Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data
We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatmen...
Uloženo v:
| Vydáno v: | Biometrics Ročník 78; číslo 2; s. 624 - 635 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Blackwell Publishing Ltd
01.06.2022
|
| Témata: | |
| ISSN: | 0006-341X, 1541-0420, 1541-0420 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients. |
|---|---|
| AbstractList | We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients. We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients. We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup-specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g-formula, and doubly robust estimators of subgroup-specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup-specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g-formula, and doubly robust estimators of subgroup-specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients. |
| Author | Dahabreh, Issa J. Yang, Jiabei Steingrimsson, Jon A. |
| Author_xml | – sequence: 1 givenname: Jiabei orcidid: 0000-0002-1919-1455 surname: Yang fullname: Yang, Jiabei email: jiabei_yang@brown.edu organization: Brown University – sequence: 2 givenname: Issa J. orcidid: 0000-0002-2215-9931 surname: Dahabreh fullname: Dahabreh, Issa J. organization: Harvard T.H. Chan School of Public Health – sequence: 3 givenname: Jon A. orcidid: 0000-0003-2116-9377 surname: Steingrimsson fullname: Steingrimsson, Jon A. organization: Brown University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33527341$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtLxDAUhYMoOo5u_AFScCNCNa-mrTsdfIHiRsFdSdObMdI2Y5I6-O_NzKgLEQ2EEPKdw80522i9tz0gtEfwMYnrpDa2OyaMM7qGRiTjJMWc4nU0whiLlHHytIW2vX-J1zLDdBNtMZbRPD6MkJ7Iwcs2MX0AJ1Uwtk-CA_CnyaXpG9NPEz_UU2eHmU_mJjwnzxBJO4Ue7OAXrAwd9CEBrUEFH50SW3twb3JhFq0bGeQO2tCy9bD7eY7R4-XFw-Q6vb2_upmc3aaKlZimNdZSUSHzhhYcsqyRkBOVU66oZjUrG6FK0QjgvFCclsAU1yWnVONcNVRKNkaHK9-Zs68D-FB1xitoW7kct6I5KWhJ4_4f5UWWEcFiUGN08AN9sYOLf4uUKLggPBMiUvuf1FB30FQzZzrp3quvsCNwtAKUs9470N8IwdWiyWrRZLVsMsL4B6xMWEYanDTt7xKyksxNC-9_mFfnN_d3K80Hmx2w5Q |
| CitedBy_id | crossref_primary_10_1093_biostatistics_kxad014 crossref_primary_10_1002_sim_9883 crossref_primary_10_1080_10618600_2024_2414113 crossref_primary_10_1002_sim_10167 crossref_primary_10_1177_09622802231154327 crossref_primary_10_1002_sim_9827 crossref_primary_10_1177_17407745231174544 crossref_primary_10_1002_sim_9550 |
| Cites_doi | 10.1080/01621459.2000.10474214 10.1023/A:1020371312283 10.1002/sam.11220 10.1002/sim.1903 10.1111/j.1541-0420.2005.00377.x 10.1002/sim.7064 10.1201/9781315159409-9 10.1109/DSAA.2016.93 10.1037/h0037350 10.1007/978-1-4757-2545-2_3 10.1016/0270-0255(86)90088-6 10.1001/jama.1996.03540110043030 10.1097/EDE.0b013e3181ba333c 10.1080/01621459.2017.1319839 10.1002/sim.7623 10.1073/pnas.1510489113 10.1002/sim.6949 10.1093/oxfordjournals.aje.a113015 10.1093/biomet/70.1.41 10.1093/aje/kwaa235 10.1002/sim.8214 |
| ContentType | Journal Article |
| Copyright | 2021 The International Biometric Society. 2022 The International Biometric Society. |
| Copyright_xml | – notice: 2021 The International Biometric Society. – notice: 2022 The International Biometric Society. |
| DBID | AAYXX CITATION NPM JQ2 7X8 7S9 L.6 |
| DOI | 10.1111/biom.13432 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 635 |
| ExternalDocumentID | 33527341 10_1111_biom_13432 BIOM13432 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Institute of Allergy and Infectious Diseases funderid: P30AI042853‐22 – fundername: Patient‐Centered Outcomes Research Institute funderid: ME‐1306‐03758; ME‐1502‐27794 – fundername: National Institute of Allergy and Infectious Diseases grantid: P30AI042853-22 – fundername: Patient-Centered Outcomes Research Institute grantid: ME-1502-27794 – fundername: Patient-Centered Outcomes Research Institute grantid: ME-1306-03758 |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAWIL AAYXX ABAWQ ABGNP ACHJO ADNBA AEFGJ AEOTA AFFHD AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJBYB AJNCP CITATION H13 O8X PHGZM PHGZT PJZUB PPXIY PQGLB NPM AGORE JQ2 7X8 ESTFP 7S9 L.6 |
| ID | FETCH-LOGICAL-c3902-b0fac26a7d284e55dae71c724c2f3b39d6c96d6e448c429e3c4f9422f07cd2aa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Oct 03 00:15:08 EDT 2025 Thu Oct 02 11:21:00 EDT 2025 Wed Aug 13 04:19:44 EDT 2025 Wed Feb 19 02:28:49 EST 2025 Sat Nov 29 02:10:09 EST 2025 Tue Nov 18 21:08:36 EST 2025 Wed Jan 22 16:26:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | causal inference machine learning heterogeneity of treatment effects doubly robust estimators recursive partitioning |
| Language | English |
| License | 2021 The International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3902-b0fac26a7d284e55dae71c724c2f3b39d6c96d6e448c429e3c4f9422f07cd2aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-1919-1455 0000-0002-2215-9931 0000-0003-2116-9377 |
| PMID | 33527341 |
| PQID | 2684614566 |
| PQPubID | 35366 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2718292829 proquest_miscellaneous_2485516327 proquest_journals_2684614566 pubmed_primary_33527341 crossref_primary_10_1111_biom_13432 crossref_citationtrail_10_1111_biom_13432 wiley_primary_10_1111_biom_13432_BIOM13432 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biometrics |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2009; 20 2004; 23 2000; 95 2019; 38 1996 2005; 61 1983; 70 2012; 13 1980; 112 2016; 35 1974; 66 2009; 10 1986; 7 1984; 37 2017; 36 2020 2018; 113 2016; 113 2019 2018 2017 2016 1996; 276 2001; 2 2014 2014; 7 2018; 37 2016; 45 e_1_2_8_28_1 e_1_2_8_29_1 Su X. (e_1_2_8_24_1) 2012; 13 e_1_2_8_27_1 Breiman L. (e_1_2_8_5_1) 1984 e_1_2_8_3_1 e_1_2_8_2_1 Su X. (e_1_2_8_25_1) 2009; 10 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Sun Y. (e_1_2_8_26_1) 2019 Dahabreh I.J. (e_1_2_8_8_1) 2016; 45 e_1_2_8_10_1 Chernozhukov V. (e_1_2_8_6_1) 2018 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – volume: 37 start-page: 1767 year: 2018 end-page: 1787 article-title: Some methods for heterogeneous treatment effect estimation in high dimensions publication-title: Statistics in Medicine – volume: 113 start-page: 7353 year: 2016 end-page: 7360 article-title: Recursive partitioning for heterogeneous causal effects publication-title: Proceedings of the National Academy of Sciences – volume: 7 start-page: 323 year: 2014 end-page: 336 article-title: Causal inference of interaction effects with inverse propensity weighting, g‐computation and tree‐based standardization publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal – volume: 13 start-page: 2955 year: 2012 end-page: 2994 article-title: Facilitating score and causal inference trees for large observational studies publication-title: Journal of Machine Learning Research – year: 2020 article-title: Assessing heterogeneity of treatment effects in observational studies publication-title: American Journal of Epidemiology – year: 2019 article-title: Roc‐guided survival trees and ensembles publication-title: Biometrics – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 35 start-page: 3595 year: 2016 end-page: 3612 article-title: Doubly robust survival trees publication-title: Statistics in Medicine – volume: 37 start-page: 237 year: 1984 end-page: 251 – volume: 276 start-page: 889 year: 1996 end-page: 897 article-title: The effectiveness of right heart catheterization in the initial care of critically iii patients publication-title: JAMA – volume: 61 start-page: 962 year: 2005 end-page: 973 article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics – year: 2018 – year: 2014 – start-page: 689 year: 2016 end-page: 696 article-title: The highly adaptive lasso estimator – start-page: 16 year: 1996 end-page: 28 – start-page: 247 year: 2017 end-page: 292 – volume: 23 start-page: 2937 year: 2004 end-page: 2960 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Statistics in Medicine – volume: 45 start-page: 2184 year: 2016 end-page: 2193 article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient‐centred evidence publication-title: International Journal of Epidemiology – volume: 2 start-page: 259 year: 2001 end-page: 278 article-title: Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization publication-title: Health Services and Outcomes Research Methodology – volume: 95 start-page: 431 year: 2000 end-page: 435 article-title: Causal inference without counterfactuals: comment publication-title: Journal of the American Statistical Association – volume: 36 start-page: 136 year: 2017 end-page: 196 article-title: Tutorial in biostatistics: data‐driven subgroup identification and analysis in clinical trials publication-title: Statistics in Medicine – volume: 66 start-page: 688 year: 1974 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: Journal of Educational Psychology – volume: 7 start-page: 1393 year: 1986 end-page: 1512 article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect publication-title: Mathematical Modelling – volume: 38 start-page: 3974 year: 2019 end-page: 3984 article-title: Subgroup identification using covariate‐adjusted interaction trees publication-title: Statistics in Medicine – volume: 20 start-page: 863 year: 2009 end-page: 871 article-title: On the distinction between interaction and effect modification publication-title: Epidemiology – volume: 112 start-page: 467 year: 1980 end-page: 470 article-title: Concepts of interaction publication-title: American Journal of Epidemiology – volume: 113 start-page: 1228 year: 2018 end-page: 1242 article-title: Estimation and inference of heterogeneous treatment effects using random forests publication-title: Journal of the American Statistical Association – volume: 10 start-page: 141 year: 2009 end-page: 158 article-title: Subgroup analysis via recursive partitioning publication-title: Journal of Machine Learning Research – ident: e_1_2_8_18_1 doi: 10.1080/01621459.2000.10474214 – ident: e_1_2_8_11_1 doi: 10.1023/A:1020371312283 – volume: 45 start-page: 2184 year: 2016 ident: e_1_2_8_8_1 article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient‐centred evidence publication-title: International Journal of Epidemiology – year: 2019 ident: e_1_2_8_26_1 article-title: Roc‐guided survival trees and ensembles publication-title: Biometrics – volume-title: Double/Debiased Machine Learning for Treatment and Structural Parameters year: 2018 ident: e_1_2_8_6_1 – ident: e_1_2_8_12_1 doi: 10.1002/sam.11220 – ident: e_1_2_8_14_1 doi: 10.1002/sim.1903 – ident: e_1_2_8_3_1 doi: 10.1111/j.1541-0420.2005.00377.x – ident: e_1_2_8_13_1 doi: 10.1002/sim.7064 – ident: e_1_2_8_9_1 doi: 10.1201/9781315159409-9 – ident: e_1_2_8_4_1 doi: 10.1109/DSAA.2016.93 – ident: e_1_2_8_21_1 doi: 10.1037/h0037350 – volume: 13 start-page: 2955 year: 2012 ident: e_1_2_8_24_1 article-title: Facilitating score and causal inference trees for large observational studies publication-title: Journal of Machine Learning Research – start-page: 237 volume-title: Classification and Regression Trees year: 1984 ident: e_1_2_8_5_1 – ident: e_1_2_8_27_1 doi: 10.1007/978-1-4757-2545-2_3 – ident: e_1_2_8_17_1 doi: 10.1016/0270-0255(86)90088-6 – volume: 10 start-page: 141 year: 2009 ident: e_1_2_8_25_1 article-title: Subgroup analysis via recursive partitioning publication-title: Journal of Machine Learning Research – ident: e_1_2_8_10_1 – ident: e_1_2_8_7_1 doi: 10.1001/jama.1996.03540110043030 – ident: e_1_2_8_28_1 doi: 10.1097/EDE.0b013e3181ba333c – ident: e_1_2_8_29_1 doi: 10.1080/01621459.2017.1319839 – ident: e_1_2_8_15_1 doi: 10.1002/sim.7623 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1510489113 – ident: e_1_2_8_22_1 doi: 10.1002/sim.6949 – ident: e_1_2_8_20_1 doi: 10.1093/oxfordjournals.aje.a113015 – ident: e_1_2_8_19_1 doi: 10.1093/biomet/70.1.41 – ident: e_1_2_8_16_1 doi: 10.1093/aje/kwaa235 – ident: e_1_2_8_23_1 doi: 10.1002/sim.8214 |
| SSID | ssj0009502 |
| Score | 2.4528685 |
| Snippet | We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 624 |
| SubjectTerms | Algorithms Asymptotic properties catheters causal inference Criteria data analysis doubly robust estimators Estimators heart heterogeneity of treatment effects machine learning observational studies probability recursive partitioning Regression analysis Splitting Statistical analysis Subgroups trees |
| Title | Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13432 https://www.ncbi.nlm.nih.gov/pubmed/33527341 https://www.proquest.com/docview/2684614566 https://www.proquest.com/docview/2485516327 https://www.proquest.com/docview/2718292829 |
| Volume | 78 |
| WOSCitedRecordID | wos000617024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB70rKAP1p5Vt_4gpX1pYWU3m9tsxJdWPVpQW0qFe1uSbEIFuZNbT_C_70x2b1VahNK3hZ2EkMzszE7m-wbgfSGKXKfWxl4OfCyKxKNJJVWceClTb3zmhAnNJuTFRTEaqe8LcDTHwjT8EF3CjSwjfK_JwLWpHxk5wdMPUsJFLsISR8UVPVg6-TG8PHtEups0bOFU3yXSUUtPSpU8D6OfOqQ_osynQWvwOsOX_7fedVhro032qVGPV7Dgxn1YbvpP3vdh9bwjba37sEKBZ8PbvAH-WM9qHEp0EtMG_MDoArs-ZMOrgIRh9cwETEjNKJnLflFhzQT10U1mNesK2FlbMYIzsYnpcsA4NRWnvobL4enP4y9x25MhtplKqF-P15bnWlbo19xgUGknUyu5sNxnJlNVblVe5Q7_-iy6OpdZ4ZXg3CfSVlzrbBN648nYbQPDUGzgUqVzo4QQWhWFUMa4LOPGV3lhIvgwP5jStoTl1Dfjupz_uNCWlmFLI3jXyd40NB1_ldqdn2_ZmmpdEt0NxigY1kbwtnuNRkY3JzrsWRl43zBy5fIZGfTyXNHFdARbje50SyFgm0QNjOBjUJFn1lh-_vrtPDy9-RfhHVjhBMwI-aFd6N1OZ24PXtg71JvpPizKUbHfmsdvBO0TZw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjonxwKD8WGADI3gBKShxnDjmDQbVJtoyTZvUt8h2bG0SalFDkfbfc-ekYRNoEuItUs6WZd_lLuf7vgN4XYqy0Km1sZe5j0WZeDSppI4TL2Xqjc-cMKHZhJxOy9lMHXe1OYSFafkh-oQbWUb4XpOBU0L6ipUTPv1dSsDIDdgUqEf5ADY_nYzOxldYd5OWLpwKvEQ66_hJqZTn9-jrHumPMPN61BrczmjnPxd8H-518Sb70CrIA7jl5kPYajtQXg7h7qSnbW2GsE2hZ8vc_BD8gV41OJQIJZYt_IHRFXbzno0uAhaGNSsTUCENo3QuO6fSmgVqpFusGtaXsLOuZgRnYgvTZ4FxaipPfQRno8-nB4dx15UhtplKqGOP15YXWtbo2Vye19rJ1EouLPeZyVRdWFXUhcP_PovOzmVWeCU494m0Ndc6ewyD-WLudoFhMJa7VOnCKCGEVmUplDEuy7jxdVGaCN6sT6ayHWU5dc74Vq1_XWhLq7ClEbzqZb-3RB1_ldpbH3DVGWtTEeENRikY2Ebwsn-NZkZ3JzrsWRWY3zB25fIGGfTzXNHVdARPWuXpl0LQNokqGMHboCM3rLH6ePR1Ep6e_ovwC7hzeDoZV-Oj6ZdnsM0JphGyRXsw-LFcuX24bX-iDi2fd1byC_i0Fm8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9UwED_mpmN-mPqcWjc1ol8mdLRp2jR-c5vF4fYc4uB9K0masMF4b7z6BP9779K-uqEMxG-FXkJI7nrXy_1-B_C2FGWhU2tjL3MfizLxaFJJEydeytQbnzlhQrMJOR6Xk4k67WtzCAvT8UMMCTeyjPC9JgN3V42_ZuWET99LCRh5B9ZErgq0y7XDr9XZ8TXW3aSjC6cCL5FOen5SKuX5PfqmR_ojzLwZtQa3Uz34zwU_hM0-3mQfOgV5BCtuOoJ7XQfKnyO4fzLQtrYj2KDQs2Nufgz-QC9aHEqEEvMO_sDoCrt9z6qLgIVh7cIEVEjLKJ3Lzqm0ZoYa6WaLlg0l7KyvGcGZ2MwMWWCcmspTt-Cs-vjt4FPcd2WIbaYS6tjjteWFlg16NpfnjXYytZILy31mMtUUVhVN4fC_z6Kzc5kVXgnOfSJtw7XOnsDqdDZ1z4BhMJa7VOnCKCGEVmUplDEuy7jxTVGaCHaXJ1PbnrKcOmdc1stfF9rSOmxpBG8G2auOqOOvUjvLA657Y21rIrzBKAUD2wheD6_RzOjuRIc9qwPzG8auXN4ig36eK7qajuBppzzDUgjaJlEFI3gXdOSWNdb7R19OwtPzfxF-Beunh1V9fDT-vA0bnFAaIVm0A6vf5wv3Au7aH6hC85e9kfwCY7wV6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+interaction+trees%3A+Finding+subgroups+with+heterogeneous+treatment+effects+in+observational+data&rft.jtitle=Biometrics&rft.au=Yang%2C+Jiabei&rft.au=Dahabreh%2C+Issa+J&rft.au=Steingrimsson%2C+Jon+A&rft.date=2022-06-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=78&rft.issue=2&rft.spage=624&rft_id=info:doi/10.1111%2Fbiom.13432&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |