Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data

We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatmen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrics Ročník 78; číslo 2; s. 624 - 635
Hlavní autoři: Yang, Jiabei, Dahabreh, Issa J., Steingrimsson, Jon A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Blackwell Publishing Ltd 01.06.2022
Témata:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.
AbstractList We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.
We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.
We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup-specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g-formula, and doubly robust estimators of subgroup-specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup-specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g-formula, and doubly robust estimators of subgroup-specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.
Author Dahabreh, Issa J.
Yang, Jiabei
Steingrimsson, Jon A.
Author_xml – sequence: 1
  givenname: Jiabei
  orcidid: 0000-0002-1919-1455
  surname: Yang
  fullname: Yang, Jiabei
  email: jiabei_yang@brown.edu
  organization: Brown University
– sequence: 2
  givenname: Issa J.
  orcidid: 0000-0002-2215-9931
  surname: Dahabreh
  fullname: Dahabreh, Issa J.
  organization: Harvard T.H. Chan School of Public Health
– sequence: 3
  givenname: Jon A.
  orcidid: 0000-0003-2116-9377
  surname: Steingrimsson
  fullname: Steingrimsson, Jon A.
  organization: Brown University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33527341$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMoOo5u_AFScCNCNa-mrTsdfIHiRsFdSdObMdI2Y5I6-O_NzKgLEQ2EEPKdw80522i9tz0gtEfwMYnrpDa2OyaMM7qGRiTjJMWc4nU0whiLlHHytIW2vX-J1zLDdBNtMZbRPD6MkJ7Iwcs2MX0AJ1Uwtk-CA_CnyaXpG9NPEz_UU2eHmU_mJjwnzxBJO4Ue7OAXrAwd9CEBrUEFH50SW3twb3JhFq0bGeQO2tCy9bD7eY7R4-XFw-Q6vb2_upmc3aaKlZimNdZSUSHzhhYcsqyRkBOVU66oZjUrG6FK0QjgvFCclsAU1yWnVONcNVRKNkaHK9-Zs68D-FB1xitoW7kct6I5KWhJ4_4f5UWWEcFiUGN08AN9sYOLf4uUKLggPBMiUvuf1FB30FQzZzrp3quvsCNwtAKUs9470N8IwdWiyWrRZLVsMsL4B6xMWEYanDTt7xKyksxNC-9_mFfnN_d3K80Hmx2w5Q
CitedBy_id crossref_primary_10_1093_biostatistics_kxad014
crossref_primary_10_1002_sim_9883
crossref_primary_10_1080_10618600_2024_2414113
crossref_primary_10_1002_sim_10167
crossref_primary_10_1177_09622802231154327
crossref_primary_10_1002_sim_9827
crossref_primary_10_1177_17407745231174544
crossref_primary_10_1002_sim_9550
Cites_doi 10.1080/01621459.2000.10474214
10.1023/A:1020371312283
10.1002/sam.11220
10.1002/sim.1903
10.1111/j.1541-0420.2005.00377.x
10.1002/sim.7064
10.1201/9781315159409-9
10.1109/DSAA.2016.93
10.1037/h0037350
10.1007/978-1-4757-2545-2_3
10.1016/0270-0255(86)90088-6
10.1001/jama.1996.03540110043030
10.1097/EDE.0b013e3181ba333c
10.1080/01621459.2017.1319839
10.1002/sim.7623
10.1073/pnas.1510489113
10.1002/sim.6949
10.1093/oxfordjournals.aje.a113015
10.1093/biomet/70.1.41
10.1093/aje/kwaa235
10.1002/sim.8214
ContentType Journal Article
Copyright 2021 The International Biometric Society.
2022 The International Biometric Society.
Copyright_xml – notice: 2021 The International Biometric Society.
– notice: 2022 The International Biometric Society.
DBID AAYXX
CITATION
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13432
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 635
ExternalDocumentID 33527341
10_1111_biom_13432
BIOM13432
Genre article
Journal Article
GrantInformation_xml – fundername: National Institute of Allergy and Infectious Diseases
  funderid: P30AI042853‐22
– fundername: Patient‐Centered Outcomes Research Institute
  funderid: ME‐1306‐03758; ME‐1502‐27794
– fundername: National Institute of Allergy and Infectious Diseases
  grantid: P30AI042853-22
– fundername: Patient-Centered Outcomes Research Institute
  grantid: ME-1502-27794
– fundername: Patient-Centered Outcomes Research Institute
  grantid: ME-1306-03758
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAWIL
AAYXX
ABAWQ
ABGNP
ACHJO
ADNBA
AEFGJ
AEOTA
AFFHD
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJBYB
AJNCP
CITATION
H13
O8X
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
AGORE
JQ2
7X8
ESTFP
7S9
L.6
ID FETCH-LOGICAL-c3902-b0fac26a7d284e55dae71c724c2f3b39d6c96d6e448c429e3c4f9422f07cd2aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:15:08 EDT 2025
Thu Oct 02 11:21:00 EDT 2025
Wed Aug 13 04:19:44 EDT 2025
Wed Feb 19 02:28:49 EST 2025
Sat Nov 29 02:10:09 EST 2025
Tue Nov 18 21:08:36 EST 2025
Wed Jan 22 16:26:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords causal inference
machine learning
heterogeneity of treatment effects
doubly robust estimators
recursive partitioning
Language English
License 2021 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3902-b0fac26a7d284e55dae71c724c2f3b39d6c96d6e448c429e3c4f9422f07cd2aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-1919-1455
0000-0002-2215-9931
0000-0003-2116-9377
PMID 33527341
PQID 2684614566
PQPubID 35366
PageCount 12
ParticipantIDs proquest_miscellaneous_2718292829
proquest_miscellaneous_2485516327
proquest_journals_2684614566
pubmed_primary_33527341
crossref_primary_10_1111_biom_13432
crossref_citationtrail_10_1111_biom_13432
wiley_primary_10_1111_biom_13432_BIOM13432
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 20
2004; 23
2000; 95
2019; 38
1996
2005; 61
1983; 70
2012; 13
1980; 112
2016; 35
1974; 66
2009; 10
1986; 7
1984; 37
2017; 36
2020
2018; 113
2016; 113
2019
2018
2017
2016
1996; 276
2001; 2
2014
2014; 7
2018; 37
2016; 45
e_1_2_8_28_1
e_1_2_8_29_1
Su X. (e_1_2_8_24_1) 2012; 13
e_1_2_8_27_1
Breiman L. (e_1_2_8_5_1) 1984
e_1_2_8_3_1
e_1_2_8_2_1
Su X. (e_1_2_8_25_1) 2009; 10
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Sun Y. (e_1_2_8_26_1) 2019
Dahabreh I.J. (e_1_2_8_8_1) 2016; 45
e_1_2_8_10_1
Chernozhukov V. (e_1_2_8_6_1) 2018
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 37
  start-page: 1767
  year: 2018
  end-page: 1787
  article-title: Some methods for heterogeneous treatment effect estimation in high dimensions
  publication-title: Statistics in Medicine
– volume: 113
  start-page: 7353
  year: 2016
  end-page: 7360
  article-title: Recursive partitioning for heterogeneous causal effects
  publication-title: Proceedings of the National Academy of Sciences
– volume: 7
  start-page: 323
  year: 2014
  end-page: 336
  article-title: Causal inference of interaction effects with inverse propensity weighting, g‐computation and tree‐based standardization
  publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal
– volume: 13
  start-page: 2955
  year: 2012
  end-page: 2994
  article-title: Facilitating score and causal inference trees for large observational studies
  publication-title: Journal of Machine Learning Research
– year: 2020
  article-title: Assessing heterogeneity of treatment effects in observational studies
  publication-title: American Journal of Epidemiology
– year: 2019
  article-title: Roc‐guided survival trees and ensembles
  publication-title: Biometrics
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 35
  start-page: 3595
  year: 2016
  end-page: 3612
  article-title: Doubly robust survival trees
  publication-title: Statistics in Medicine
– volume: 37
  start-page: 237
  year: 1984
  end-page: 251
– volume: 276
  start-page: 889
  year: 1996
  end-page: 897
  article-title: The effectiveness of right heart catheterization in the initial care of critically iii patients
  publication-title: JAMA
– volume: 61
  start-page: 962
  year: 2005
  end-page: 973
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– year: 2018
– year: 2014
– start-page: 689
  year: 2016
  end-page: 696
  article-title: The highly adaptive lasso estimator
– start-page: 16
  year: 1996
  end-page: 28
– start-page: 247
  year: 2017
  end-page: 292
– volume: 23
  start-page: 2937
  year: 2004
  end-page: 2960
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 2184
  year: 2016
  end-page: 2193
  article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient‐centred evidence
  publication-title: International Journal of Epidemiology
– volume: 2
  start-page: 259
  year: 2001
  end-page: 278
  article-title: Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization
  publication-title: Health Services and Outcomes Research Methodology
– volume: 95
  start-page: 431
  year: 2000
  end-page: 435
  article-title: Causal inference without counterfactuals: comment
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 136
  year: 2017
  end-page: 196
  article-title: Tutorial in biostatistics: data‐driven subgroup identification and analysis in clinical trials
  publication-title: Statistics in Medicine
– volume: 66
  start-page: 688
  year: 1974
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: Journal of Educational Psychology
– volume: 7
  start-page: 1393
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect
  publication-title: Mathematical Modelling
– volume: 38
  start-page: 3974
  year: 2019
  end-page: 3984
  article-title: Subgroup identification using covariate‐adjusted interaction trees
  publication-title: Statistics in Medicine
– volume: 20
  start-page: 863
  year: 2009
  end-page: 871
  article-title: On the distinction between interaction and effect modification
  publication-title: Epidemiology
– volume: 112
  start-page: 467
  year: 1980
  end-page: 470
  article-title: Concepts of interaction
  publication-title: American Journal of Epidemiology
– volume: 113
  start-page: 1228
  year: 2018
  end-page: 1242
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: Journal of the American Statistical Association
– volume: 10
  start-page: 141
  year: 2009
  end-page: 158
  article-title: Subgroup analysis via recursive partitioning
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_18_1
  doi: 10.1080/01621459.2000.10474214
– ident: e_1_2_8_11_1
  doi: 10.1023/A:1020371312283
– volume: 45
  start-page: 2184
  year: 2016
  ident: e_1_2_8_8_1
  article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient‐centred evidence
  publication-title: International Journal of Epidemiology
– year: 2019
  ident: e_1_2_8_26_1
  article-title: Roc‐guided survival trees and ensembles
  publication-title: Biometrics
– volume-title: Double/Debiased Machine Learning for Treatment and Structural Parameters
  year: 2018
  ident: e_1_2_8_6_1
– ident: e_1_2_8_12_1
  doi: 10.1002/sam.11220
– ident: e_1_2_8_14_1
  doi: 10.1002/sim.1903
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1541-0420.2005.00377.x
– ident: e_1_2_8_13_1
  doi: 10.1002/sim.7064
– ident: e_1_2_8_9_1
  doi: 10.1201/9781315159409-9
– ident: e_1_2_8_4_1
  doi: 10.1109/DSAA.2016.93
– ident: e_1_2_8_21_1
  doi: 10.1037/h0037350
– volume: 13
  start-page: 2955
  year: 2012
  ident: e_1_2_8_24_1
  article-title: Facilitating score and causal inference trees for large observational studies
  publication-title: Journal of Machine Learning Research
– start-page: 237
  volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_8_5_1
– ident: e_1_2_8_27_1
  doi: 10.1007/978-1-4757-2545-2_3
– ident: e_1_2_8_17_1
  doi: 10.1016/0270-0255(86)90088-6
– volume: 10
  start-page: 141
  year: 2009
  ident: e_1_2_8_25_1
  article-title: Subgroup analysis via recursive partitioning
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_10_1
– ident: e_1_2_8_7_1
  doi: 10.1001/jama.1996.03540110043030
– ident: e_1_2_8_28_1
  doi: 10.1097/EDE.0b013e3181ba333c
– ident: e_1_2_8_29_1
  doi: 10.1080/01621459.2017.1319839
– ident: e_1_2_8_15_1
  doi: 10.1002/sim.7623
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1510489113
– ident: e_1_2_8_22_1
  doi: 10.1002/sim.6949
– ident: e_1_2_8_20_1
  doi: 10.1093/oxfordjournals.aje.a113015
– ident: e_1_2_8_19_1
  doi: 10.1093/biomet/70.1.41
– ident: e_1_2_8_16_1
  doi: 10.1093/aje/kwaa235
– ident: e_1_2_8_23_1
  doi: 10.1002/sim.8214
SSID ssj0009502
Score 2.4528685
Snippet We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 624
SubjectTerms Algorithms
Asymptotic properties
catheters
causal inference
Criteria
data analysis
doubly robust estimators
Estimators
heart
heterogeneity of treatment effects
machine learning
observational studies
probability
recursive partitioning
Regression analysis
Splitting
Statistical analysis
Subgroups
trees
Title Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13432
https://www.ncbi.nlm.nih.gov/pubmed/33527341
https://www.proquest.com/docview/2684614566
https://www.proquest.com/docview/2485516327
https://www.proquest.com/docview/2718292829
Volume 78
WOSCitedRecordID wos000617024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB70rKAP1p5Vt_4gpX1pYWU3m9tsxJdWPVpQW0qFe1uSbEIFuZNbT_C_70x2b1VahNK3hZ2EkMzszE7m-wbgfSGKXKfWxl4OfCyKxKNJJVWceClTb3zmhAnNJuTFRTEaqe8LcDTHwjT8EF3CjSwjfK_JwLWpHxk5wdMPUsJFLsISR8UVPVg6-TG8PHtEups0bOFU3yXSUUtPSpU8D6OfOqQ_osynQWvwOsOX_7fedVhro032qVGPV7Dgxn1YbvpP3vdh9bwjba37sEKBZ8PbvAH-WM9qHEp0EtMG_MDoArs-ZMOrgIRh9cwETEjNKJnLflFhzQT10U1mNesK2FlbMYIzsYnpcsA4NRWnvobL4enP4y9x25MhtplKqF-P15bnWlbo19xgUGknUyu5sNxnJlNVblVe5Q7_-iy6OpdZ4ZXg3CfSVlzrbBN648nYbQPDUGzgUqVzo4QQWhWFUMa4LOPGV3lhIvgwP5jStoTl1Dfjupz_uNCWlmFLI3jXyd40NB1_ldqdn2_ZmmpdEt0NxigY1kbwtnuNRkY3JzrsWRl43zBy5fIZGfTyXNHFdARbje50SyFgm0QNjOBjUJFn1lh-_vrtPDy9-RfhHVjhBMwI-aFd6N1OZ24PXtg71JvpPizKUbHfmsdvBO0TZw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjonxwKD8WGADI3gBKShxnDjmDQbVJtoyTZvUt8h2bG0SalFDkfbfc-ekYRNoEuItUs6WZd_lLuf7vgN4XYqy0Km1sZe5j0WZeDSppI4TL2Xqjc-cMKHZhJxOy9lMHXe1OYSFafkh-oQbWUb4XpOBU0L6ipUTPv1dSsDIDdgUqEf5ADY_nYzOxldYd5OWLpwKvEQ66_hJqZTn9-jrHumPMPN61BrczmjnPxd8H-518Sb70CrIA7jl5kPYajtQXg7h7qSnbW2GsE2hZ8vc_BD8gV41OJQIJZYt_IHRFXbzno0uAhaGNSsTUCENo3QuO6fSmgVqpFusGtaXsLOuZgRnYgvTZ4FxaipPfQRno8-nB4dx15UhtplKqGOP15YXWtbo2Vye19rJ1EouLPeZyVRdWFXUhcP_PovOzmVWeCU494m0Ndc6ewyD-WLudoFhMJa7VOnCKCGEVmUplDEuy7jxdVGaCN6sT6ayHWU5dc74Vq1_XWhLq7ClEbzqZb-3RB1_ldpbH3DVGWtTEeENRikY2Ebwsn-NZkZ3JzrsWRWY3zB25fIGGfTzXNHVdARPWuXpl0LQNokqGMHboCM3rLH6ePR1Ep6e_ovwC7hzeDoZV-Oj6ZdnsM0JphGyRXsw-LFcuX24bX-iDi2fd1byC_i0Fm8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9UwED_mpmN-mPqcWjc1ol8mdLRp2jR-c5vF4fYc4uB9K0masMF4b7z6BP9779K-uqEMxG-FXkJI7nrXy_1-B_C2FGWhU2tjL3MfizLxaFJJEydeytQbnzlhQrMJOR6Xk4k67WtzCAvT8UMMCTeyjPC9JgN3V42_ZuWET99LCRh5B9ZErgq0y7XDr9XZ8TXW3aSjC6cCL5FOen5SKuX5PfqmR_ojzLwZtQa3Uz34zwU_hM0-3mQfOgV5BCtuOoJ7XQfKnyO4fzLQtrYj2KDQs2Nufgz-QC9aHEqEEvMO_sDoCrt9z6qLgIVh7cIEVEjLKJ3Lzqm0ZoYa6WaLlg0l7KyvGcGZ2MwMWWCcmspTt-Cs-vjt4FPcd2WIbaYS6tjjteWFlg16NpfnjXYytZILy31mMtUUVhVN4fC_z6Kzc5kVXgnOfSJtw7XOnsDqdDZ1z4BhMJa7VOnCKCGEVmUplDEuy7jxTVGaCHaXJ1PbnrKcOmdc1stfF9rSOmxpBG8G2auOqOOvUjvLA657Y21rIrzBKAUD2wheD6_RzOjuRIc9qwPzG8auXN4ig36eK7qajuBppzzDUgjaJlEFI3gXdOSWNdb7R19OwtPzfxF-Beunh1V9fDT-vA0bnFAaIVm0A6vf5wv3Au7aH6hC85e9kfwCY7wV6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+interaction+trees%3A+Finding+subgroups+with+heterogeneous+treatment+effects+in+observational+data&rft.jtitle=Biometrics&rft.au=Yang%2C+Jiabei&rft.au=Dahabreh%2C+Issa+J&rft.au=Steingrimsson%2C+Jon+A&rft.date=2022-06-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=78&rft.issue=2&rft.spage=624&rft_id=info:doi/10.1111%2Fbiom.13432&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon