A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram

The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artifici...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing Vol. 14; no. 7; pp. 9677 - 9750
Main Authors: Musa, Nehemiah, Gital, Abdulsalam Ya’u, Aljojo, Nahla, Chiroma, Haruna, Adewole, Kayode S., Mojeed, Hammed A., Faruk, Nasir, Abdulkarim, Abubakar, Emmanuel, Ifada, Folawiyo, Yusuf Y., Ogunmodede, James A., Oloyede, Abdukareem A., Olawoyin, Lukman A., Sikiru, Ismaeel A., Katb, Ibrahim
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023
Springer Nature B.V
Subjects:
ISSN:1868-5137, 1868-5145
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.
AbstractList The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.
The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm. The online version contains supplementary material available at 10.1007/s12652-022-03868-z.
The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.The online version contains supplementary material available at 10.1007/s12652-022-03868-z.Supplementary informationThe online version contains supplementary material available at 10.1007/s12652-022-03868-z.
Author Abdulkarim, Abubakar
Emmanuel, Ifada
Gital, Abdulsalam Ya’u
Katb, Ibrahim
Musa, Nehemiah
Oloyede, Abdukareem A.
Ogunmodede, James A.
Olawoyin, Lukman A.
Faruk, Nasir
Sikiru, Ismaeel A.
Chiroma, Haruna
Adewole, Kayode S.
Folawiyo, Yusuf Y.
Aljojo, Nahla
Mojeed, Hammed A.
Author_xml – sequence: 1
  givenname: Nehemiah
  surname: Musa
  fullname: Musa, Nehemiah
  organization: Department of Mathematical Sciences, Abubakar Tafawa Balewa University
– sequence: 2
  givenname: Abdulsalam Ya’u
  surname: Gital
  fullname: Gital, Abdulsalam Ya’u
  organization: Department of Mathematical Sciences, Abubakar Tafawa Balewa University
– sequence: 3
  givenname: Nahla
  surname: Aljojo
  fullname: Aljojo, Nahla
  organization: University of Jeddah
– sequence: 4
  givenname: Haruna
  orcidid: 0000-0003-3446-4316
  surname: Chiroma
  fullname: Chiroma, Haruna
  email: chiromaharun@fcetgombe.edu.ng
  organization: Computer Science and Engineering, University of Hafr Al-Batin, Computer Science and Engineering , University of Hafr Al-Batin
– sequence: 5
  givenname: Kayode S.
  surname: Adewole
  fullname: Adewole, Kayode S.
  organization: Department of Computer Science, University of Ilorin
– sequence: 6
  givenname: Hammed A.
  surname: Mojeed
  fullname: Mojeed, Hammed A.
  organization: Department of Computer Science, University of Ilorin
– sequence: 7
  givenname: Nasir
  surname: Faruk
  fullname: Faruk, Nasir
  organization: Department of Physics, Sule Lamido University
– sequence: 8
  givenname: Abubakar
  surname: Abdulkarim
  fullname: Abdulkarim, Abubakar
  organization: Department of Electrical Engineering, Ahmadu Bello University Zaria
– sequence: 9
  givenname: Ifada
  surname: Emmanuel
  fullname: Emmanuel, Ifada
  organization: Department of Physics, Sule Lamido University
– sequence: 10
  givenname: Yusuf Y.
  surname: Folawiyo
  fullname: Folawiyo, Yusuf Y.
  organization: Department of Physics, Sule Lamido University
– sequence: 11
  givenname: James A.
  surname: Ogunmodede
  fullname: Ogunmodede, James A.
  organization: Department of Medicine, University of Ilorin
– sequence: 12
  givenname: Abdukareem A.
  surname: Oloyede
  fullname: Oloyede, Abdukareem A.
  organization: Department of Physics, Sule Lamido University
– sequence: 13
  givenname: Lukman A.
  surname: Olawoyin
  fullname: Olawoyin, Lukman A.
  organization: Department of Physics, Sule Lamido University
– sequence: 14
  givenname: Ismaeel A.
  surname: Sikiru
  fullname: Sikiru, Ismaeel A.
  organization: Department of Physics, Sule Lamido University
– sequence: 15
  givenname: Ibrahim
  surname: Katb
  fullname: Katb, Ibrahim
  organization: Computer Science and Engineering, University of Hafr Al-Batin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35821879$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9vFCEUx4mpsbX2H_BgSLx4GeVHZwYuJk2trckaL3omb-HNlmYGRmBrdv96abeu2kNJCA_4fN978H1JDkIMSMhrzt5zxvoPmYuuFQ0TdUrVqWb7jBzxu6Dlp-3BPpb9ITnJ-YbVIbXknL8gh7JVgqteHxF3RvMmF5ygeEsT3nr8RSE4-hULNA4K1B2Mm-wzjYGWa6Qwz6O3lY-hng30E-JMFwgp-LCiPtCLEW1J0UJyPq4STK_I8wHGjCcP6zH58fni-_lVs_h2-eX8bNFYqfS2UU6cKi616JjkAy416xCFFJ3TwvV6yXQHupWoBqd5h5qpJbRMSi6ht9pZeUw-7vLO6-WEzmIoCUYzJz9B2pgI3vx_E_y1WcVbU0tyzURN8O4hQYo_15iLmXy2OI4QMK6zEZ2qTdX_VhV9-wi9ietUv6pSWjDeSy5Ypd7829G-lT8GVEDsAJtizgmHPcKZuTPa7Iw21Whzb7TZVpF6JLK-3BtSX-XHp6VyJ821Tlhh-tv2E6rfz_69cg
CitedBy_id crossref_primary_10_1002_acs_3926
crossref_primary_10_1007_s00521_023_09267_5
crossref_primary_10_3389_fcvm_2024_1473482
crossref_primary_10_1016_j_compbiomed_2023_107628
crossref_primary_10_3390_app14209457
crossref_primary_10_1007_s11517_024_03273_y
crossref_primary_10_1007_s42835_023_01747_x
crossref_primary_10_15622_ia_24_4_6
crossref_primary_10_1109_TIE_2024_3404152
crossref_primary_10_1007_s13198_024_02619_x
crossref_primary_10_1109_ACCESS_2023_3338191
crossref_primary_10_1007_s10462_024_10777_4
crossref_primary_10_1088_2057_1976_acbd53
crossref_primary_10_1109_JIOT_2024_3350022
crossref_primary_10_1016_j_bspc_2024_106262
crossref_primary_10_1016_j_eswa_2024_124775
crossref_primary_10_1007_s00399_024_00997_0
crossref_primary_10_1016_j_compbiomed_2024_108235
crossref_primary_10_1016_j_compbiomed_2024_109126
crossref_primary_10_1109_ACCESS_2024_3447096
crossref_primary_10_3390_molecules29194626
crossref_primary_10_3390_electronics14153149
crossref_primary_10_1007_s12193_024_00433_0
crossref_primary_10_3390_diagnostics14232712
crossref_primary_10_1051_shsconf_202418901008
crossref_primary_10_3390_diagnostics14020139
crossref_primary_10_1111_eci_70002
Cites_doi 10.1113/jphysiol.1962.sp006837
10.1016/j.bspc.2019.03.009
10.1145/3312614.3312644
10.1016/j.chaos.2020.110245
10.1109/ACCESS.2018.2849870
10.1109/TIPTEKNO.2019.8895011
10.1016/j.jelectrocard.2018.08.008
10.1109/CSE.2014.36
10.1093/europace/euz324
10.1109/EMBC.2019.8857554
10.1109/ACCESS.2019.2920900
10.1016/j.jelectrocard.2019.09.008
10.1109/ACCESS.2020.2975258
10.1109/ICA.2019.8916683
10.1088/1742-6596/913/1/012004
10.1109/JBHI.2018.2871510
10.1109/ICASSDA.2018.8477620
10.1109/IPTA.2017.8310112
10.1109/DSD.2018.00077
10.1109/SMC.2018.00080
10.1007/s13534-020-00146-9
10.1109/ICAMechS.2019.8861645
10.1016/j.jss.2006.07.009
10.1016/j.future.2017.09.020
10.1016/j.ins.2016.01.082
10.1038/s41467-019-13993-7
10.1109/CCST.2017.8167816
10.1007/s10462-018-09679-z
10.1016/j.procs.2017.11.238
10.1109/MeMeA.2019.8802158
10.1371/journal.pone.0216756
10.1109/ICUFN.2019.8805913
10.1109/EMBC.2019.8856806
10.1166/jmihi.2018.2442
10.1109/ICCCNT45670.2019.8944895
10.1016/j.compbiomed.2018.09.009
10.1080/01691864.2017.1365009
10.1007/s12553-015-0098-y
10.1155/2018/7068349
10.1109/ICIINFS.2018.8721391
10.1016/j.bbe.2019.12.002
10.1016/j.procs.2020.02.129
10.1109/5.726791
10.1016/j.jelectrocard.2019.11.046
10.1111/exsy.12547
10.1016/j.patrec.2018.03.028
10.22489/CinC.2019.072
10.1109/ICInfA.2016.7831994
10.3390/s20061796
10.1016/j.patrec.2019.02.016
10.1016/j.jelectrocard.2019.08.008
10.1007/978-3-319-26453-0_7
10.1109/AICAS.2019.8771558
10.1126/science.1127647
10.1109/WiSPNET45539.2019.9032813
10.1109/RBME.2018.2885714
10.1007/s10489-018-1179-1
10.1016/j.future.2018.03.057
10.3390/app9224810
10.1109/72.279181
10.1016/j.bspc.2018.05.013
10.1109/ISCC47284.2019.8969657
10.1016/j.cviu.2007.08.005
10.1109/EIT.2018.8500197
10.1016/j.bbe.2019.06.001
10.1007/978-981-10-5122-7_138
10.1016/j.cmpb.2019.05.004
10.1007/s10916-018-0963-0
10.1016/j.bspc.2019.101819
10.1109/CSE-EUC.2017.220
10.1007/s11760-020-01666-8
10.3390/electronics8030292
10.1109/UEMCON.2017.8249111
10.1145/3278576.3278597
10.1016/j.future.2019.06.008
10.1001/jamacardio.2020.1017
10.1109/ACCESS.2018.2886573
10.1109/JBHI.2019.2911367
10.3390/en11082163
10.1007/s40846-018-0389-7
10.1109/CVPR.2017.243
10.1109/CVPR.2017.195
10.1016/j.compbiomed.2017.12.023
10.1016/j.eswa.2021.114809
10.1016/j.artmed.2019.101789
10.3390/app9112331
10.1109/BioCAS.2015.7348372
10.3390/s19204408
10.1016/j.knosys.2020.105596
10.1007/s13534-017-0055-y
10.1109/ICDSP.2016.7868505
10.1007/978-3-319-10590-1_53
10.1016/j.icte.2018.10.005
10.1016/j.compbiomed.2020.103801
10.1016/j.ins.2017.04.012
10.1109/BIOCAS.2019.8918723
10.1109/ICACCS.2019.8728362
10.1109/KI48306.2020.9039871
10.3934/mbe.2019124
10.1109/ACCESS.2019.2896880
10.1016/j.knosys.2017.06.003
10.1109/TSMC.2017.2705582
10.1109/TENCON.2018.8650429
10.1109/KCIC.2017.8228452
10.1109/ICASSP.2017.7952519
10.1145/3219819.3219912
10.1109/CEEICT.2018.8628044
10.1109/MCI.2018.2840738
10.1109/ACCESS.2019.2928017
10.1109/ICMLA.2016.0154
10.1109/CAIS.2018.8441942
10.1016/j.procs.2018.05.045
10.1016/j.cjca.2020.02.096
10.1016/j.imu.2018.08.002
10.1016/j.compbiomed.2017.12.007
10.3348/kjr.2017.18.4.570
10.1109/ACCESS.2019.2912200
10.1063/1.5138541
10.3390/s20072136
10.1145/3290818.3290819
10.1109/SNSP.2018.00037
10.1109/TKDE.2009.191
10.1162/neco.2006.18.7.1527
10.23919/EUSIPCO.2019.8902936
10.1136/svn-2017-000101
10.1142/S0219519419500040
10.1109/HealthCom.2017.8210784
10.1016/j.cose.2018.11.003
10.1016/j.procs.2018.05.034
10.3390/s20040969
10.1109/EMBC.2018.8512263
10.3346/jkms.2019.34.e64
10.1055/s-0038-1667083
10.1016/j.procs.2018.04.060
10.3389/frai.2020.00004
10.1016/j.cmpb.2019.105219
10.11591/eei.v9i3.2172
10.22489/CinC.2017.065-469
10.1177/0739456X17723971
10.1007/s13246-019-00815-9
10.1109/CVPR.2016.90
10.1016/j.neucom.2020.01.019
10.1016/j.cmpb.2018.04.005
10.1109/TBME.2015.2468589
10.1007/s41745-019-0102-z
10.1016/j.compbiomed.2017.08.022
10.1109/ACCESS.2019.2939947
10.35940/ijitee.C8728.019320
10.1016/j.ins.2017.06.027
10.1016/j.cmpb.2019.105001
10.1109/CVPR.2015.7298594
10.1109/INES.2017.8118534
10.1109/ICCUBEA.2018.8697579
10.1109/MySec.2014.6985987
10.1016/0925-2312(94)00061-V
10.1016/j.eswa.2019.07.010
10.1016/j.compbiomed.2018.05.013
10.1109/ICHI.2018.00092
10.1088/2057-1976/ab1104
10.1201/9781315371658
10.1016/j.neunet.2014.09.003
10.1088/1361-6579/aaaa9d
10.1007/978-3-030-33327-0_13
10.1155/2017/4108720
10.1093/bib/bbx044
10.1109/19.930458
10.3390/s19040935
10.1016/j.compbiomed.2018.03.016
10.1109/51.932728
10.1109/ACCESS.2020.2974712
10.1007/978-3-031-01821-3
10.1016/j.patcog.2013.05.025
10.1016/j.cmpb.2018.05.014
10.1016/j.acra.2018.02.018
10.1142/S1469026816500218
10.1016/j.smhl.2018.07.022
10.1109/ACCESS.2020.2964749
10.1109/ISDFS.2019.8757522
10.1088/1361-6579/aac7b7
10.14311/NNW.2019.29.014
10.4258/hir.2016.22.4.351
10.1109/EMBC.2019.8856916
10.1145/3241737
10.1155/2019/1306039
10.2196/11966
10.1109/CISP-BMEI.2018.8633273
10.5220/0006195404630470
10.1155/2015/370194
10.1016/S0167-739X(99)00059-X
10.1007/s12652-019-01401-3
10.3233/XST-200757
10.22489/CinC.2017.066-138
10.1109/BHI.2019.8834468
10.1561/2000000071
10.1109/SmartWorld.2018.00119
10.1109/ICB45273.2019.8987383
10.1007/s00521-020-04709-w
10.1007/978-3-642-33275-3_2
10.1016/j.compbiomed.2019.103378
10.1007/s11042-020-08769-x
10.1016/j.compbiomed.2020.103753
10.1007/978-3-319-68385-0_18
10.1016/j.eswa.2018.08.011
10.1186/s40537-016-0043-6
10.1109/CAIPT.2017.8320684
10.1162/neco.1997.9.8.1735
10.1016/j.compbiomed.2018.07.001
10.1016/j.future.2017.08.039
10.1016/j.procs.2018.05.041
10.1109/ACCESS.2019.2918792
10.1109/IDAACS.2017.8095063
10.1109/ICACCI.2018.8554541
10.1007/s10439-017-1944-z
10.1109/MeMeA.2018.8438739
10.1007/s13244-018-0639-9
10.1145/3348445.3348459
10.1016/j.compbiomed.2018.06.002
10.1109/IECBES.2018.8626624
10.1016/j.asoc.2019.105778
10.1007/s11633-018-1136-9
10.1155/2018/7354081
10.1109/ACIIW.2019.8925020
10.1109/ICMEW.2017.8026250
10.1016/j.knosys.2019.105036
10.1007/s00521-018-3616-9
10.3390/a12060118
10.1007/s10489-019-01461-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright Springer Nature B.V. Jul 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
– notice: Copyright Springer Nature B.V. Jul 2023
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1007/s12652-022-03868-z
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 9750
ExternalDocumentID PMC9261902
35821879
10_1007_s12652_022_03868_z
Genre Journal Article
GrantInformation_xml – fundername: Tertiary Education Trust Fund
  grantid: TETfund/DR&D/CE/NRF/CC/09/Vol 1, 2019
  funderid: http://dx.doi.org/10.13039/501100008895
– fundername: ;
  grantid: TETfund/DR&D/CE/NRF/CC/09/Vol 1, 2019
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PHGZM
PHGZT
PQGLB
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
AFFHD
CITATION
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c389z-8d24813926031feb906ee2326d92d79b096a953e8fd916e908ba503313a7c9dc3
IEDL.DBID K7-
ISSN 1868-5137
IngestDate Tue Nov 04 01:54:42 EST 2025
Fri Sep 05 06:58:26 EDT 2025
Wed Nov 05 02:12:27 EST 2025
Thu Apr 03 07:07:59 EDT 2025
Sat Nov 29 08:03:00 EST 2025
Tue Nov 18 22:41:11 EST 2025
Mon Jul 21 06:08:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Driving
Biometric Electrocardiogram System
Electrocardiogram
Machine learning
Language English
License The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389z-8d24813926031feb906ee2326d92d79b096a953e8fd916e908ba503313a7c9dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3446-4316
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9261902
PMID 35821879
PQID 2920173120
PQPubID 2043913
PageCount 74
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9261902
proquest_miscellaneous_2689060388
proquest_journals_2920173120
pubmed_primary_35821879
crossref_primary_10_1007_s12652_022_03868_z
crossref_citationtrail_10_1007_s12652_022_03868_z
springer_journals_10_1007_s12652_022_03868_z
PublicationCentury 2000
PublicationDate 20230700
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationTitleAlternate J Ambient Intell Humaniz Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References X Xu (3868_CR237) 2020; 8
3868_CR154
F Liu (3868_CR148) 2018; 8
3868_CR159
3868_CR150
3868_CR152
3868_CR27
3868_CR28
3868_CR25
S-Y Han (3868_CR95) 2020; 40
3868_CR23
3868_CR24
3868_CR21
3868_CR22
3868_CR20
B Pourbabaee (3868_CR179) 2018; 48
3868_CR142
3868_CR143
MM Al Rahhal (3868_CR12) 2018; 38
3868_CR145
H Shi (3868_CR204) 2020; 187
GE Hinton (3868_CR100) 2006; 313
S Singh (3868_CR207) 2018; 132
G Swapna (3868_CR212) 2018; 132
Ö Yildirim (3868_CR242) 2018; 96
3868_CR141
D Li (3868_CR140) 2019; 52
3868_CR38
T Guo (3868_CR89) 2020; 5
3868_CR32
3868_CR30
M Amrani (3868_CR18) 2018; 30
A Fischer (3868_CR79) 2014; 47
C-H Hsieh (3868_CR105) 2020; 20
3868_CR131
3868_CR132
3868_CR253
3868_CR255
R Miotto (3868_CR158) 2018; 19
3868_CR257
3868_CR137
UR Acharya (3868_CR8) 2017; 89
3868_CR250
P Bizopoulos (3868_CR34) 2018; 12
Ö Yıldırım (3868_CR244) 2018; 102
3868_CR139
P Brereton (3868_CR37) 2007; 80
HP da Silva (3868_CR59) 2015; 4
R Jabbar (3868_CR117) 2018; 130
3868_CR120
3868_CR241
3868_CR121
3868_CR123
3868_CR124
3868_CR245
3868_CR247
3868_CR248
SS Abdeldayem (3868_CR2) 2019; 2
H Fujita (3868_CR81) 2019; 49
3868_CR17
3868_CR14
A Mincholé (3868_CR157) 2019; 57
MZ Alom (3868_CR15) 2019; 8
UR Acharya (3868_CR7) 2018; 79
S Saadatnejad (3868_CR190) 2019; 24
3868_CR249
3868_CR11
HM Lynn (3868_CR153) 2019; 7
AB Nassif (3868_CR165) 2019; 7
MP McBee (3868_CR156) 2018; 25
MN Rastgoo (3868_CR185) 2019; 138
Z-J Yao (3868_CR240) 2018; 15
3868_CR198
3868_CR199
S Hochreiter (3868_CR101) 1997; 9
3868_CR191
3868_CR193
SL Oh (3868_CR167) 2018; 102
3868_CR195
3868_CR69
3868_CR67
3868_CR68
Y Wang (3868_CR228) 2018; 11
3868_CR65
3868_CR64
3868_CR61
3868_CR62
3868_CR80
R Bansal (3868_CR29) 2011; 8
3868_CR501
3868_CR180
3868_CR181
3868_CR182
3868_CR183
3868_CR184
J-G Lee (3868_CR138) 2017; 18
ALP Ribeiro (3868_CR187) 2019; 57
B Rim (3868_CR188) 2020; 20
3868_CR78
SK Pandey (3868_CR172) 2019; 42
G Swapna (3868_CR211) 2018; 132
3868_CR74
3868_CR75
3868_CR72
3868_CR70
JH Tan (3868_CR217) 2018; 94
3868_CR71
F Monrose (3868_CR160) 2000; 16
C Ouchicha (3868_CR168) 2020; 140
3868_CR178
SM Mathews (3868_CR155) 2018; 99
3868_CR170
3868_CR9
3868_CR173
MM Al Rahhal (3868_CR13) 2016; 345
D Dey (3868_CR66) 2018; 8
3868_CR174
3868_CR49
AH Ribeiro (3868_CR186) 2020; 11
3868_CR47
HW Lui (3868_CR151) 2018; 13
3868_CR45
W Liu (3868_CR149) 2018; 45
3868_CR46
3868_CR43
UR Acharya (3868_CR5) 2017; 415
3868_CR41
N Ganapathy (3868_CR83) 2018; 27
G Swapna (3868_CR213) 2018; 4
3868_CR164
KW Bowyer (3868_CR36) 2008; 110
3868_CR169
T Young (3868_CR246) 2018; 13
AM Shaker (3868_CR197) 2020; 8
3868_CR162
Y Xia (3868_CR233) 2018; 93
3868_CR163
UR Acharya (3868_CR6) 2019; 49
3868_CR58
3868_CR57
A Ghaffari (3868_CR84) 2019; 5
3868_CR54
S Kiranyaz (3868_CR129) 2015; 63
3868_CR55
S Zhou (3868_CR256) 2020; 86
3868_CR52
3868_CR50
H Alquran (3868_CR16) 2019; 29
3868_CR51
OS Lih (3868_CR147) 2020; 103
DH Hubel (3868_CR110) 1962; 160
J Chu (3868_CR56) 2019; 19
K Weiss (3868_CR229) 2016; 3
U Erdenebayar (3868_CR73) 2019; 180
G Nguyen (3868_CR166) 2019; 52
UB Baloglu (3868_CR26) 2019; 122
Q Abbas (3868_CR1) 2020; 11
J-M Kwon (3868_CR135) 2020; 22
B Varghese (3868_CR222) 2018; 79
Z Li (3868_CR146) 2020; 58
L Bote-Curiel (3868_CR35) 2019; 9
SJ Pan (3868_CR171) 2009; 22
L Guo (3868_CR88) 2019; 39
M Taherisadr (3868_CR215) 2018; 9
Y Bengio (3868_CR31) 1994; 5
E Urtnasan (3868_CR221) 2018; 39
E Urtnasan (3868_CR220) 2018; 42
W Cai (3868_CR44) 2020; 116
R Kamaleswaran (3868_CR122) 2018; 39
J Huang (3868_CR107) 2019; 7
3868_CR90
H-M Cho (3868_CR53) 2019; 19
O Faust (3868_CR77) 2018; 102
KG Kim (3868_CR127) 2016; 22
R Yamashita (3868_CR238) 2018; 9
M Hammad (3868_CR94) 2019; 101
GE Hinton (3868_CR99) 2006; 18
3868_CR87
3868_CR85
3868_CR86
3868_CR82
A Picon (3868_CR175) 2019; 14
JR Pinto (3868_CR177) 2018; 6
X Wang (3868_CR227) 2016; 8
SS Xu (3868_CR236) 2018; 23
O Yildirim (3868_CR243) 2019; 176
Y-H Byeon (3868_CR40) 2019; 9
C Chen (3868_CR48) 2020; 57
3868_CR98
3868_CR96
3868_CR97
3868_CR92
3868_CR230
3868_CR111
GB Moody (3868_CR161) 2001; 20
3868_CR232
3868_CR113
3868_CR235
3868_CR115
3868_CR116
H Shi (3868_CR203) 2020; 188
RD Labati (3868_CR136) 2019; 126
Y Xiao (3868_CR234) 2019; 39
3868_CR118
G Sannino (3868_CR192) 2018; 86
RS Andersen (3868_CR19) 2019; 115
J Rubin (3868_CR189) 2018; 51
3868_CR102
3868_CR223
3868_CR103
3868_CR224
Q Zhang (3868_CR252) 2018; 46
3868_CR104
3868_CR225
J Schmidhuber (3868_CR194) 2015; 61
F Jiang (3868_CR119) 2017; 2
S Kulik (3868_CR133) 2020; 169
R Buyya (3868_CR39) 2018; 51
3868_CR106
3868_CR108
3868_CR109
A Darmawahyuni (3868_CR63) 2019; 12
3868_CR210
cr-split#-3868_CR112.2
cr-split#-3868_CR112.1
3868_CR214
H Dang (3868_CR60) 2019; 7
O Faust (3868_CR76) 2018; 161
L Biel (3868_CR33) 2001; 50
M Hammad (3868_CR91) 2018; 7
M Hammad (3868_CR93) 2019; 81
Y-H Byeon (3868_CR42) 2019; 19
3868_CR216
M-G Kim (3868_CR128) 2020; 8
JS Kim (3868_CR126) 2020; 11
3868_CR218
3868_CR219
A Isin (3868_CR114) 2017; 120
3868_CR200
3868_CR201
UR Acharya (3868_CR4) 2017; 405
3868_CR202
A Shrestha (3868_CR205) 2019; 7
EK Wang (3868_CR226) 2019; 16
H-C Yang (3868_CR239) 2018; 161
Z Wu (3868_CR231) 2016; 15
S Kusuma (3868_CR134) 2020; 21
HA Pierson (3868_CR176) 2017; 31
B Kitchenham (3868_CR130) 2007; 45
MS Al-Huseiny (3868_CR10) 2020; 9
Z Li (3868_CR144) 2019; 7
3868_CR206
MA Serhani (3868_CR196) 2020; 20
3868_CR208
UR Acharya (3868_CR3) 2017; 132
3868_CR209
S Khan (3868_CR125) 2018; 8
References_xml – ident: 3868_CR202
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: 3868_CR110
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 52
  start-page: 77
  year: 2019
  ident: 3868_CR140
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.03.009
– ident: 3868_CR74
  doi: 10.1145/3312614.3312644
– volume: 140
  start-page: 110245
  year: 2020
  ident: 3868_CR168
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110245
– volume: 6
  start-page: 34746
  year: 2018
  ident: 3868_CR177
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2849870
– ident: 3868_CR116
  doi: 10.1109/TIPTEKNO.2019.8895011
– volume: 51
  start-page: S18
  issue: 6
  year: 2018
  ident: 3868_CR189
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2018.08.008
– ident: 3868_CR109
  doi: 10.1109/CSE.2014.36
– volume: 22
  start-page: 412
  issue: 3
  year: 2020
  ident: 3868_CR135
  publication-title: EP Europace
  doi: 10.1093/europace/euz324
– ident: 3868_CR96
  doi: 10.1109/EMBC.2019.8857554
– ident: 3868_CR174
– volume: 7
  start-page: 77849
  year: 2019
  ident: 3868_CR144
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920900
– volume: 57
  start-page: S75
  year: 2019
  ident: 3868_CR187
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2019.09.008
– volume: 8
  start-page: 36527
  year: 2020
  ident: 3868_CR128
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975258
– ident: 3868_CR62
  doi: 10.1109/ICA.2019.8916683
– ident: 3868_CR180
  doi: 10.1088/1742-6596/913/1/012004
– volume: 23
  start-page: 1574
  issue: 4
  year: 2018
  ident: 3868_CR236
  publication-title: IEEE J biomedical health Inf
  doi: 10.1109/JBHI.2018.2871510
– ident: 3868_CR21
  doi: 10.1109/ICASSDA.2018.8477620
– ident: 3868_CR90
  doi: 10.1109/IPTA.2017.8310112
– ident: 3868_CR216
  doi: 10.1109/DSD.2018.00077
– ident: 3868_CR249
  doi: 10.1109/SMC.2018.00080
– ident: 3868_CR108
  doi: 10.1007/s13534-020-00146-9
– ident: 3868_CR61
  doi: 10.1109/ICAMechS.2019.8861645
– volume: 80
  start-page: 571
  issue: 4
  year: 2007
  ident: 3868_CR37
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2006.07.009
– volume: 79
  start-page: 849
  year: 2018
  ident: 3868_CR222
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.09.020
– volume: 345
  start-page: 340
  year: 2016
  ident: 3868_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.01.082
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 3868_CR186
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13993-7
– ident: 3868_CR46
  doi: 10.1109/CCST.2017.8167816
– volume: 52
  start-page: 77
  issue: 1
  year: 2019
  ident: 3868_CR166
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-09679-z
– ident: 3868_CR208
– volume: 120
  start-page: 268
  year: 2017
  ident: 3868_CR114
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.238
– ident: 3868_CR232
  doi: 10.1109/MeMeA.2019.8802158
– volume: 14
  start-page: e0216756
  issue: 5
  year: 2019
  ident: 3868_CR175
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0216756
– ident: 3868_CR118
  doi: 10.1109/ICUFN.2019.8805913
– ident: 3868_CR115
  doi: 10.1109/EMBC.2019.8856806
– volume: 8
  start-page: 1368
  issue: 7
  year: 2018
  ident: 3868_CR148
  publication-title: J Med Imaging Health Inf
  doi: 10.1166/jmihi.2018.2442
– ident: 3868_CR25
  doi: 10.1109/ICCCNT45670.2019.8944895
– ident: 3868_CR55
– volume: 102
  start-page: 411
  year: 2018
  ident: 3868_CR244
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 31
  start-page: 821
  issue: 16
  year: 2017
  ident: 3868_CR176
  publication-title: Adv Robot
  doi: 10.1080/01691864.2017.1365009
– volume: 4
  start-page: 309
  issue: 4
  year: 2015
  ident: 3868_CR59
  publication-title: Health and Technology
  doi: 10.1007/s12553-015-0098-y
– ident: 3868_CR224
  doi: 10.1155/2018/7068349
– ident: 3868_CR32
  doi: 10.1109/ICIINFS.2018.8721391
– volume: 11
  start-page: 585
  issue: 1
  year: 2020
  ident: 3868_CR1
  publication-title: (IJACSA) Int J Adv Comput Sci Appl
– volume: 40
  start-page: 324
  issue: 1
  year: 2020
  ident: 3868_CR95
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2019.12.002
– volume: 169
  start-page: 164
  year: 2020
  ident: 3868_CR133
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.02.129
– ident: 3868_CR137
  doi: 10.1109/5.726791
– volume: 58
  start-page: 105
  year: 2020
  ident: 3868_CR146
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2019.11.046
– ident: 3868_CR92
  doi: 10.1111/exsy.12547
– volume: 126
  start-page: 78
  year: 2019
  ident: 3868_CR136
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.03.028
– ident: 3868_CR225
  doi: 10.22489/CinC.2019.072
– ident: 3868_CR247
  doi: 10.1109/ICInfA.2016.7831994
– volume: 20
  start-page: 1796
  issue: 6
  year: 2020
  ident: 3868_CR196
  publication-title: Sensors
  doi: 10.3390/s20061796
– volume: 122
  start-page: 23
  year: 2019
  ident: 3868_CR26
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2019.02.016
– volume: 57
  start-page: S61
  year: 2019
  ident: 3868_CR157
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2019.08.008
– ident: 3868_CR45
  doi: 10.1007/978-3-319-26453-0_7
– ident: 3868_CR87
  doi: 10.1109/AICAS.2019.8771558
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 3868_CR100
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 3868_CR163
  doi: 10.1109/WiSPNET45539.2019.9032813
– volume: 12
  start-page: 168
  year: 2018
  ident: 3868_CR34
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2018.2885714
– volume: 49
  start-page: 16
  issue: 1
  year: 2019
  ident: 3868_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1179-1
– volume: 86
  start-page: 446
  year: 2018
  ident: 3868_CR192
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.03.057
– volume: 9
  start-page: 4810
  issue: 22
  year: 2019
  ident: 3868_CR40
  publication-title: Appl Sci
  doi: 10.3390/app9224810
– ident: 3868_CR38
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 3868_CR31
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.279181
– volume: 45
  start-page: 22
  year: 2018
  ident: 3868_CR149
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.05.013
– ident: 3868_CR193
– ident: 3868_CR97
  doi: 10.1109/ISCC47284.2019.8969657
– volume: 110
  start-page: 281
  issue: 2
  year: 2008
  ident: 3868_CR36
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2007.08.005
– ident: 3868_CR11
  doi: 10.1109/EIT.2018.8500197
– volume: 39
  start-page: 868
  issue: 3
  year: 2019
  ident: 3868_CR88
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2019.06.001
– ident: 3868_CR103
– ident: #cr-split#-3868_CR112.1
  doi: 10.1007/978-981-10-5122-7_138
– volume: 176
  start-page: 121
  year: 2019
  ident: 3868_CR243
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.05.004
– volume: 42
  start-page: 104
  issue: 6
  year: 2018
  ident: 3868_CR220
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0963-0
– volume: 57
  start-page: 101819
  year: 2020
  ident: 3868_CR48
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101819
– ident: 3868_CR52
  doi: 10.1109/CSE-EUC.2017.220
– ident: 3868_CR173
  doi: 10.1007/s11760-020-01666-8
– ident: 3868_CR132
– volume: 8
  start-page: 292
  issue: 3
  year: 2019
  ident: 3868_CR15
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– ident: 3868_CR241
– ident: 3868_CR253
  doi: 10.1109/UEMCON.2017.8249111
– ident: 3868_CR23
  doi: 10.1145/3278576.3278597
– volume: 101
  start-page: 180
  year: 2019
  ident: 3868_CR94
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.06.008
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 3868_CR2
  publication-title: IEEE Trans Biometrics Behav Identity Sci
– volume: 5
  start-page: 811
  issue: 7
  year: 2020
  ident: 3868_CR89
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2020.1017
– volume: 7
  start-page: 26527
  year: 2018
  ident: 3868_CR91
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886573
– volume: 24
  start-page: 515
  issue: 2
  year: 2019
  ident: 3868_CR190
  publication-title: IEEE J biomedical health Inf
  doi: 10.1109/JBHI.2019.2911367
– volume: 11
  start-page: 2163
  issue: 8
  year: 2018
  ident: 3868_CR228
  publication-title: Energies
  doi: 10.3390/en11082163
– volume: 38
  start-page: 1014
  issue: 6
  year: 2018
  ident: 3868_CR12
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-018-0389-7
– ident: 3868_CR106
  doi: 10.1109/CVPR.2017.243
– ident: 3868_CR54
  doi: 10.1109/CVPR.2017.195
– volume: 94
  start-page: 19
  year: 2018
  ident: 3868_CR217
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.12.023
– ident: 3868_CR257
  doi: 10.1016/j.eswa.2021.114809
– volume: 103
  start-page: 101789
  year: 2020
  ident: 3868_CR147
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101789
– volume: 9
  start-page: 2331
  issue: 11
  year: 2019
  ident: 3868_CR35
  publication-title: Appl Sci
  doi: 10.3390/app9112331
– ident: 3868_CR169
  doi: 10.1109/BioCAS.2015.7348372
– volume: 19
  start-page: 4408
  issue: 20
  year: 2019
  ident: 3868_CR53
  publication-title: Sensors
  doi: 10.3390/s19204408
– volume: 45
  start-page: 1051
  issue: 4ve
  year: 2007
  ident: 3868_CR130
  publication-title: Engineering
– ident: 3868_CR195
  doi: 10.1016/j.knosys.2020.105596
– volume: 8
  start-page: 95
  issue: 1
  year: 2018
  ident: 3868_CR66
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0055-y
– ident: 3868_CR139
  doi: 10.1109/ICDSP.2016.7868505
– ident: 3868_CR182
– ident: 3868_CR248
  doi: 10.1007/978-3-319-10590-1_53
– volume: 4
  start-page: 243
  issue: 4
  year: 2018
  ident: 3868_CR213
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.005
– ident: 3868_CR104
  doi: 10.1016/j.compbiomed.2020.103801
– volume: 21
  start-page: 127
  issue: 1
  year: 2020
  ident: 3868_CR134
  publication-title: Scalable Computing: Practice and Experience
– volume: 405
  start-page: 81
  year: 2017
  ident: 3868_CR4
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.04.012
– ident: 3868_CR58
  doi: 10.1109/BIOCAS.2019.8918723
– ident: 3868_CR183
  doi: 10.1109/ICACCS.2019.8728362
– ident: 3868_CR43
  doi: 10.1109/KI48306.2020.9039871
– volume: 16
  start-page: 2481
  issue: 4
  year: 2019
  ident: 3868_CR226
  publication-title: Math Biosci engineering: MBE
  doi: 10.3934/mbe.2019124
– volume: 7
  start-page: 19143
  year: 2019
  ident: 3868_CR165
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896880
– volume: 132
  start-page: 62
  year: 2017
  ident: 3868_CR3
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.06.003
– volume: 48
  start-page: 2095
  issue: 12
  year: 2018
  ident: 3868_CR179
  publication-title: IEEE Trans Syst Man Cybernetics: Syst
  doi: 10.1109/TSMC.2017.2705582
– ident: 3868_CR28
  doi: 10.1109/TENCON.2018.8650429
– ident: 3868_CR131
– ident: 3868_CR22
  doi: 10.1109/KCIC.2017.8228452
– ident: 3868_CR86
– ident: 3868_CR191
  doi: 10.1109/ICASSP.2017.7952519
– ident: 3868_CR200
  doi: 10.1145/3219819.3219912
– ident: 3868_CR64
  doi: 10.1109/CEEICT.2018.8628044
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 3868_CR246
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2018.2840738
– volume: 7
  start-page: 92871
  year: 2019
  ident: 3868_CR107
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928017
– ident: 3868_CR120
  doi: 10.1109/ICMLA.2016.0154
– ident: 3868_CR17
  doi: 10.1109/CAIS.2018.8441942
– volume: 132
  start-page: 1290
  year: 2018
  ident: 3868_CR207
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.045
– ident: 3868_CR47
  doi: 10.1016/j.cjca.2020.02.096
– ident: 3868_CR113
– ident: 3868_CR245
– volume: 13
  start-page: 26
  year: 2018
  ident: 3868_CR151
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2018.08.002
– volume: 93
  start-page: 84
  year: 2018
  ident: 3868_CR233
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.12.007
– volume: 18
  start-page: 570
  issue: 4
  year: 2017
  ident: 3868_CR138
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2017.18.4.570
– volume: 7
  start-page: 53040
  year: 2019
  ident: 3868_CR205
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– ident: 3868_CR123
  doi: 10.1063/1.5138541
– volume: 20
  start-page: 2136
  issue: 7
  year: 2020
  ident: 3868_CR105
  publication-title: Sensors
  doi: 10.3390/s20072136
– ident: 3868_CR145
  doi: 10.1145/3290818.3290819
– ident: 3868_CR255
  doi: 10.1109/SNSP.2018.00037
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 3868_CR171
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 3868_CR99
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– ident: 3868_CR27
  doi: 10.23919/EUSIPCO.2019.8902936
– volume: 2
  start-page: 230
  issue: 4
  year: 2017
  ident: 3868_CR119
  publication-title: Stroke and vascular neurology
  doi: 10.1136/svn-2017-000101
– volume: 19
  start-page: 1950004
  issue: 03
  year: 2019
  ident: 3868_CR56
  publication-title: J Mech Med Biology
  doi: 10.1142/S0219519419500040
– ident: 3868_CR141
  doi: 10.1109/HealthCom.2017.8210784
– ident: 3868_CR75
– volume: 81
  start-page: 107
  year: 2019
  ident: 3868_CR93
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.11.003
– volume: 132
  start-page: 1192
  year: 2018
  ident: 3868_CR212
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.034
– volume: 20
  start-page: 969
  issue: 4
  year: 2020
  ident: 3868_CR188
  publication-title: Sensors
  doi: 10.3390/s20040969
– volume: 8
  start-page: 74
  issue: 5
  year: 2011
  ident: 3868_CR29
  publication-title: IJCSI Int J Comput Sci
– ident: 3868_CR51
  doi: 10.1109/EMBC.2018.8512263
– ident: 3868_CR72
  doi: 10.3346/jkms.2019.34.e64
– volume: 27
  start-page: 098
  issue: 01
  year: 2018
  ident: 3868_CR83
  publication-title: Yearb Med Inform
  doi: 10.1055/s-0038-1667083
– volume: 130
  start-page: 400
  year: 2018
  ident: 3868_CR117
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.04.060
– ident: 3868_CR71
  doi: 10.3389/frai.2020.00004
– volume: 187
  start-page: 105219
  year: 2020
  ident: 3868_CR204
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105219
– volume: 9
  start-page: 988
  issue: 3
  year: 2020
  ident: 3868_CR10
  publication-title: Bull Electr Eng Inf
  doi: 10.11591/eei.v9i3.2172
– ident: 3868_CR57
  doi: 10.22489/CinC.2017.065-469
– ident: 3868_CR80
– volume: 39
  start-page: 93
  issue: 1
  year: 2019
  ident: 3868_CR234
  publication-title: J Plann Educ Res
  doi: 10.1177/0739456X17723971
– volume: 42
  start-page: 1129
  issue: 4
  year: 2019
  ident: 3868_CR172
  publication-title: Australasian Phys Eng Sci Med
  doi: 10.1007/s13246-019-00815-9
– ident: 3868_CR98
  doi: 10.1109/CVPR.2016.90
– ident: 3868_CR124
– ident: 3868_CR143
  doi: 10.1016/j.neucom.2020.01.019
– volume: 161
  start-page: 1
  year: 2018
  ident: 3868_CR76
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 63
  start-page: 664
  issue: 3
  year: 2015
  ident: 3868_CR129
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2468589
– ident: 3868_CR219
  doi: 10.1007/s41745-019-0102-z
– volume: 89
  start-page: 389
  year: 2017
  ident: 3868_CR8
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 7
  start-page: 145395
  year: 2019
  ident: 3868_CR153
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939947
– ident: 3868_CR198
  doi: 10.35940/ijitee.C8728.019320
– volume: 415
  start-page: 190
  year: 2017
  ident: 3868_CR5
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.027
– volume: 180
  start-page: 105001
  year: 2019
  ident: 3868_CR73
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105001
– ident: 3868_CR214
  doi: 10.1109/CVPR.2015.7298594
– ident: 3868_CR162
  doi: 10.1109/INES.2017.8118534
– ident: 3868_CR65
  doi: 10.1109/ICCUBEA.2018.8697579
– ident: 3868_CR24
  doi: 10.1109/MySec.2014.6985987
– ident: 3868_CR82
  doi: 10.1016/0925-2312(94)00061-V
– volume: 138
  start-page: 112793
  year: 2019
  ident: 3868_CR185
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.07.010
– volume: 99
  start-page: 53
  year: 2018
  ident: 3868_CR155
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.013
– ident: 3868_CR41
  doi: 10.1109/KI48306.2020.9039871
– ident: 3868_CR121
  doi: 10.1109/ICHI.2018.00092
– volume: 5
  start-page: 035015
  issue: 3
  year: 2019
  ident: 3868_CR84
  publication-title: Biomedical Phys Eng Express
  doi: 10.1088/2057-1976/ab1104
– ident: 3868_CR206
– ident: 3868_CR159
  doi: 10.1201/9781315371658
– volume: 61
  start-page: 85
  year: 2015
  ident: 3868_CR194
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 39
  start-page: 035006
  issue: 3
  year: 2018
  ident: 3868_CR122
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aaaa9d
– ident: 3868_CR68
  doi: 10.1007/978-3-030-33327-0_13
– ident: 3868_CR152
  doi: 10.1155/2017/4108720
– volume: 19
  start-page: 1236
  issue: 6
  year: 2018
  ident: 3868_CR158
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx044
– volume: 50
  start-page: 808
  issue: 3
  year: 2001
  ident: 3868_CR33
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/19.930458
– volume: 19
  start-page: 935
  issue: 4
  year: 2019
  ident: 3868_CR42
  publication-title: Sensors
  doi: 10.3390/s19040935
– volume: 96
  start-page: 189
  year: 2018
  ident: 3868_CR242
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 20
  start-page: 70
  issue: 3
  year: 2001
  ident: 3868_CR161
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/51.932728
– volume: 8
  start-page: 35592
  year: 2020
  ident: 3868_CR197
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974712
– ident: 3868_CR250
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 3868_CR125
  publication-title: Synthesis Lectures on Computer Vision
  doi: 10.1007/978-3-031-01821-3
– volume: 47
  start-page: 25
  issue: 1
  year: 2014
  ident: 3868_CR79
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.05.025
– volume: 161
  start-page: 1
  year: 2018
  ident: 3868_CR239
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.05.014
– volume: 25
  start-page: 1472
  issue: 11
  year: 2018
  ident: 3868_CR156
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.02.018
– volume: 15
  start-page: 1650021
  issue: 04
  year: 2016
  ident: 3868_CR231
  publication-title: Int J Comput Intell Appl
  doi: 10.1142/S1469026816500218
– volume: 9
  start-page: 50
  year: 2018
  ident: 3868_CR215
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2018.07.022
– volume: 8
  start-page: 8614
  year: 2020
  ident: 3868_CR237
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964749
– ident: 3868_CR67
  doi: 10.1109/ISDFS.2019.8757522
– volume: 39
  start-page: 065003
  issue: 6
  year: 2018
  ident: 3868_CR221
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aac7b7
– volume: 29
  start-page: 207
  issue: 4
  year: 2019
  ident: 3868_CR16
  publication-title: Neural Netw World
  doi: 10.14311/NNW.2019.29.014
– volume: 22
  start-page: 351
  issue: 4
  year: 2016
  ident: 3868_CR127
  publication-title: Healthc Inf Res
  doi: 10.4258/hir.2016.22.4.351
– ident: 3868_CR209
– ident: 3868_CR102
  doi: 10.1109/EMBC.2019.8856916
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 3868_CR39
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3241737
– ident: 3868_CR501
  doi: 10.1155/2019/1306039
– ident: 3868_CR218
  doi: 10.2196/11966
– ident: 3868_CR154
  doi: 10.1109/CISP-BMEI.2018.8633273
– ident: 3868_CR70
  doi: 10.5220/0006195404630470
– ident: 3868_CR30
  doi: 10.1155/2015/370194
– volume: 16
  start-page: 351
  issue: 4
  year: 2000
  ident: 3868_CR160
  publication-title: Future Generation Computer Systems
  doi: 10.1016/S0167-739X(99)00059-X
– volume: 11
  start-page: 1923
  issue: 5
  year: 2020
  ident: 3868_CR126
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-019-01401-3
– ident: 3868_CR178
  doi: 10.3233/XST-200757
– ident: 3868_CR235
  doi: 10.22489/CinC.2017.066-138
– ident: 3868_CR49
  doi: 10.1109/BHI.2019.8834468
– volume: 8
  start-page: 217
  issue: 4
  year: 2016
  ident: 3868_CR227
  publication-title: Found Trends Signal Process
  doi: 10.1561/2000000071
– ident: 3868_CR50
  doi: 10.1109/SmartWorld.2018.00119
– ident: 3868_CR150
– ident: 3868_CR184
  doi: 10.1109/ICB45273.2019.8987383
– ident: 3868_CR69
  doi: 10.1007/s00521-020-04709-w
– ident: 3868_CR78
  doi: 10.1007/978-3-642-33275-3_2
– volume: 116
  start-page: 103378
  year: 2020
  ident: 3868_CR44
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103378
– ident: 3868_CR14
  doi: 10.1007/s11042-020-08769-x
– ident: 3868_CR199
  doi: 10.1016/j.compbiomed.2020.103753
– ident: 3868_CR210
  doi: 10.1007/978-3-319-68385-0_18
– volume: 115
  start-page: 465
  year: 2019
  ident: 3868_CR19
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.011
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: 3868_CR229
  publication-title: J Big data
  doi: 10.1186/s40537-016-0043-6
– ident: 3868_CR170
  doi: 10.1109/CAIPT.2017.8320684
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 3868_CR101
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 102
  start-page: 327
  year: 2018
  ident: 3868_CR77
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.07.001
– volume: 79
  start-page: 952
  year: 2018
  ident: 3868_CR7
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.08.039
– volume: 132
  start-page: 1253
  year: 2018
  ident: 3868_CR211
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.041
– volume: 7
  start-page: 75577
  year: 2019
  ident: 3868_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918792
– ident: 3868_CR230
  doi: 10.1109/IDAACS.2017.8095063
– ident: 3868_CR223
  doi: 10.1109/ICACCI.2018.8554541
– volume: 46
  start-page: 122
  issue: 1
  year: 2018
  ident: 3868_CR252
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-017-1944-z
– ident: 3868_CR164
  doi: 10.1109/MeMeA.2018.8438739
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 3868_CR238
  publication-title: Insights into imaging
  doi: 10.1007/s13244-018-0639-9
– ident: 3868_CR9
  doi: 10.1145/3348445.3348459
– ident: 3868_CR111
– volume: 102
  start-page: 278
  year: 2018
  ident: 3868_CR167
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.002
– ident: 3868_CR181
  doi: 10.1109/IECBES.2018.8626624
– ident: 3868_CR20
– ident: #cr-split#-3868_CR112.2
– volume: 86
  start-page: 105778
  year: 2020
  ident: 3868_CR256
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105778
– volume: 15
  start-page: 643
  issue: 6
  year: 2018
  ident: 3868_CR240
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-018-1136-9
– ident: 3868_CR142
  doi: 10.1155/2018/7354081
– ident: 3868_CR85
  doi: 10.1109/ACIIW.2019.8925020
– ident: 3868_CR201
  doi: 10.1109/ICMEW.2017.8026250
– volume: 188
  start-page: 105036
  year: 2020
  ident: 3868_CR203
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105036
– volume: 30
  start-page: 2047
  issue: 7
  year: 2018
  ident: 3868_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3616-9
– volume: 12
  start-page: 118
  issue: 6
  year: 2019
  ident: 3868_CR63
  publication-title: Algorithms
  doi: 10.3390/a12060118
– volume: 49
  start-page: 3383
  issue: 9
  year: 2019
  ident: 3868_CR81
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01461-0
SSID ssj0000393111
Score 2.4371634
Snippet The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9677
SubjectTerms Algorithms
Artificial Intelligence
Big Data
Biometrics
Computational Intelligence
Computer vision
Data analysis
Deep learning
Electrocardiography
Engineering
Health care
Heart
Image processing
Literature reviews
Machine learning
Medical imaging
Neural networks
Object recognition
Original Research
Popularity
Robotics and Automation
Signal processing
Speech recognition
Systematic review
Systems analysis
Taxonomy
Trends
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RhUN74E0bCshI3MBS4pDYPq4oiAsItVBxixzbCyuhLGKXHvbXM-M8li20UnuMPHnYnrE_Z2a-AThw0uFMlwNU3tjzY2vQpKTNuCd8jnDBl64MxSbk5aW6vdVXTVLYuI12b12SYaWeJbuJPBOcos_jVOWKTz_AIm53iszx-4-f3Z8VyjZNQuFdooLnWZLKJlvm_cfM70hvYObbaMnfXKZhJzpb-b8-rMJygzxZv1aVNVjw1Tp8esVHuAGuz2bMzqzOamGmcuzCTwynYFK8qklM2KhiiB3Zawc4Gw3YN-8fWUPaeseGFTut6-zYEPdKoWCbcHN2en1yzpsyDNwimply5cSxQqAoqCD1wJc6zr1HIJY7LZzUJR6CjM5SrwYOsabXsSoNOUeT1EirnU23oFeNKv8FmM0o8TYvnaRy9To2pRfOOVwzYqmNkxEk7VQUtuEop1IZD8WMXZlGsMARLMIIFtMIDrt7HmuGjr9K77QzXDTWOi6oYlci00TEEex3zWhn5DwxlR89o0yO35sTd04En2uF6F4Xso2V1BHIOVXpBIjDe76lGt4HLm9NJ9hYRHDUKszss_7ci-1_E_8KHwViszrKeAd6k6dnvwtL9tdkOH7aC9bzAhg0FRk
  priority: 102
  providerName: Springer Nature
Title A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram
URI https://link.springer.com/article/10.1007/s12652-022-03868-z
https://www.ncbi.nlm.nih.gov/pubmed/35821879
https://www.proquest.com/docview/2920173120
https://www.proquest.com/docview/2689060388
https://pubmed.ncbi.nlm.nih.gov/PMC9261902
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4asMMusGk_CLDKk3Zj1hKHxPEJsa1o0rSqAjZVu0SO7W6VUFJo4dC_nvccN6VD47JLpMiOEus921_83vs-gPdWWrR0NUbnjR0_MhqnlDQZd4TPES64ylZebEIOBsVopIbhwG0W0iqXa6JfqG1j6Iz8I6kqJTJNRHw8veKkGkXR1SChsQFbiRAJ-fk3ybszFqo7TbwEL5HC8yxJZaibaavnRJ4JTunscUrti_W96QHgfJg3-Vfw1O9Jpzv_O5rnsB3QKDtp3ecFPHH1S7AnbMXvzNraFqZry767ueaUUop3LZUJa2qGCJLdD4OzZsy-ODdlgbr1N5vUrN-q7Rif_UoJYa_gx2n_4vNXHsQYuEFMs-CFFUcFwkVBstRjV6k4dw7hWG6VsFJV-CukVZa6YmwRcToVF5WmEGmSammUNelr2Kyb2u0CMxmV3-aVlSRar2JdOWGtxZUjlkpbGUGyNENpAlM5CWZcliuOZTJdiaYrvenKRQSH3TPTlqfj0d4HS7OUYc7OypVNInjXNeNsoxCKrl1zg31y_N6cGHQieNM6Q_c6X3NcSBWBXHOTrgMxea-31JM_ntFb0X9sLCL4sHSo1Wf9exR7j49iH54JRGRtbvEBbM6vb9xbeGpu55PZdQ825Kjowdan_mB41vPzBq_D7Bdez85_3gEbDR3Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXPsRXoICR4AQWibOJ4wNCFW3Vqu2qhyJVXIJje9uVULJ0tyD2R_U3dsZOsiwVvfXAMbJ3E8fP4-fMzBuAN1ZanOlqhOCNHR8YjUtKmow74udIF1xlK19sQg6HxdGROliB8y4XhsIqO5voDbVtDH0j_0BVlRKZJiL-NPnBqWoUeVe7EhoBFrvu9y88sk0_7mzg_L4VYmvz8PM2b6sKcIOb85wXVgwK5D2C6iuPXKXi3DnkFblVwkpVIafXKktdMbJInZyKi0qTry9JtTTKmhT_9wbcHAzwsITr5yD72n_ToTzXxJf8JRF6niWpbPN0QraeyDPBKXw-Tql9vrwXXiK4l-M0_3LW-j1w697_9vbuw92WbbP1sDwewIqrH4JdZwv9ahZyd5iuLdt3M80pZBavglQLa2qGDJn96eZnzYhtODdhrTTtMRvXbDNUEzI-upcC3h7Bl2sZ2GNYrZvaPQVmMkovzisrczwPqlhXTlhr0TLGUmkrI0i6aS9Nq8ROBUG-lwsNaYJKiVApPVTKeQTv-t9Mgg7Jlb3XOhiUrU2algsMRPC6b0ZrQi4iXbvmDPvk-Lw5KQRF8CSAr7-dz6kupIpALsGy70BK5cst9fjEK5YrOqfHIoL3HYAXj_XvUTy7ehSv4Pb24f5eubcz3H0OdwSyzxBHvQars9Mz9wJumZ-z8fT0pV-lDL5dN7AvAOn_dFI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQYgeKJQCoS0YiVtrNXE2cXys2q6ogFWlFtRb5NgOrIS8q3bLYX99Z5xsdrdfEuIY2Un8MY6fMzPvAXy20uJMVzUab-x4z2hcUtJk3BE-R7jgKlsFsQk5GBTn5-pkIYs_RLvPXJJNTgOxNPnJ3tjWe_PEN5FnglMkepwWecGnj-FJj0SD6Lx--rP7y0KZp0kQ4SVaeJ4lqWwzZ-5-zPLudAty3o6cvOE-DbtSf-3_-_MSXrSIlO03JvQKHjm_DqsLPIWvwe6zOeMza7JdmPaWfXcTzSnIFK8achM28gwxJVt0jLNRzQ6dG7OWzPUXG3p21OjvmBAPSyFiG_Cjf3R28IW38gzcIMqZ8sKKXoEAUpBQde0qFefOIUDLrRJWqgoPR1plqStqixjUqbioNDlNk1RLo6xJ38CKH3n3DpjJKCE3r6wkGXsV68oJay1-S2KptJURJLNpKU3LXU4SGn_KOesyjWCJI1iGESynEex094wb5o4Ha2_NZrtsV_FlSUpeiUwTEUfwqSvG9UdOFe3d6Arr5NjenDh1InjbGEf3upCFXEgVgVwym64CcXsvl_jh78DxrehkG4sIdmfGM2_W_b14_2_VP8Kzk8N--e148HUTnguEb00g8hasTC6u3DY8NX8nw8uLD2FRXQMh0iDh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+and+Meta-data+analysis+on+the+applications+of+Deep+Learning+in+Electrocardiogram&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Musa%2C+Nehemiah&rft.au=Gital%2C+Abdulsalam+Ya%E2%80%99u&rft.au=Aljojo%2C+Nahla&rft.au=Chiroma%2C+Haruna&rft.date=2023-07-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=14&rft.issue=7&rft.spage=9677&rft.epage=9750&rft_id=info:doi/10.1007%2Fs12652-022-03868-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_022_03868_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon