Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data

We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatmen...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics Vol. 78; no. 2; pp. 624 - 635
Main Authors: Yang, Jiabei, Dahabreh, Issa J., Steingrimsson, Jon A.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.06.2022
Subjects:
ISSN:0006-341X, 1541-0420, 1541-0420
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/biom.13432