Estimating individualized treatment rules with risk constraint

Individualized treatment rules (ITRs) recommend treatments based on patient‐specific characteristics in order to maximize the expected clinical outcome. At the same time, the risks caused by various adverse events cannot be ignored. In this paper, we propose a method to estimate an optimal ITR that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrics Ročník 76; číslo 4; s. 1310 - 1318
Hlavní autoři: Huang, Xinyang, Xu, Jin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Blackwell Publishing Ltd 01.12.2020
Témata:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Individualized treatment rules (ITRs) recommend treatments based on patient‐specific characteristics in order to maximize the expected clinical outcome. At the same time, the risks caused by various adverse events cannot be ignored. In this paper, we propose a method to estimate an optimal ITR that maximizes clinical benefit while having the overall risk controlled at a desired level. Our method works for a general setting of multi‐category treatment. The proposed procedure employs two shifted ramp losses to approximate the 0‐1 loss in the objective function and constraint, respectively, and transforms the estimation problem into a difference of convex functions (DC) programming problem. A relaxed DC algorithm is used to solve the nonconvex constrained optimization problem. Simulations and a real data example are used to demonstrate the finite sample performance of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/biom.13232