An easy‐to‐follow handbook for electroencephalogram data analysis with Python

This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Brain-X Ročník 2; číslo 2
Hlavní autori: Lu, Zitong, Li, Wanru, Nie, Lu, Zhao, Kuangshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Denton John Wiley & Sons, Inc 01.06.2024
Wiley
Predmet:
ISSN:2835-3153, 2835-3153
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single‐Subject Data chapter provides a standardized procedure for single‐subject EEG data preprocessing, primarily using the MNE‐Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple‐Subject Analysis chapter guides readers on performing event‐related potential and time‐frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification‐based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python‐EEG‐Handbook; For Chinese version: https://github.com/ZitongLu1996/Python‐EEG‐Handbook‐CN). This handbook comprises four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. We provide a standardized procedure for preprocessing EEG data, guide readers through detailed examples on how to read data from multiple subjects, and delve into three popular analysis methodologies.
AbstractList This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single‐Subject Data chapter provides a standardized procedure for single‐subject EEG data preprocessing, primarily using the MNE‐Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple‐Subject Analysis chapter guides readers on performing event‐related potential and time‐frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification‐based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python‐EEG‐Handbook ; For Chinese version: https://github.com/ZitongLu1996/Python‐EEG‐Handbook‐CN ).
This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single‐Subject Data chapter provides a standardized procedure for single‐subject EEG data preprocessing, primarily using the MNE‐Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple‐Subject Analysis chapter guides readers on performing event‐related potential and time‐frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification‐based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python‐EEG‐Handbook; For Chinese version: https://github.com/ZitongLu1996/Python‐EEG‐Handbook‐CN).
Abstract This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single‐Subject Data chapter provides a standardized procedure for single‐subject EEG data preprocessing, primarily using the MNE‐Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple‐Subject Analysis chapter guides readers on performing event‐related potential and time‐frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification‐based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python‐EEG‐Handbook; For Chinese version: https://github.com/ZitongLu1996/Python‐EEG‐Handbook‐CN).
This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single‐subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single‐Subject Data chapter provides a standardized procedure for single‐subject EEG data preprocessing, primarily using the MNE‐Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple‐Subject Analysis chapter guides readers on performing event‐related potential and time‐frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification‐based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python‐EEG‐Handbook; For Chinese version: https://github.com/ZitongLu1996/Python‐EEG‐Handbook‐CN). This handbook comprises four chapters: Preprocessing Single‐Subject Data, Basic Python Data Operations, Multiple‐Subject Analysis, and Advanced EEG Analysis. We provide a standardized procedure for preprocessing EEG data, guide readers through detailed examples on how to read data from multiple subjects, and delve into three popular analysis methodologies.
Author Lu, Zitong
Nie, Lu
Zhao, Kuangshi
Li, Wanru
Author_xml – sequence: 1
  givenname: Zitong
  orcidid: 0000-0002-7953-6742
  surname: Lu
  fullname: Lu, Zitong
  email: lu.2637@osu.edu
  organization: The Ohio State University
– sequence: 2
  givenname: Wanru
  surname: Li
  fullname: Li, Wanru
  organization: Peking University
– sequence: 3
  givenname: Lu
  surname: Nie
  fullname: Nie, Lu
  organization: Sun Yat‐Sen University
– sequence: 4
  givenname: Kuangshi
  surname: Zhao
  fullname: Zhao, Kuangshi
  organization: Neuracle Technology (Changzhou) Co., Ltd
BookMark eNp10d1KHTEQB_AgCrVW-goLXnhRVvO5H5dWWisIfqDQuzCbTTw5xp3TJHLcOx_BZ-yTdE-PgrR4k4Twmz8zzEeyOeBgCfnM6AGjlB928ZEfVHKDbPNGqFIwJTbfvD-Q3ZTmlFLBGaeMb5PLo6GwkMbfT88Zp8NhCLgsZjD0HeJd4TAWNliTI9rB2MUMAt5GuC96yFDAAGFMPhVLn2fFxZhnOHwiWw5Csrsv9w65-f7t-vhHeXZ-cnp8dFYa0VJZQg2mgbbtBciupqaR1nQMRG0qx5ipKyOkazlnjVKqldI5wblw_aqa8k6IHXK6zu0R5noR_T3EUSN4_fcD462GmL0JVktjOlez3vaOy1aJjirlQDDj-rqpgU9Ze-usRcRfDzZlPceHOA2XtOC1qqhqGzqpcq1MxJSiddr4DNnjkCP4oBnVqyXo1RJ0JSe__49_7fJ_-WUtlz7Y8T2mv1795JP-A0PzmNE
CitedBy_id crossref_primary_10_1016_j_buildenv_2025_113678
crossref_primary_10_1111_ejn_70078
Cites_doi 10.1016/j.bspc.2023.105125
10.1016/J.NEUBIOREV.2014.12.010
10.1038/sdata.2015.1
10.1177/0956797617699167
10.1162/JOCN_A_00955
10.1016/J.TICS.2006.07.005
10.1088/1741‐2552/AA6401
10.1371/journal.pone.0274847
10.1016/j.isci.2023.108501
10.1016/J.NEUROIMAGE.2020.116531
10.1155/2018/5174815
10.1016/J.JNEUMETH.2003.10.009
10.1101/2021.05.22.445245
10.1101/2023.04.26.538469
10.1523/JNEUROSCI.3577‐09.2009
10.1152/jn.00540.2011
10.1109/ICASSP49357.2023.10096587
10.1007/s00521‐022‐08178‐1
10.3389/FNINS.2013.00267
10.3389/NEURO.06.004.2008
10.1016/J.NEURON.2008.10.043
10.5281/ZENODO.4273674
10.1016/J.NEUROIMAGE.2022.119754
10.1162/JOCN_A_01068
10.1523/JNEUROSCI.2860‐17.2017
10.3389/fncom.2021.754587
10.3389/FNINF.2020.563669
10.1016/J.TICS.2015.02.005
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Ainuohui Medical Technology.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Ainuohui Medical Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
DOA
DOI 10.1002/brx2.64
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Psychology
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 2835-3153
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4ccbf71dedf24953b055fa31cfd787a2
10_1002_brx2_64
BRX264
Genre methodAndProtocol
GrantInformation_xml – fundername: National Social Science Fund of China
  funderid: 23CYY048
GroupedDBID 0R~
24P
7X7
8FI
8FJ
ABUWG
ACCMX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
FYUFA
GROUPED_DOAJ
HMCUK
M~E
PIMPY
PSYQQ
UKHRP
AAMMB
AAYXX
ABDBF
ADPDF
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
TEORI
WIN
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3904-a7ac8a99d3a4b70c84ecb1a37c6f11c76c34f92218555944ff3223fdc39002b33
IEDL.DBID PIMPY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001573851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2835-3153
IngestDate Fri Oct 03 12:51:23 EDT 2025
Thu Nov 27 02:41:12 EST 2025
Tue Nov 18 21:19:31 EST 2025
Sat Nov 29 03:24:31 EST 2025
Wed Jan 22 17:18:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3904-a7ac8a99d3a4b70c84ecb1a37c6f11c76c34f92218555944ff3223fdc39002b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7953-6742
OpenAccessLink https://www.proquest.com/publiccontent/docview/3275605980?pq-origsite=%requestingapplication%
PQID 3275605980
PQPubID 6860419
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4ccbf71dedf24953b055fa31cfd787a2
proquest_journals_3275605980
crossref_citationtrail_10_1002_brx2_64
crossref_primary_10_1002_brx2_64
wiley_primary_10_1002_brx2_64_BRX264
PublicationCentury 2000
PublicationDate June 2024
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Denton
PublicationPlace_xml – name: Denton
PublicationTitle Brain-X
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 2
2023; 35
2015; 19
2006; 10
2017; 28
2020; 14
2017; 29
2008; 4
2024
2013; 7
2009; 29
2020; 209
2004; 134
2023; 86
2021; 15
2022; 264
2018; 2018
2015; 49
2011; 106
2023; 45
2023
2022
2017; 14
2023; 26
2020
2016; 28
2008; 60
2018; 38
2022; 17
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Lu Z (e_1_2_10_33_1) 2024
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Lu Z (e_1_2_10_32_1) 2023; 45
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  article-title: EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
– volume: 19
  start-page: 215
  issue: 4
  year: 2015
  end-page: 226
  article-title: Visual attention mitigates information loss in small‐ and large‐scale neural codes
  publication-title: Trends Cogn Sci
– volume: 14
  start-page: 61
  year: 2020
  article-title: NeuroRA: a Python toolbox of representational analysis from multi‐modal neural data
  publication-title: Front Neuroinform
– year: 2022
  article-title: An enhanced inverted encoding model for neural reconstructions
  publication-title: bioRxiv
– volume: 15
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Photorealistic reconstruction of visual texture from EEG signals
  publication-title: Front Comput Neurosci
– volume: 26
  issue: 12
  year: 2023
  article-title: Bridging the gap between EEG and DCNNs reveals a fatigue mechanism of facial repetition suppression
  publication-title: iScience
– volume: 14
  issue: 3
  year: 2017
  article-title: Comparison of connectivity analyses for resting state EEG data
  publication-title: J Neural Eng
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 26
  article-title: Systematic review on resting‐state EEG for Alzheimer’s disease diagnosis and progression assessment
  publication-title: Dis Markers
– year: 2023
  article-title: Human EEG and artificial neural networks reveal disentangled representations of object real‐world size in natural images
  publication-title: bioRxiv
– volume: 45
  year: 2023
  article-title: Generate your neural signals from mine: individual‐to‐individual EEG converters
  publication-title: Proc Annu Meet Cogn Sci Soc
– start-page: 1
  year: 2023
  end-page: 5
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  end-page: 10
  article-title: A multi‐subject, multi‐modal human neuroimaging dataset
  publication-title: Sci Data
– volume: 35
  start-page: 9181
  issue: 12
  year: 2023
  end-page: 9192
  article-title: NeuroGAN: image reconstruction from EEG signals via an attention‐based GAN
  publication-title: Neural Comput Appl
– year: 2024
– volume: 49
  start-page: 105
  year: 2015
  end-page: 113
  article-title: Microstates in resting‐state EEG: current status and future directions
  publication-title: Neurosci Biobehav Rev
– year: 2020
  article-title: PyCTRSA: a Python package for cross‐temporal representational similarity analysis‐based E/MEG decoding
  publication-title: Zenodo
– volume: 86
  issue: PA
  year: 2023
  article-title: DM‐RE2I: a framework based on diffusion model for the reconstruction from EEG to image
  publication-title: Biomed Signal Process Control
– volume: 209
  year: 2020
  article-title: Spatio‐temporal dynamics of face perception
  publication-title: Neuroimage
– volume: 106
  start-page: 2108
  issue: 5
  year: 2011
  end-page: 2119
  article-title: Cross‐orientation suppression in human visual cortex
  publication-title: J Neurophysiol
– volume: 29
  start-page: 677
  issue: 4
  year: 2017
  end-page: 697
  article-title: Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data
  publication-title: J Cogn Neurosci
– volume: 28
  start-page: 929
  issue: 7
  year: 2017
  end-page: 941
  article-title: Alpha‐Band Oscillations enable spatially and temporally resolved tracking of covert spatial attention
  publication-title: Psychol Sci
– volume: 60
  start-page: 1126
  issue: 6
  year: 2008
  end-page: 1141
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
– volume: 4
  year: 2008
  article-title: Representational similarity analysis ‐ connecting the branches of systems neuroscience
  publication-title: Front Syst Neurosci
– volume: 17
  issue: 9
  year: 2022
  article-title: Improving classification and reconstruction of imagined images from EEG signals
  publication-title: PLoS One
– volume: 264
  year: 2022
  article-title: A large and rich EEG dataset for modeling human visual object recognition
  publication-title: Neuroimage
– volume: 7
  year: 2013
  article-title: MEG and EEG data analysis with MNE‐Python
  publication-title: Front Neurosci
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  end-page: 430
  article-title: Beyond mind‐reading: multi‐voxel pattern analysis of fMRI data
  publication-title: Trends Cogn Sci.
– volume: 29
  start-page: 13992
  issue: 44
  year: 2009
  end-page: 14003
  article-title: Decoding and reconstructing color from responses in human visual cortex
  publication-title: J Neurosci
– volume: 28
  start-page: 1090
  issue: 8
  year: 2016
  end-page: 1097
  article-title: Decoding and reconstructing the focus of spatial attention from the topography of alpha‐band Oscillations
  publication-title: J Cogn Neurosci
– volume: 38
  start-page: 409
  issue: 2
  year: 2018
  end-page: 422
  article-title: Dissociable decoding of spatial attention and working memory from EEG Oscillations and sustained potentials
  publication-title: J Neurosci
– ident: e_1_2_10_30_1
  doi: 10.1016/j.bspc.2023.105125
– ident: e_1_2_10_23_1
  doi: 10.1016/J.NEUBIOREV.2014.12.010
– ident: e_1_2_10_5_1
– ident: e_1_2_10_7_1
  doi: 10.1038/sdata.2015.1
– ident: e_1_2_10_21_1
  doi: 10.1177/0956797617699167
– ident: e_1_2_10_22_1
  doi: 10.1162/JOCN_A_00955
– ident: e_1_2_10_8_1
  doi: 10.1016/J.TICS.2006.07.005
– volume-title: ReAlnet: achieving more human brain‐like vision via human neural representational alignment
  year: 2024
  ident: e_1_2_10_33_1
– ident: e_1_2_10_24_1
  doi: 10.1088/1741‐2552/AA6401
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pone.0274847
– ident: e_1_2_10_17_1
  doi: 10.1016/j.isci.2023.108501
– ident: e_1_2_10_20_1
  doi: 10.1016/J.NEUROIMAGE.2020.116531
– ident: e_1_2_10_25_1
  doi: 10.1155/2018/5174815
– ident: e_1_2_10_2_1
  doi: 10.1016/J.JNEUMETH.2003.10.009
– ident: e_1_2_10_15_1
  doi: 10.1101/2021.05.22.445245
– ident: e_1_2_10_18_1
  doi: 10.1101/2023.04.26.538469
– ident: e_1_2_10_12_1
  doi: 10.1523/JNEUROSCI.3577‐09.2009
– ident: e_1_2_10_13_1
  doi: 10.1152/jn.00540.2011
– ident: e_1_2_10_26_1
  doi: 10.1109/ICASSP49357.2023.10096587
– ident: e_1_2_10_28_1
  doi: 10.1007/s00521‐022‐08178‐1
– ident: e_1_2_10_3_1
  doi: 10.3389/FNINS.2013.00267
– ident: e_1_2_10_10_1
  doi: 10.3389/NEURO.06.004.2008
– ident: e_1_2_10_11_1
  doi: 10.1016/J.NEURON.2008.10.043
– ident: e_1_2_10_4_1
– ident: e_1_2_10_19_1
  doi: 10.5281/ZENODO.4273674
– ident: e_1_2_10_31_1
  doi: 10.1016/J.NEUROIMAGE.2022.119754
– ident: e_1_2_10_9_1
  doi: 10.1162/JOCN_A_01068
– ident: e_1_2_10_16_1
  doi: 10.1523/JNEUROSCI.2860‐17.2017
– ident: e_1_2_10_29_1
  doi: 10.3389/fncom.2021.754587
– volume: 45
  year: 2023
  ident: e_1_2_10_32_1
  article-title: Generate your neural signals from mine: individual‐to‐individual EEG converters
  publication-title: Proc Annu Meet Cogn Sci Soc
– ident: e_1_2_10_6_1
  doi: 10.3389/FNINF.2020.563669
– ident: e_1_2_10_14_1
  doi: 10.1016/J.TICS.2015.02.005
SSID ssj0003212012
Score 2.2720914
Snippet This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive...
Abstract This easy‐to‐follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms brain science
Data analysis
Data processing
Datasets
electroencephalogram (EEG)
Electroencephalography
Handbooks
neuroscience
Neurosciences
psychology
Python
Topography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEBbF5JBLyE9LnTpBh5DbNrsreaU9OiEmp-CEFnwTo1mJBOK1sZ22vuUR-ox9koy0G2NTQi-97GFXC4Pm7xsx-oaxs0wQRvAqT6CPPpF5ViVg0SZFCtop1BqgisMm1O2tHo_L0caor9AT1tADNxt3IRGtV1nlKh_GJAub9vseRIa-IluDGH0J9WwUUyEGC4rIFHqbW7KBZfTCzn_lXwu5lX4iS_8WtNwEqDHDDPfZXgsN-aAR6YB9cPUhOxrUVBZPVvycx2bNeAp-yHbXgWt1xO4GNXewWP15-b2c0sOTbqc_eTgTDxiaEy7l7bib4MezB4hE1RMe2kM5tLQkPBzJ8tEqkAl8ZN-H19-ubpJ2VEKCokxlAgpQQ1lWAqRVKWrp0GYgFBY-y1AVKKQvc8rnfSohpPSeHFn4Kvyd5laIT6xTT2v3mXFZEsIhkFLoMiYrQKusAw86dxpt2mXnbztosOURD-MsnkzDgJybsNWmkF3G1wtnDXXG30sugwrWnwPXdXxBFmBaCzD_soAu670p0LQOuDAi0NoTdNQk71lU6nsymMv7MaHC4_8hyhe2mxPoaVrJeqyznD-7E7aDP5aPi_lpNNFXF63wNg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsOiGQgtioCAvqu5C40diZzmtWrGqBgTS7KxrxwYkmqlmhsfs-AS-kS_hXidNWyEkJDZZJLZk2b7Hx9fOOYwdCIUcIRlZQBVSoaVoC_DBF3UJNppgLUCbzSbM-bmdz5vZDauvXh9iTLhRZGS8pgAHvzq6Fg31y-_yVa3vsntCKEuuDVLPxvSKQkgu81knCYoh0lSq_2WWah8NdW-tRVmy_xbPvMlW83JztvMfDX3IHgwck0_7SfGI3YndLtubdri_vtjwQ55vfeZ0-i7bHhFws8feTDseYbX59ePneoGPhJNk8Y1Tcp3IOEeCywffHAKEy4-QFa8vON0z5TDom3DK7fLZhlQJHrP3Z6fvTl4Xg-dCEVRT6gIMBAtN0yrQ3pTB6hi8AGVCnYQIpg5Kp0YiMahwL6J1SogIKrVUu5ReqSdsq1t08SnjukGqhGyntk1e9SB44yMksDLa4MsJO7zqfRcGQXLyxfjseill6ajnXK0njI8FL3sNjj-LHNPwjZ9JNDu_WCw_uCEGnQ7BJyPa2CZy3Fa-rKoESoTUImyBnLD9q8F3QySvnCJ9fOSgFtt7kIf5b21wx2_nSC-f_Vux52xbIj_qb53ts6318kt8we6Hr-tPq-XLPJl_A77J-qk
  priority: 102
  providerName: Wiley-Blackwell
Title An easy‐to‐follow handbook for electroencephalogram data analysis with Python
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbrx2.64
https://www.proquest.com/docview/3275605980
https://doaj.org/article/4ccbf71dedf24953b055fa31cfd787a2
Volume 2
WOSCitedRecordID wos001573851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: 7X7
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: PIMPY
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: WIN
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2835-3153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212012
  issn: 2835-3153
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQcuy8eCKCyVD6u9hSa2Gzsn1KJdsQeqsAJRTpbtxAsSm3Tb8tEbP4HfyC9h7LiFFYITF0tJnMjSjJ-fJ-M3AEcZQ47gBE302LqE06xKtLEmyVMta2Gl1LoKxSbEbCbn86KMx6NXMa1yi4kBqDu1Z5-3jSA8qlrrI-Yj5lXLkRnI9NniKvE1pPy_1lhQYw_6XnhL9qBfnr0s3-1iLgxxGgG5OzvrtUdHZvmVPs35tUUpaPdfI5y_09aw7pze_r8jvgP7kX-SSecwd-FG3dyDg0mDe-_LDTkmISM0hNoP4NWkIbVebX58-75usXHoM-0X4mPtnpsT5LskltHx-LB4r4MA9iXxaadER7kT4kO9pNx4kYL78Ob05PXzF0kswZBYVqQ80UJbqYuiYpobkVrJa2syzYTNXZZZkVvGXUGRJ4xxa8K5cwgQzFX-7ZQaxh5Ar2mb-iEQXiBzQvKTyyIsgtoaYWrttKS1tCYdwPHWBspGfXJfJuOj6pSVqfLGUjkfANl1XHSSHH92mXoj7h57De1wo11eqDglFbfWOJFVdeV8AW5m0vHYaZZZVyGKaTqAw61dVZzYK_XLjAM4Cm7xtzGo6fkc2eajf3_lMdyiSJO65LND6K2Xn-oncNN-Xn9YLYewR3mJrZiLIfSnJ7PyfBiiBsPo2nj19mz2E7xpCzI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQku5aMgFgr4UHoLTRxv7BwQ2gJVq5ZVQUXam7EdG5DaZNldKHvjJ_BL-FH8Emac7EKF4NYDlxwSJ0rilzfP9uQNwGaWo0YIkiem70IieFYlxjqbFKlRXjqljKlisQk5HKrRqDxage-Lf2EorXLBiZGoq8bRHPl2Tj7lqAVU-nT8MaGqUbS6uiih0cLiwM_PcMg2fbL_HPv3Eee7L46f7SVdVYHE4fheJEYap0xZVrkRVqZOCe9sZnLpipBlThYuF6HkGPr6qLaFCAExn4eKzk65pQlQpPxLyOOSUsjkSC7ndHKMA0j47b-55G26bSdf-ONCnAt6sTbAOUH7uyyOcW332v_2Rq7DWqeg2aCF_A1Y8fVNWB_UZtacztkWizmtcbFgHV4NaubNdP7j67dZg5uAqG_OGK0W0OiCoWJnXSEgYrjxexMtvE8ZJc4y0xm2MJqsZkdzslm4BW8u5OFuw2rd1P4OMFGi9kP5VqgyhnHjrLTeBKO4V86mPdha9LJ2ncM6Ffo40a03NNcEB12IHrBlw3FrKvJnkx2CyfIwuYDHHc3kne5IRQvnbJBZ5atAJcRzm_b7weSZCxXysOE92FggR3fUNNW_YNODzQi8v92D3nk9Qr18999XeQhX9o5fHurD_eHBPbjKUfS1qXQbsDqbfPL34bL7PPswnTyIHwuDtxeNxZ-Qu1QN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQagXPloQCwV8qHoLTWwndo5bYAUCrRYE0t6ssWMXJJpd7S4fe-Mn8Bv5JXicNFAhJCQuOSS2ZNkzz8-T8RuAw0JEjhAUz7B0IZO8aDK0zmZVjtorpzVik4pNqOlUz-f1rM-qpLswnT7EEHAjz0h4TQ7ul004_qUaaldf-eNKXoYrslQFWTSXsyG-IiIm5-lnJymKRagpRXdnlnof930vbEZJs_8C0fydrqb9ZnLjf0Z6E673LJONO7O4BZd8uwf74zaesM-27IilvM8UUN-D3QEDt_vwetwyj-vtj2_fN4v4CNFMFl8YhdeJjrNIcVlfOYcgYfkek-b1GaNMU4a9wgmj6C6bbUmX4Da8mzx7--R51lddyJyoc5mhQqexrhuB0qrcaemdLVAoV4WicKpyQoaaR2pQxtOIlCFETBChod45t0LcgZ120fq7wGQdyVLkO5Wu076HzirrMaDmXjubj-DofPqN6yXJqTLGR9OJKXNDM2cqOQI2NFx2Khx_Njmh9Rs-k2x2erFYnZreC410zgZVNL4JVHNb2LwsA4rChSYCF_IRHJyvvul9eW0EKeRHFqrjeA_TOv9tDObkzTwSzHv_1uwRXJs9nZhXL6Yv78Muj2SpS0E7gJ3N6pN_AFfd582H9ephMuyfULr-GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+easy%E2%80%90to%E2%80%90follow+handbook+for+electroencephalogram+data+analysis+with+Python&rft.jtitle=Brain-X&rft.au=Lu%2C+Zitong&rft.au=Li%2C+Wanru&rft.au=Nie%2C+Lu&rft.au=Zhao%2C+Kuangshi&rft.date=2024-06-01&rft.issn=2835-3153&rft.eissn=2835-3153&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Fbrx2.64&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_brx2_64
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-3153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-3153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-3153&client=summon