AMA: Asynchronous Management of Accelerators for Task-based Programming Models
Computational science has benefited in the last years from emerging accelerators that increase the performance of scientific simulations, but using these devices hinders the programming task. This paper presents AMA: a set of optimization techniques to efficiently manage multi-accelerator systems. A...
Saved in:
| Published in: | Procedia computer science Vol. 51; pp. 130 - 139 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
Elsevier B.V
2015
Elsevier |
| Subjects: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Computational science has benefited in the last years from emerging accelerators that increase the performance of scientific simulations, but using these devices hinders the programming task. This paper presents AMA: a set of optimization techniques to efficiently manage multi-accelerator systems. AMA maximizes the overlap of computation and communication in a blocking-free way. Then, we can use such spare time to do other work while waiting for device operations. Implemented on top of a task-based framework, the experimental evaluation of AMA on a quad-GPU node shows that we reach the performance of a hand-tuned native CUDA code, with the advantage of fully hiding the device management. In addition, we obtain up to more than 2x performance speed-up with respect to the original framework implementation. |
|---|---|
| ISSN: | 1877-0509 1877-0509 |
| DOI: | 10.1016/j.procs.2015.05.212 |