat_2024_108959
crossref_primary_10_1007_s13369_021_06168_4
crossref_primary_10_2166_ws_2022_224
crossref_primary_10_1016_j_jclepro_2019_06_096
crossref_primary_10_3390_w15152731
crossref_primary_10_1016_j_jclepro_2019_119902
crossref_primary_10_1016_j_agwat_2022_107682
crossref_primary_10_1016_j_jclepro_2019_118059
crossref_primary_10_3390_agronomy14122987
Cites_doi 10.1111/1752-1688.12415
10.1061/(ASCE)WR.1943-5452.0000933
10.1016/j.jclepro.2017.06.185
10.1016/j.agwat.2009.12.014
10.1007/s11269-017-1678-6
10.3390/w9070488
10.15302/J-FASE-2017177
10.1061/(ASCE)WR.1943-5452.0000769
10.1016/j.agwat.2017.10.016
10.1007/s11269-012-0196-9
10.1016/S0378-7796(99)00074-7
10.1016/S0926-9851(97)00022-0
10.3390/su7089846
10.1016/0165-0114(78)90031-3
10.1016/j.agwat.2017.03.001
10.1016/j.agwat.2017.06.005
10.1016/j.jhydrol.2012.02.004
10.1016/j.jhydrol.2017.11.016
10.1007/s11269-016-1225-x
10.1061/(ASCE)IR.1943-4774.0001118
10.1007/s12597-013-0157-y
10.1016/j.jhydrol.2017.09.055
10.1016/j.jclepro.2017.05.191
10.1016/j.agwat.2018.07.026
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2018.11.111
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
EndPage 302
ExternalDocumentID 10_1016_j_jclepro_2018_11_111
S0959652618335157
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c390t-2a7982a2b436424e1702c1103a3ef771fa06a78f95428cad965541c8a1117f873
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457952400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Sun Nov 09 12:23:00 EST 2025
Sat Nov 29 04:25:16 EST 2025
Tue Nov 18 20:57:55 EST 2025
Fri Feb 23 02:37:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Interval multiobjective programming
Irrigation canal system conditions
Irrigation water allocation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-2a7982a2b436424e1702c1103a3ef771fa06a78f95428cad965541c8a1117f873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2220899846
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2220899846
crossref_primary_10_1016_j_jclepro_2018_11_111
crossref_citationtrail_10_1016_j_jclepro_2018_11_111
elsevier_sciencedirect_doi_10_1016_j_jclepro_2018_11_111
PublicationCentury 2000
PublicationDate 2019-02-20
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-20
  day: 20
PublicationDecade 2010
PublicationTitle Journal of cleaner production
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen S, Shao D, Tan X, Gu W, Lei C. (2017b). An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition. Agr. Water Manage., 191, 98-112. DOI
Jamshid Mousavi S, Anzab NR, Asl-Rousta B, Kim JH. (2017). Multi-objective optimization-simulation for reliability-based inter-basin water allocation. Water Resour. Manag., 31(11), 3445-3464. DOI
Li M, Fu Q, Singh VP, Liu D. (2018). An interval multi-objective programming model for irrigation water allocation under uncertainty. Agr. Water Manage., 196, 24-36. DOI
Zhang F, Guo S, Ren C, Guo P. (2018a). Integrated IMO-TSP and AHP method for regional water allocation under uncertainty. J. Water Resour. Plann. Manag., 144(6), 4018025. DOI
Zhang C, Li M, Guo P. (2017). An interval multistage joint-probabilistic chance-constrained programming model with left-hand-side randomness for crop area planning under uncertainty. J. Clean. Prod., 167(20), 1276-1289. DOI
Li M, Fu Q, Singh VP, Ma M, Liu X. (2017). An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions. J. Hydrol., 555, 80-94. DOI
Cui L, Li Y, Huang G. (2015). Planning an agricultural water resources management system: a two-stage stochastic fractional programming model. Sustain.-Basel, 7(8), 9846-9863. DOI
Zhang F, Zhang C, Yan Z, Guo S, Wang Y, Guo P. (2018c). An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation. Agr. Water Manage., 209(2018),123-133. DOI
Ren C, Guo P, Tan Q, Zhang L. (2017). A multi-objective fuzzy programming model for optimal use of irrigation water and land resources under uncertainty in Gansu Province, China. J. Clean. Prod., 164. DOI
Lachhwani K. (2014). On solving multi-level multi objective linear programming problems through fuzzy goal programming approach. Opsearch, 51(4), 624-637. DOI
Zimmermann HJ. (1978). Fuzzy programming and linear programming with several objective functions Fuzzy Set Syst., 1(1), 45-55. DOI
Li M, Guo P, Singh VP, Zhao J. (2016). Irrigation water allocation using an inexact two-stage quadratic programming with fuzzy input under climate change. J. Am. Water Resour. Assoc., 52(3), 667-684. DOI
Baky, Eid, El Sayed (bib1) 2013
Mao XM, Yao LQ, Feng SY, Wang YY. (2011). Numerical simulation on canal seepage and soil water distribution for concrete lining canal with layered soil structure. J. Hydraul. Eng., 42(8), 949-955. (in Chinese)
Zhang F, Li M, Guo S, Zhang C, Guo P. (2018b). Integrated uncertain models for runoff forecasting and crop planting structure optimization of the Shiyang River Basin, north-west China. Front. Agricul. Sci. Eng., 5(2). DOI
Tan Q, Huang GH, Cai YP. (2013). Multi-source multi-sector sustainable water supply under multiple uncertainties: an inexact fuzzy-stochastic quadratic programming approach. Water Resour. Manag., 27(2), 451-473. DOI
Hota PK, Chakrabarti R, Chattopadhyay PK. (2000). Economic emission load dispatch through an interactive fuzzy satisfying method. Electr. Pow. Syst. Res., 54(3), 151-157. DOI
Solomon, Ekolu (bib18) 2014; 344
Chen S, Shao D, Gu W, Xu B, Li H, Fang L. (2017a). An interval multistage water allocation model for crop different growth stages under inputs uncertainty. Agr. Water Manage., 186, 86-97. DOI
Ministry of Water Resources, P.R.O.C. 2016. China Water Resources Bulletin. Beijing: China Water & Power Press. (in Chinese)
Xu, Wang, Li, Huang, Dai (bib22) 2017
Gui Z, Li M, Guo P. (2016). Simulation-based inexact fuzzy semi-infinite programming method for agricultural cultivated area planning in the shiyang river basin. J. Irrigat. Drain. Eng... 143(2). DOI
Engelbert PJ, Hotchkiss RH, Kelly WE. (1997). Integrated remote sensing and geophysical techniques for locating canal seepage in Nebraska. J. Appl. Geophys., 38(2), 143-154. DOI
Kinzli K, Martinez M, Oad R, Prior A, Gensler D. (2010). Using an ADCP to determine canal seepage loss in an irrigation district. Agr. Water Manage., 97(6), 801-810. DOI
Tabari MMR, Mari MM. (2016). The integrated approach of simulation and optimization in determining the optimum dimensions of canal for seepage control. Water Resour. Manag., 30(3), 1271-1292. DOI
Tan Q, Zhang S, Li R. (2017). Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water-Sui, 9(7), 488. DOI
Lence BJ, Moosavian N, Daliri H. (2017). Fuzzy programming approach for multiobjective optimization of water distribution systems. J. Water Resour. Plann. Manag., 143(040170207). DOI
Yao L, Feng S, Mao X, Huo Z, Kang S, Barry DA. (2012). Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics. J. Hydrol., 431(14), 91-102. DOI
Zhuang XW, Li YP, Nie S, Fan YR, Huang GH. (2018). Analyzing climate change impacts on water resources under uncertainty using an integrated simulation-optimization approach. J. Hydrol., 556, 523-538. DOI
10.1016/j.jclepro.2018.11.111_bib29
10.1016/j.jclepro.2018.11.111_bib28
10.1016/j.jclepro.2018.11.111_bib27
10.1016/j.jclepro.2018.11.111_bib26
Xu (10.1016/j.jclepro.2018.11.111_bib22) 2017
10.1016/j.jclepro.2018.11.111_bib24
10.1016/j.jclepro.2018.11.111_bib23
Baky (10.1016/j.jclepro.2018.11.111_bib1) 2013
10.1016/j.jclepro.2018.11.111_bib21
10.1016/j.jclepro.2018.11.111_bib20
10.1016/j.jclepro.2018.11.111_bib9
10.1016/j.jclepro.2018.11.111_bib8
10.1016/j.jclepro.2018.11.111_bib7
10.1016/j.jclepro.2018.11.111_bib6
10.1016/j.jclepro.2018.11.111_bib5
Solomon (10.1016/j.jclepro.2018.11.111_bib18) 2014; 344
10.1016/j.jclepro.2018.11.111_bib19
10.1016/j.jclepro.2018.11.111_bib17
10.1016/j.jclepro.2018.11.111_bib16
10.1016/j.jclepro.2018.11.111_bib15
10.1016/j.jclepro.2018.11.111_bib14
10.1016/j.jclepro.2018.11.111_bib4
10.1016/j.jclepro.2018.11.111_bib13
10.1016/j.jclepro.2018.11.111_bib3
10.1016/j.jclepro.2018.11.111_bib12
10.1016/j.jclepro.2018.11.111_bib2
10.1016/j.jclepro.2018.11.111_bib11
10.1016/j.jclepro.2018.11.111_bib10
10.1016/j.jclepro.2018.11.111_bib30
References_xml – reference: Jamshid Mousavi S, Anzab NR, Asl-Rousta B, Kim JH. (2017). Multi-objective optimization-simulation for reliability-based inter-basin water allocation. Water Resour. Manag., 31(11), 3445-3464. DOI:
– reference: Zhuang XW, Li YP, Nie S, Fan YR, Huang GH. (2018). Analyzing climate change impacts on water resources under uncertainty using an integrated simulation-optimization approach. J. Hydrol., 556, 523-538. DOI:
– reference: Mao XM, Yao LQ, Feng SY, Wang YY. (2011). Numerical simulation on canal seepage and soil water distribution for concrete lining canal with layered soil structure. J. Hydraul. Eng., 42(8), 949-955. (in Chinese)
– reference: Gui Z, Li M, Guo P. (2016). Simulation-based inexact fuzzy semi-infinite programming method for agricultural cultivated area planning in the shiyang river basin. J. Irrigat. Drain. Eng... 143(2). DOI:
– reference: Li M, Guo P, Singh VP, Zhao J. (2016). Irrigation water allocation using an inexact two-stage quadratic programming with fuzzy input under climate change. J. Am. Water Resour. Assoc., 52(3), 667-684. DOI:
– reference: Ministry of Water Resources, P.R.O.C. 2016. China Water Resources Bulletin. Beijing: China Water & Power Press. (in Chinese)
– reference: Zimmermann HJ. (1978). Fuzzy programming and linear programming with several objective functions Fuzzy Set Syst., 1(1), 45-55. DOI:
– year: 2013
  ident: bib1
  article-title: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm
  publication-title: Opsearch
– year: 2017
  ident: bib22
  article-title: Stochastic optimization model for water allocation on a watershed scale considering wetland's ecological water requirement
  publication-title: Ecol. Indic.
– reference: Li M, Fu Q, Singh VP, Liu D. (2018). An interval multi-objective programming model for irrigation water allocation under uncertainty. Agr. Water Manage., 196, 24-36. DOI:
– reference: Yao L, Feng S, Mao X, Huo Z, Kang S, Barry DA. (2012). Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics. J. Hydrol., 431(14), 91-102. DOI:
– reference: Lachhwani K. (2014). On solving multi-level multi objective linear programming problems through fuzzy goal programming approach. Opsearch, 51(4), 624-637. DOI:
– reference: Li M, Fu Q, Singh VP, Ma M, Liu X. (2017). An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions. J. Hydrol., 555, 80-94. DOI:
– reference: Zhang F, Guo S, Ren C, Guo P. (2018a). Integrated IMO-TSP and AHP method for regional water allocation under uncertainty. J. Water Resour. Plann. Manag., 144(6), 4018025. DOI:
– reference: Lence BJ, Moosavian N, Daliri H. (2017). Fuzzy programming approach for multiobjective optimization of water distribution systems. J. Water Resour. Plann. Manag., 143(040170207). DOI:
– reference: Tabari MMR, Mari MM. (2016). The integrated approach of simulation and optimization in determining the optimum dimensions of canal for seepage control. Water Resour. Manag., 30(3), 1271-1292. DOI:
– reference: Zhang F, Li M, Guo S, Zhang C, Guo P. (2018b). Integrated uncertain models for runoff forecasting and crop planting structure optimization of the Shiyang River Basin, north-west China. Front. Agricul. Sci. Eng., 5(2). DOI:
– reference: Hota PK, Chakrabarti R, Chattopadhyay PK. (2000). Economic emission load dispatch through an interactive fuzzy satisfying method. Electr. Pow. Syst. Res., 54(3), 151-157. DOI:
– reference: Engelbert PJ, Hotchkiss RH, Kelly WE. (1997). Integrated remote sensing and geophysical techniques for locating canal seepage in Nebraska. J. Appl. Geophys., 38(2), 143-154. DOI:
– reference: Chen S, Shao D, Tan X, Gu W, Lei C. (2017b). An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition. Agr. Water Manage., 191, 98-112. DOI:
– reference: Tan Q, Huang GH, Cai YP. (2013). Multi-source multi-sector sustainable water supply under multiple uncertainties: an inexact fuzzy-stochastic quadratic programming approach. Water Resour. Manag., 27(2), 451-473. DOI:
– reference: Zhang C, Li M, Guo P. (2017). An interval multistage joint-probabilistic chance-constrained programming model with left-hand-side randomness for crop area planning under uncertainty. J. Clean. Prod., 167(20), 1276-1289. DOI:
– reference: Tan Q, Zhang S, Li R. (2017). Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water-Sui, 9(7), 488. DOI:
– reference: Chen S, Shao D, Gu W, Xu B, Li H, Fang L. (2017a). An interval multistage water allocation model for crop different growth stages under inputs uncertainty. Agr. Water Manage., 186, 86-97. DOI:
– reference: Kinzli K, Martinez M, Oad R, Prior A, Gensler D. (2010). Using an ADCP to determine canal seepage loss in an irrigation district. Agr. Water Manage., 97(6), 801-810. DOI:
– reference: Cui L, Li Y, Huang G. (2015). Planning an agricultural water resources management system: a two-stage stochastic fractional programming model. Sustain.-Basel, 7(8), 9846-9863. DOI:
– reference: Zhang F, Zhang C, Yan Z, Guo S, Wang Y, Guo P. (2018c). An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation. Agr. Water Manage., 209(2018),123-133. DOI:
– volume: 344
  year: 2014
  ident: bib18
  article-title: Effect of clay-concrete lining on canal seepage towards the drainage region – an analysis using Finite-Element method
  publication-title: Science
– reference: Ren C, Guo P, Tan Q, Zhang L. (2017). A multi-objective fuzzy programming model for optimal use of irrigation water and land resources under uncertainty in Gansu Province, China. J. Clean. Prod., 164. DOI:
– ident: 10.1016/j.jclepro.2018.11.111_bib14
  doi: 10.1111/1752-1688.12415
– ident: 10.1016/j.jclepro.2018.11.111_bib26
  doi: 10.1061/(ASCE)WR.1943-5452.0000933
– ident: 10.1016/j.jclepro.2018.11.111_bib17
  doi: 10.1016/j.jclepro.2017.06.185
– ident: 10.1016/j.jclepro.2018.11.111_bib9
  doi: 10.1016/j.agwat.2009.12.014
– ident: 10.1016/j.jclepro.2018.11.111_bib8
  doi: 10.1007/s11269-017-1678-6
– ident: 10.1016/j.jclepro.2018.11.111_bib21
  doi: 10.3390/w9070488
– ident: 10.1016/j.jclepro.2018.11.111_bib27
  doi: 10.15302/J-FASE-2017177
– year: 2013
  ident: 10.1016/j.jclepro.2018.11.111_bib1
  article-title: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm
  publication-title: Opsearch
– year: 2017
  ident: 10.1016/j.jclepro.2018.11.111_bib22
  article-title: Stochastic optimization model for water allocation on a watershed scale considering wetland's ecological water requirement
  publication-title: Ecol. Indic.
– ident: 10.1016/j.jclepro.2018.11.111_bib11
  doi: 10.1061/(ASCE)WR.1943-5452.0000769
– volume: 344
  issue: 6181
  year: 2014
  ident: 10.1016/j.jclepro.2018.11.111_bib18
  article-title: Effect of clay-concrete lining on canal seepage towards the drainage region – an analysis using Finite-Element method
  publication-title: Science
– ident: 10.1016/j.jclepro.2018.11.111_bib12
  doi: 10.1016/j.agwat.2017.10.016
– ident: 10.1016/j.jclepro.2018.11.111_bib16
– ident: 10.1016/j.jclepro.2018.11.111_bib20
  doi: 10.1007/s11269-012-0196-9
– ident: 10.1016/j.jclepro.2018.11.111_bib7
  doi: 10.1016/S0378-7796(99)00074-7
– ident: 10.1016/j.jclepro.2018.11.111_bib5
  doi: 10.1016/S0926-9851(97)00022-0
– ident: 10.1016/j.jclepro.2018.11.111_bib4
  doi: 10.3390/su7089846
– ident: 10.1016/j.jclepro.2018.11.111_bib30
  doi: 10.1016/0165-0114(78)90031-3
– ident: 10.1016/j.jclepro.2018.11.111_bib2
  doi: 10.1016/j.agwat.2017.03.001
– ident: 10.1016/j.jclepro.2018.11.111_bib3
  doi: 10.1016/j.agwat.2017.06.005
– ident: 10.1016/j.jclepro.2018.11.111_bib23
  doi: 10.1016/j.jhydrol.2012.02.004
– ident: 10.1016/j.jclepro.2018.11.111_bib29
  doi: 10.1016/j.jhydrol.2017.11.016
– ident: 10.1016/j.jclepro.2018.11.111_bib19
  doi: 10.1007/s11269-016-1225-x
– ident: 10.1016/j.jclepro.2018.11.111_bib6
  doi: 10.1061/(ASCE)IR.1943-4774.0001118
– ident: 10.1016/j.jclepro.2018.11.111_bib10
  doi: 10.1007/s12597-013-0157-y
– ident: 10.1016/j.jclepro.2018.11.111_bib13
  doi: 10.1016/j.jhydrol.2017.09.055
– ident: 10.1016/j.jclepro.2018.11.111_bib24
  doi: 10.1016/j.jclepro.2017.05.191
– ident: 10.1016/j.jclepro.2018.11.111_bib15
– ident: 10.1016/j.jclepro.2018.11.111_bib28
  doi: 10.1016/j.agwat.2018.07.026
SSID ssj0017074
Score 2.4764404
Snippet In order to consider irrigation canal system conditions in irrigation-water management, this study developed an interval multiobjective approach for helping...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Interval multiobjective programming
Irrigation canal system conditions
irrigation canals
irrigation management
irrigation water
Irrigation water allocation
regression analysis
seepage
topology
Uncertainty
watersheds
Title An interval multiobjective approach considering irrigation canal system conditions for managing irrigation water
URI https://dx.doi.org/10.1016/j.jclepro.2018.11.111
https://www.proquest.com/docview/2220899846
Volume 211
WOSCitedRecordID wos000457952400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZCywM8IE5RLhmJ1w273sP2Y1S1HEJVpRYpbyvvYUqUOtHmoD-IH8qMj2xKQAUkXlbRxt44M9-Ox-OZz4S8kSqPm7jCLHFVRRm8i5FqhIx0LTKmGRNFZSnzP_GTEzEey9PB4HuohVlPuTHi6krO_6uq4R4oG0tn_0Ldm4fCDfgMSocrqB2uf6T4kbEcEN0a60IwXXBWTZxV2xCIY665PabTFrR0naXZABhgBtjUkztjm8blc9lUxMtwoNFW-28qJPfuurcwKmXaDhPAGsdQuxOjPu6R-W5lQ7Zn8NXiQu02PbxozZfpzE-zfYfTMPP6wAXWSrGIxX00LVTU9OlLISxZ5MzTYzujLLiMEu4ps73VZt5Ge7vrjln0U3hqi7h3ZwcXqJgMJyAC-PeY2CdgzhgGe3-dePsMx4JDSbAwLcn5LbLPeC7Bdu6PPhyNP252q3js2L7D2PtKsbe__LHf-UA_eQPWxTm_T-555dGRw9QDMmjNQ3J3i7HyEZmPDA3ootfRRQO66Ba6aI8WatFFHbpojy4K6KIBXdvtLboek8_HR-eH7yN_aEdUpzJeRkxxKZhiVZbC0jZrQTisBh8zVWmrOU-0igvFhZY5LHxr1YCE8yyphQK5cC14-oTsmZlpnxIKS3OllWiyLK0zHmtZFehwNVyypKiYPiBZEGNZe0Z7PFhlWobUxUnppV-i9GG1iwveAzLcdJs7SpebOoigo9L7pc7fLAFYN3V9HXRagt3GzTh492arRQl-Oe64g_v_7N8f_5zc6d-sF2Rv2a3al-R2vV5-XXSvPEx_AIg2xnQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interval+multiobjective+approach+considering+irrigation+canal+system+conditions+for+managing+irrigation+water&rft.jtitle=Journal+of+cleaner+production&rft.au=Zhang%2C+Fan&rft.au=Guo%2C+Shanshan&rft.au=Zhang%2C+Chenglong&rft.au=Guo%2C+Ping&rft.date=2019-02-20&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=211&rft.spage=293&rft.epage=302&rft_id=info:doi/10.1016%2Fj.jclepro.2018.11.111&rft.externalDocID=S0959652618335157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon