A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram
The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artifici...
Saved in:
| Published in: | Journal of ambient intelligence and humanized computing Vol. 14; no. 7; pp. 9677 - 9750 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1868-5137, 1868-5145 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm. |
|---|---|
| AbstractList | The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm. The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm. The online version contains supplementary material available at 10.1007/s12652-022-03868-z. The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm.The online version contains supplementary material available at 10.1007/s12652-022-03868-z.Supplementary informationThe online version contains supplementary material available at 10.1007/s12652-022-03868-z. |
| Author | Abdulkarim, Abubakar Emmanuel, Ifada Gital, Abdulsalam Ya’u Katb, Ibrahim Musa, Nehemiah Oloyede, Abdukareem A. Ogunmodede, James A. Olawoyin, Lukman A. Faruk, Nasir Sikiru, Ismaeel A. Chiroma, Haruna Adewole, Kayode S. Folawiyo, Yusuf Y. Aljojo, Nahla Mojeed, Hammed A. |
| Author_xml | – sequence: 1 givenname: Nehemiah surname: Musa fullname: Musa, Nehemiah organization: Department of Mathematical Sciences, Abubakar Tafawa Balewa University – sequence: 2 givenname: Abdulsalam Ya’u surname: Gital fullname: Gital, Abdulsalam Ya’u organization: Department of Mathematical Sciences, Abubakar Tafawa Balewa University – sequence: 3 givenname: Nahla surname: Aljojo fullname: Aljojo, Nahla organization: University of Jeddah – sequence: 4 givenname: Haruna orcidid: 0000-0003-3446-4316 surname: Chiroma fullname: Chiroma, Haruna email: chiromaharun@fcetgombe.edu.ng organization: Computer Science and Engineering, University of Hafr Al-Batin, Computer Science and Engineering , University of Hafr Al-Batin – sequence: 5 givenname: Kayode S. surname: Adewole fullname: Adewole, Kayode S. organization: Department of Computer Science, University of Ilorin – sequence: 6 givenname: Hammed A. surname: Mojeed fullname: Mojeed, Hammed A. organization: Department of Computer Science, University of Ilorin – sequence: 7 givenname: Nasir surname: Faruk fullname: Faruk, Nasir organization: Department of Physics, Sule Lamido University – sequence: 8 givenname: Abubakar surname: Abdulkarim fullname: Abdulkarim, Abubakar organization: Department of Electrical Engineering, Ahmadu Bello University Zaria – sequence: 9 givenname: Ifada surname: Emmanuel fullname: Emmanuel, Ifada organization: Department of Physics, Sule Lamido University – sequence: 10 givenname: Yusuf Y. surname: Folawiyo fullname: Folawiyo, Yusuf Y. organization: Department of Physics, Sule Lamido University – sequence: 11 givenname: James A. surname: Ogunmodede fullname: Ogunmodede, James A. organization: Department of Medicine, University of Ilorin – sequence: 12 givenname: Abdukareem A. surname: Oloyede fullname: Oloyede, Abdukareem A. organization: Department of Physics, Sule Lamido University – sequence: 13 givenname: Lukman A. surname: Olawoyin fullname: Olawoyin, Lukman A. organization: Department of Physics, Sule Lamido University – sequence: 14 givenname: Ismaeel A. surname: Sikiru fullname: Sikiru, Ismaeel A. organization: Department of Physics, Sule Lamido University – sequence: 15 givenname: Ibrahim surname: Katb fullname: Katb, Ibrahim organization: Computer Science and Engineering, University of Hafr Al-Batin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35821879$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9vFCEUx4mpsbX2H_BgSLx4GeVHZwYuJk2trckaL3omb-HNlmYGRmBrdv96abeu2kNJCA_4fN978H1JDkIMSMhrzt5zxvoPmYuuFQ0TdUrVqWb7jBzxu6Dlp-3BPpb9ITnJ-YbVIbXknL8gh7JVgqteHxF3RvMmF5ygeEsT3nr8RSE4-hULNA4K1B2Mm-wzjYGWa6Qwz6O3lY-hng30E-JMFwgp-LCiPtCLEW1J0UJyPq4STK_I8wHGjCcP6zH58fni-_lVs_h2-eX8bNFYqfS2UU6cKi616JjkAy416xCFFJ3TwvV6yXQHupWoBqd5h5qpJbRMSi6ht9pZeUw-7vLO6-WEzmIoCUYzJz9B2pgI3vx_E_y1WcVbU0tyzURN8O4hQYo_15iLmXy2OI4QMK6zEZ2qTdX_VhV9-wi9ietUv6pSWjDeSy5Ypd7829G-lT8GVEDsAJtizgmHPcKZuTPa7Iw21Whzb7TZVpF6JLK-3BtSX-XHp6VyJ821Tlhh-tv2E6rfz_69cg |
| CitedBy_id | crossref_primary_10_1002_acs_3926 crossref_primary_10_1007_s00521_023_09267_5 crossref_primary_10_3389_fcvm_2024_1473482 crossref_primary_10_1016_j_compbiomed_2023_107628 crossref_primary_10_3390_app14209457 crossref_primary_10_1007_s11517_024_03273_y crossref_primary_10_1007_s42835_023_01747_x crossref_primary_10_15622_ia_24_4_6 crossref_primary_10_1109_TIE_2024_3404152 crossref_primary_10_1007_s13198_024_02619_x crossref_primary_10_1109_ACCESS_2023_3338191 crossref_primary_10_1007_s10462_024_10777_4 crossref_primary_10_1088_2057_1976_acbd53 crossref_primary_10_1109_JIOT_2024_3350022 crossref_primary_10_1016_j_bspc_2024_106262 crossref_primary_10_1016_j_eswa_2024_124775 crossref_primary_10_1007_s00399_024_00997_0 crossref_primary_10_1016_j_compbiomed_2024_108235 crossref_primary_10_1016_j_compbiomed_2024_109126 crossref_primary_10_1109_ACCESS_2024_3447096 crossref_primary_10_3390_molecules29194626 crossref_primary_10_3390_electronics14153149 crossref_primary_10_1007_s12193_024_00433_0 crossref_primary_10_3390_diagnostics14232712 crossref_primary_10_1051_shsconf_202418901008 crossref_primary_10_3390_diagnostics14020139 crossref_primary_10_1111_eci_70002 |
| Cites_doi | 10.1113/jphysiol.1962.sp006837 10.1016/j.bspc.2019.03.009 10.1145/3312614.3312644 10.1016/j.chaos.2020.110245 10.1109/ACCESS.2018.2849870 10.1109/TIPTEKNO.2019.8895011 10.1016/j.jelectrocard.2018.08.008 10.1109/CSE.2014.36 10.1093/europace/euz324 10.1109/EMBC.2019.8857554 10.1109/ACCESS.2019.2920900 10.1016/j.jelectrocard.2019.09.008 10.1109/ACCESS.2020.2975258 10.1109/ICA.2019.8916683 10.1088/1742-6596/913/1/012004 10.1109/JBHI.2018.2871510 10.1109/ICASSDA.2018.8477620 10.1109/IPTA.2017.8310112 10.1109/DSD.2018.00077 10.1109/SMC.2018.00080 10.1007/s13534-020-00146-9 10.1109/ICAMechS.2019.8861645 10.1016/j.jss.2006.07.009 10.1016/j.future.2017.09.020 10.1016/j.ins.2016.01.082 10.1038/s41467-019-13993-7 10.1109/CCST.2017.8167816 10.1007/s10462-018-09679-z 10.1016/j.procs.2017.11.238 10.1109/MeMeA.2019.8802158 10.1371/journal.pone.0216756 10.1109/ICUFN.2019.8805913 10.1109/EMBC.2019.8856806 10.1166/jmihi.2018.2442 10.1109/ICCCNT45670.2019.8944895 10.1016/j.compbiomed.2018.09.009 10.1080/01691864.2017.1365009 10.1007/s12553-015-0098-y 10.1155/2018/7068349 10.1109/ICIINFS.2018.8721391 10.1016/j.bbe.2019.12.002 10.1016/j.procs.2020.02.129 10.1109/5.726791 10.1016/j.jelectrocard.2019.11.046 10.1111/exsy.12547 10.1016/j.patrec.2018.03.028 10.22489/CinC.2019.072 10.1109/ICInfA.2016.7831994 10.3390/s20061796 10.1016/j.patrec.2019.02.016 10.1016/j.jelectrocard.2019.08.008 10.1007/978-3-319-26453-0_7 10.1109/AICAS.2019.8771558 10.1126/science.1127647 10.1109/WiSPNET45539.2019.9032813 10.1109/RBME.2018.2885714 10.1007/s10489-018-1179-1 10.1016/j.future.2018.03.057 10.3390/app9224810 10.1109/72.279181 10.1016/j.bspc.2018.05.013 10.1109/ISCC47284.2019.8969657 10.1016/j.cviu.2007.08.005 10.1109/EIT.2018.8500197 10.1016/j.bbe.2019.06.001 10.1007/978-981-10-5122-7_138 10.1016/j.cmpb.2019.05.004 10.1007/s10916-018-0963-0 10.1016/j.bspc.2019.101819 10.1109/CSE-EUC.2017.220 10.1007/s11760-020-01666-8 10.3390/electronics8030292 10.1109/UEMCON.2017.8249111 10.1145/3278576.3278597 10.1016/j.future.2019.06.008 10.1001/jamacardio.2020.1017 10.1109/ACCESS.2018.2886573 10.1109/JBHI.2019.2911367 10.3390/en11082163 10.1007/s40846-018-0389-7 10.1109/CVPR.2017.243 10.1109/CVPR.2017.195 10.1016/j.compbiomed.2017.12.023 10.1016/j.eswa.2021.114809 10.1016/j.artmed.2019.101789 10.3390/app9112331 10.1109/BioCAS.2015.7348372 10.3390/s19204408 10.1016/j.knosys.2020.105596 10.1007/s13534-017-0055-y 10.1109/ICDSP.2016.7868505 10.1007/978-3-319-10590-1_53 10.1016/j.icte.2018.10.005 10.1016/j.compbiomed.2020.103801 10.1016/j.ins.2017.04.012 10.1109/BIOCAS.2019.8918723 10.1109/ICACCS.2019.8728362 10.1109/KI48306.2020.9039871 10.3934/mbe.2019124 10.1109/ACCESS.2019.2896880 10.1016/j.knosys.2017.06.003 10.1109/TSMC.2017.2705582 10.1109/TENCON.2018.8650429 10.1109/KCIC.2017.8228452 10.1109/ICASSP.2017.7952519 10.1145/3219819.3219912 10.1109/CEEICT.2018.8628044 10.1109/MCI.2018.2840738 10.1109/ACCESS.2019.2928017 10.1109/ICMLA.2016.0154 10.1109/CAIS.2018.8441942 10.1016/j.procs.2018.05.045 10.1016/j.cjca.2020.02.096 10.1016/j.imu.2018.08.002 10.1016/j.compbiomed.2017.12.007 10.3348/kjr.2017.18.4.570 10.1109/ACCESS.2019.2912200 10.1063/1.5138541 10.3390/s20072136 10.1145/3290818.3290819 10.1109/SNSP.2018.00037 10.1109/TKDE.2009.191 10.1162/neco.2006.18.7.1527 10.23919/EUSIPCO.2019.8902936 10.1136/svn-2017-000101 10.1142/S0219519419500040 10.1109/HealthCom.2017.8210784 10.1016/j.cose.2018.11.003 10.1016/j.procs.2018.05.034 10.3390/s20040969 10.1109/EMBC.2018.8512263 10.3346/jkms.2019.34.e64 10.1055/s-0038-1667083 10.1016/j.procs.2018.04.060 10.3389/frai.2020.00004 10.1016/j.cmpb.2019.105219 10.11591/eei.v9i3.2172 10.22489/CinC.2017.065-469 10.1177/0739456X17723971 10.1007/s13246-019-00815-9 10.1109/CVPR.2016.90 10.1016/j.neucom.2020.01.019 10.1016/j.cmpb.2018.04.005 10.1109/TBME.2015.2468589 10.1007/s41745-019-0102-z 10.1016/j.compbiomed.2017.08.022 10.1109/ACCESS.2019.2939947 10.35940/ijitee.C8728.019320 10.1016/j.ins.2017.06.027 10.1016/j.cmpb.2019.105001 10.1109/CVPR.2015.7298594 10.1109/INES.2017.8118534 10.1109/ICCUBEA.2018.8697579 10.1109/MySec.2014.6985987 10.1016/0925-2312(94)00061-V 10.1016/j.eswa.2019.07.010 10.1016/j.compbiomed.2018.05.013 10.1109/ICHI.2018.00092 10.1088/2057-1976/ab1104 10.1201/9781315371658 10.1016/j.neunet.2014.09.003 10.1088/1361-6579/aaaa9d 10.1007/978-3-030-33327-0_13 10.1155/2017/4108720 10.1093/bib/bbx044 10.1109/19.930458 10.3390/s19040935 10.1016/j.compbiomed.2018.03.016 10.1109/51.932728 10.1109/ACCESS.2020.2974712 10.1007/978-3-031-01821-3 10.1016/j.patcog.2013.05.025 10.1016/j.cmpb.2018.05.014 10.1016/j.acra.2018.02.018 10.1142/S1469026816500218 10.1016/j.smhl.2018.07.022 10.1109/ACCESS.2020.2964749 10.1109/ISDFS.2019.8757522 10.1088/1361-6579/aac7b7 10.14311/NNW.2019.29.014 10.4258/hir.2016.22.4.351 10.1109/EMBC.2019.8856916 10.1145/3241737 10.1155/2019/1306039 10.2196/11966 10.1109/CISP-BMEI.2018.8633273 10.5220/0006195404630470 10.1155/2015/370194 10.1016/S0167-739X(99)00059-X 10.1007/s12652-019-01401-3 10.3233/XST-200757 10.22489/CinC.2017.066-138 10.1109/BHI.2019.8834468 10.1561/2000000071 10.1109/SmartWorld.2018.00119 10.1109/ICB45273.2019.8987383 10.1007/s00521-020-04709-w 10.1007/978-3-642-33275-3_2 10.1016/j.compbiomed.2019.103378 10.1007/s11042-020-08769-x 10.1016/j.compbiomed.2020.103753 10.1007/978-3-319-68385-0_18 10.1016/j.eswa.2018.08.011 10.1186/s40537-016-0043-6 10.1109/CAIPT.2017.8320684 10.1162/neco.1997.9.8.1735 10.1016/j.compbiomed.2018.07.001 10.1016/j.future.2017.08.039 10.1016/j.procs.2018.05.041 10.1109/ACCESS.2019.2918792 10.1109/IDAACS.2017.8095063 10.1109/ICACCI.2018.8554541 10.1007/s10439-017-1944-z 10.1109/MeMeA.2018.8438739 10.1007/s13244-018-0639-9 10.1145/3348445.3348459 10.1016/j.compbiomed.2018.06.002 10.1109/IECBES.2018.8626624 10.1016/j.asoc.2019.105778 10.1007/s11633-018-1136-9 10.1155/2018/7354081 10.1109/ACIIW.2019.8925020 10.1109/ICMEW.2017.8026250 10.1016/j.knosys.2019.105036 10.1007/s00521-018-3616-9 10.3390/a12060118 10.1007/s10489-019-01461-0 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Copyright Springer Nature B.V. Jul 2023 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. – notice: Copyright Springer Nature B.V. Jul 2023 |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.1007/s12652-022-03868-z |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: ProQuest advanced technologies & aerospace journals url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-5145 |
| EndPage | 9750 |
| ExternalDocumentID | PMC9261902 35821879 10_1007_s12652_022_03868_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Tertiary Education Trust Fund grantid: TETfund/DR&D/CE/NRF/CC/09/Vol 1, 2019 funderid: http://dx.doi.org/10.13039/501100008895 – fundername: ; grantid: TETfund/DR&D/CE/NRF/CC/09/Vol 1, 2019 |
| GroupedDBID | 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS ATHPR AUKKA AXYYD AYFIA AYJHY BENPR BGLVJ BGNMA BSONS CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PHGZM PHGZT PQGLB PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX AFFHD CITATION NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c389z-8d24813926031feb906ee2326d92d79b096a953e8fd916e908ba503313a7c9dc3 |
| IEDL.DBID | K7- |
| ISSN | 1868-5137 |
| IngestDate | Tue Nov 04 01:54:42 EST 2025 Fri Sep 05 06:58:26 EDT 2025 Wed Nov 05 02:12:27 EST 2025 Thu Apr 03 07:07:59 EDT 2025 Sat Nov 29 08:03:00 EST 2025 Tue Nov 18 22:41:11 EST 2025 Mon Jul 21 06:08:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Deep learning Driving Biometric Electrocardiogram System Electrocardiogram Machine learning |
| Language | English |
| License | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389z-8d24813926031feb906ee2326d92d79b096a953e8fd916e908ba503313a7c9dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3446-4316 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9261902 |
| PMID | 35821879 |
| PQID | 2920173120 |
| PQPubID | 2043913 |
| PageCount | 74 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9261902 proquest_miscellaneous_2689060388 proquest_journals_2920173120 pubmed_primary_35821879 crossref_primary_10_1007_s12652_022_03868_z crossref_citationtrail_10_1007_s12652_022_03868_z springer_journals_10_1007_s12652_022_03868_z |
| PublicationCentury | 2000 |
| PublicationDate | 20230700 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Journal of ambient intelligence and humanized computing |
| PublicationTitleAbbrev | J Ambient Intell Human Comput |
| PublicationTitleAlternate | J Ambient Intell Humaniz Comput |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | X Xu (3868_CR237) 2020; 8 3868_CR154 F Liu (3868_CR148) 2018; 8 3868_CR159 3868_CR150 3868_CR152 3868_CR27 3868_CR28 3868_CR25 S-Y Han (3868_CR95) 2020; 40 3868_CR23 3868_CR24 3868_CR21 3868_CR22 3868_CR20 B Pourbabaee (3868_CR179) 2018; 48 3868_CR142 3868_CR143 MM Al Rahhal (3868_CR12) 2018; 38 3868_CR145 H Shi (3868_CR204) 2020; 187 GE Hinton (3868_CR100) 2006; 313 S Singh (3868_CR207) 2018; 132 G Swapna (3868_CR212) 2018; 132 Ö Yildirim (3868_CR242) 2018; 96 3868_CR141 D Li (3868_CR140) 2019; 52 3868_CR38 T Guo (3868_CR89) 2020; 5 3868_CR32 3868_CR30 M Amrani (3868_CR18) 2018; 30 A Fischer (3868_CR79) 2014; 47 C-H Hsieh (3868_CR105) 2020; 20 3868_CR131 3868_CR132 3868_CR253 3868_CR255 R Miotto (3868_CR158) 2018; 19 3868_CR257 3868_CR137 UR Acharya (3868_CR8) 2017; 89 3868_CR250 P Bizopoulos (3868_CR34) 2018; 12 Ö Yıldırım (3868_CR244) 2018; 102 3868_CR139 P Brereton (3868_CR37) 2007; 80 HP da Silva (3868_CR59) 2015; 4 R Jabbar (3868_CR117) 2018; 130 3868_CR120 3868_CR241 3868_CR121 3868_CR123 3868_CR124 3868_CR245 3868_CR247 3868_CR248 SS Abdeldayem (3868_CR2) 2019; 2 H Fujita (3868_CR81) 2019; 49 3868_CR17 3868_CR14 A Mincholé (3868_CR157) 2019; 57 MZ Alom (3868_CR15) 2019; 8 UR Acharya (3868_CR7) 2018; 79 S Saadatnejad (3868_CR190) 2019; 24 3868_CR249 3868_CR11 HM Lynn (3868_CR153) 2019; 7 AB Nassif (3868_CR165) 2019; 7 MP McBee (3868_CR156) 2018; 25 MN Rastgoo (3868_CR185) 2019; 138 Z-J Yao (3868_CR240) 2018; 15 3868_CR198 3868_CR199 S Hochreiter (3868_CR101) 1997; 9 3868_CR191 3868_CR193 SL Oh (3868_CR167) 2018; 102 3868_CR195 3868_CR69 3868_CR67 3868_CR68 Y Wang (3868_CR228) 2018; 11 3868_CR65 3868_CR64 3868_CR61 3868_CR62 3868_CR80 R Bansal (3868_CR29) 2011; 8 3868_CR501 3868_CR180 3868_CR181 3868_CR182 3868_CR183 3868_CR184 J-G Lee (3868_CR138) 2017; 18 ALP Ribeiro (3868_CR187) 2019; 57 B Rim (3868_CR188) 2020; 20 3868_CR78 SK Pandey (3868_CR172) 2019; 42 G Swapna (3868_CR211) 2018; 132 3868_CR74 3868_CR75 3868_CR72 3868_CR70 JH Tan (3868_CR217) 2018; 94 3868_CR71 F Monrose (3868_CR160) 2000; 16 C Ouchicha (3868_CR168) 2020; 140 3868_CR178 SM Mathews (3868_CR155) 2018; 99 3868_CR170 3868_CR9 3868_CR173 MM Al Rahhal (3868_CR13) 2016; 345 D Dey (3868_CR66) 2018; 8 3868_CR174 3868_CR49 AH Ribeiro (3868_CR186) 2020; 11 3868_CR47 HW Lui (3868_CR151) 2018; 13 3868_CR45 W Liu (3868_CR149) 2018; 45 3868_CR46 3868_CR43 UR Acharya (3868_CR5) 2017; 415 3868_CR41 N Ganapathy (3868_CR83) 2018; 27 G Swapna (3868_CR213) 2018; 4 3868_CR164 KW Bowyer (3868_CR36) 2008; 110 3868_CR169 T Young (3868_CR246) 2018; 13 AM Shaker (3868_CR197) 2020; 8 3868_CR162 Y Xia (3868_CR233) 2018; 93 3868_CR163 UR Acharya (3868_CR6) 2019; 49 3868_CR58 3868_CR57 A Ghaffari (3868_CR84) 2019; 5 3868_CR54 S Kiranyaz (3868_CR129) 2015; 63 3868_CR55 S Zhou (3868_CR256) 2020; 86 3868_CR52 3868_CR50 H Alquran (3868_CR16) 2019; 29 3868_CR51 OS Lih (3868_CR147) 2020; 103 DH Hubel (3868_CR110) 1962; 160 J Chu (3868_CR56) 2019; 19 K Weiss (3868_CR229) 2016; 3 U Erdenebayar (3868_CR73) 2019; 180 G Nguyen (3868_CR166) 2019; 52 UB Baloglu (3868_CR26) 2019; 122 Q Abbas (3868_CR1) 2020; 11 J-M Kwon (3868_CR135) 2020; 22 B Varghese (3868_CR222) 2018; 79 Z Li (3868_CR146) 2020; 58 L Bote-Curiel (3868_CR35) 2019; 9 SJ Pan (3868_CR171) 2009; 22 L Guo (3868_CR88) 2019; 39 M Taherisadr (3868_CR215) 2018; 9 Y Bengio (3868_CR31) 1994; 5 E Urtnasan (3868_CR221) 2018; 39 E Urtnasan (3868_CR220) 2018; 42 W Cai (3868_CR44) 2020; 116 R Kamaleswaran (3868_CR122) 2018; 39 J Huang (3868_CR107) 2019; 7 3868_CR90 H-M Cho (3868_CR53) 2019; 19 O Faust (3868_CR77) 2018; 102 KG Kim (3868_CR127) 2016; 22 R Yamashita (3868_CR238) 2018; 9 M Hammad (3868_CR94) 2019; 101 GE Hinton (3868_CR99) 2006; 18 3868_CR87 3868_CR85 3868_CR86 3868_CR82 A Picon (3868_CR175) 2019; 14 JR Pinto (3868_CR177) 2018; 6 X Wang (3868_CR227) 2016; 8 SS Xu (3868_CR236) 2018; 23 O Yildirim (3868_CR243) 2019; 176 Y-H Byeon (3868_CR40) 2019; 9 C Chen (3868_CR48) 2020; 57 3868_CR98 3868_CR96 3868_CR97 3868_CR92 3868_CR230 3868_CR111 GB Moody (3868_CR161) 2001; 20 3868_CR232 3868_CR113 3868_CR235 3868_CR115 3868_CR116 H Shi (3868_CR203) 2020; 188 RD Labati (3868_CR136) 2019; 126 Y Xiao (3868_CR234) 2019; 39 3868_CR118 G Sannino (3868_CR192) 2018; 86 RS Andersen (3868_CR19) 2019; 115 J Rubin (3868_CR189) 2018; 51 3868_CR102 3868_CR223 3868_CR103 3868_CR224 Q Zhang (3868_CR252) 2018; 46 3868_CR104 3868_CR225 J Schmidhuber (3868_CR194) 2015; 61 F Jiang (3868_CR119) 2017; 2 S Kulik (3868_CR133) 2020; 169 R Buyya (3868_CR39) 2018; 51 3868_CR106 3868_CR108 3868_CR109 A Darmawahyuni (3868_CR63) 2019; 12 3868_CR210 cr-split#-3868_CR112.2 cr-split#-3868_CR112.1 3868_CR214 H Dang (3868_CR60) 2019; 7 O Faust (3868_CR76) 2018; 161 L Biel (3868_CR33) 2001; 50 M Hammad (3868_CR91) 2018; 7 M Hammad (3868_CR93) 2019; 81 Y-H Byeon (3868_CR42) 2019; 19 3868_CR216 M-G Kim (3868_CR128) 2020; 8 JS Kim (3868_CR126) 2020; 11 3868_CR218 3868_CR219 A Isin (3868_CR114) 2017; 120 3868_CR200 3868_CR201 UR Acharya (3868_CR4) 2017; 405 3868_CR202 A Shrestha (3868_CR205) 2019; 7 EK Wang (3868_CR226) 2019; 16 H-C Yang (3868_CR239) 2018; 161 Z Wu (3868_CR231) 2016; 15 S Kusuma (3868_CR134) 2020; 21 HA Pierson (3868_CR176) 2017; 31 B Kitchenham (3868_CR130) 2007; 45 MS Al-Huseiny (3868_CR10) 2020; 9 Z Li (3868_CR144) 2019; 7 3868_CR206 MA Serhani (3868_CR196) 2020; 20 3868_CR208 UR Acharya (3868_CR3) 2017; 132 3868_CR209 S Khan (3868_CR125) 2018; 8 |
| References_xml | – ident: 3868_CR202 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: 3868_CR110 publication-title: J Physiol doi: 10.1113/jphysiol.1962.sp006837 – volume: 52 start-page: 77 year: 2019 ident: 3868_CR140 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.03.009 – ident: 3868_CR74 doi: 10.1145/3312614.3312644 – volume: 140 start-page: 110245 year: 2020 ident: 3868_CR168 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110245 – volume: 6 start-page: 34746 year: 2018 ident: 3868_CR177 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2849870 – ident: 3868_CR116 doi: 10.1109/TIPTEKNO.2019.8895011 – volume: 51 start-page: S18 issue: 6 year: 2018 ident: 3868_CR189 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2018.08.008 – ident: 3868_CR109 doi: 10.1109/CSE.2014.36 – volume: 22 start-page: 412 issue: 3 year: 2020 ident: 3868_CR135 publication-title: EP Europace doi: 10.1093/europace/euz324 – ident: 3868_CR96 doi: 10.1109/EMBC.2019.8857554 – ident: 3868_CR174 – volume: 7 start-page: 77849 year: 2019 ident: 3868_CR144 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920900 – volume: 57 start-page: S75 year: 2019 ident: 3868_CR187 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2019.09.008 – volume: 8 start-page: 36527 year: 2020 ident: 3868_CR128 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975258 – ident: 3868_CR62 doi: 10.1109/ICA.2019.8916683 – ident: 3868_CR180 doi: 10.1088/1742-6596/913/1/012004 – volume: 23 start-page: 1574 issue: 4 year: 2018 ident: 3868_CR236 publication-title: IEEE J biomedical health Inf doi: 10.1109/JBHI.2018.2871510 – ident: 3868_CR21 doi: 10.1109/ICASSDA.2018.8477620 – ident: 3868_CR90 doi: 10.1109/IPTA.2017.8310112 – ident: 3868_CR216 doi: 10.1109/DSD.2018.00077 – ident: 3868_CR249 doi: 10.1109/SMC.2018.00080 – ident: 3868_CR108 doi: 10.1007/s13534-020-00146-9 – ident: 3868_CR61 doi: 10.1109/ICAMechS.2019.8861645 – volume: 80 start-page: 571 issue: 4 year: 2007 ident: 3868_CR37 publication-title: J Syst Softw doi: 10.1016/j.jss.2006.07.009 – volume: 79 start-page: 849 year: 2018 ident: 3868_CR222 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.09.020 – volume: 345 start-page: 340 year: 2016 ident: 3868_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2016.01.082 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 3868_CR186 publication-title: Nat Commun doi: 10.1038/s41467-019-13993-7 – ident: 3868_CR46 doi: 10.1109/CCST.2017.8167816 – volume: 52 start-page: 77 issue: 1 year: 2019 ident: 3868_CR166 publication-title: Artif Intell Rev doi: 10.1007/s10462-018-09679-z – ident: 3868_CR208 – volume: 120 start-page: 268 year: 2017 ident: 3868_CR114 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.238 – ident: 3868_CR232 doi: 10.1109/MeMeA.2019.8802158 – volume: 14 start-page: e0216756 issue: 5 year: 2019 ident: 3868_CR175 publication-title: PLoS ONE doi: 10.1371/journal.pone.0216756 – ident: 3868_CR118 doi: 10.1109/ICUFN.2019.8805913 – ident: 3868_CR115 doi: 10.1109/EMBC.2019.8856806 – volume: 8 start-page: 1368 issue: 7 year: 2018 ident: 3868_CR148 publication-title: J Med Imaging Health Inf doi: 10.1166/jmihi.2018.2442 – ident: 3868_CR25 doi: 10.1109/ICCCNT45670.2019.8944895 – ident: 3868_CR55 – volume: 102 start-page: 411 year: 2018 ident: 3868_CR244 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.09.009 – volume: 31 start-page: 821 issue: 16 year: 2017 ident: 3868_CR176 publication-title: Adv Robot doi: 10.1080/01691864.2017.1365009 – volume: 4 start-page: 309 issue: 4 year: 2015 ident: 3868_CR59 publication-title: Health and Technology doi: 10.1007/s12553-015-0098-y – ident: 3868_CR224 doi: 10.1155/2018/7068349 – ident: 3868_CR32 doi: 10.1109/ICIINFS.2018.8721391 – volume: 11 start-page: 585 issue: 1 year: 2020 ident: 3868_CR1 publication-title: (IJACSA) Int J Adv Comput Sci Appl – volume: 40 start-page: 324 issue: 1 year: 2020 ident: 3868_CR95 publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2019.12.002 – volume: 169 start-page: 164 year: 2020 ident: 3868_CR133 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.02.129 – ident: 3868_CR137 doi: 10.1109/5.726791 – volume: 58 start-page: 105 year: 2020 ident: 3868_CR146 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2019.11.046 – ident: 3868_CR92 doi: 10.1111/exsy.12547 – volume: 126 start-page: 78 year: 2019 ident: 3868_CR136 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.03.028 – ident: 3868_CR225 doi: 10.22489/CinC.2019.072 – ident: 3868_CR247 doi: 10.1109/ICInfA.2016.7831994 – volume: 20 start-page: 1796 issue: 6 year: 2020 ident: 3868_CR196 publication-title: Sensors doi: 10.3390/s20061796 – volume: 122 start-page: 23 year: 2019 ident: 3868_CR26 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.02.016 – volume: 57 start-page: S61 year: 2019 ident: 3868_CR157 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2019.08.008 – ident: 3868_CR45 doi: 10.1007/978-3-319-26453-0_7 – ident: 3868_CR87 doi: 10.1109/AICAS.2019.8771558 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 3868_CR100 publication-title: Science doi: 10.1126/science.1127647 – ident: 3868_CR163 doi: 10.1109/WiSPNET45539.2019.9032813 – volume: 12 start-page: 168 year: 2018 ident: 3868_CR34 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2018.2885714 – volume: 49 start-page: 16 issue: 1 year: 2019 ident: 3868_CR6 publication-title: Appl Intell doi: 10.1007/s10489-018-1179-1 – volume: 86 start-page: 446 year: 2018 ident: 3868_CR192 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.03.057 – volume: 9 start-page: 4810 issue: 22 year: 2019 ident: 3868_CR40 publication-title: Appl Sci doi: 10.3390/app9224810 – ident: 3868_CR38 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 3868_CR31 publication-title: IEEE Trans Neural Networks doi: 10.1109/72.279181 – volume: 45 start-page: 22 year: 2018 ident: 3868_CR149 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.05.013 – ident: 3868_CR193 – ident: 3868_CR97 doi: 10.1109/ISCC47284.2019.8969657 – volume: 110 start-page: 281 issue: 2 year: 2008 ident: 3868_CR36 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.08.005 – ident: 3868_CR11 doi: 10.1109/EIT.2018.8500197 – volume: 39 start-page: 868 issue: 3 year: 2019 ident: 3868_CR88 publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2019.06.001 – ident: 3868_CR103 – ident: #cr-split#-3868_CR112.1 doi: 10.1007/978-981-10-5122-7_138 – volume: 176 start-page: 121 year: 2019 ident: 3868_CR243 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.05.004 – volume: 42 start-page: 104 issue: 6 year: 2018 ident: 3868_CR220 publication-title: J Med Syst doi: 10.1007/s10916-018-0963-0 – volume: 57 start-page: 101819 year: 2020 ident: 3868_CR48 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101819 – ident: 3868_CR52 doi: 10.1109/CSE-EUC.2017.220 – ident: 3868_CR173 doi: 10.1007/s11760-020-01666-8 – ident: 3868_CR132 – volume: 8 start-page: 292 issue: 3 year: 2019 ident: 3868_CR15 publication-title: Electronics doi: 10.3390/electronics8030292 – ident: 3868_CR241 – ident: 3868_CR253 doi: 10.1109/UEMCON.2017.8249111 – ident: 3868_CR23 doi: 10.1145/3278576.3278597 – volume: 101 start-page: 180 year: 2019 ident: 3868_CR94 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.06.008 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 3868_CR2 publication-title: IEEE Trans Biometrics Behav Identity Sci – volume: 5 start-page: 811 issue: 7 year: 2020 ident: 3868_CR89 publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2020.1017 – volume: 7 start-page: 26527 year: 2018 ident: 3868_CR91 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886573 – volume: 24 start-page: 515 issue: 2 year: 2019 ident: 3868_CR190 publication-title: IEEE J biomedical health Inf doi: 10.1109/JBHI.2019.2911367 – volume: 11 start-page: 2163 issue: 8 year: 2018 ident: 3868_CR228 publication-title: Energies doi: 10.3390/en11082163 – volume: 38 start-page: 1014 issue: 6 year: 2018 ident: 3868_CR12 publication-title: J Med Biol Eng doi: 10.1007/s40846-018-0389-7 – ident: 3868_CR106 doi: 10.1109/CVPR.2017.243 – ident: 3868_CR54 doi: 10.1109/CVPR.2017.195 – volume: 94 start-page: 19 year: 2018 ident: 3868_CR217 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.12.023 – ident: 3868_CR257 doi: 10.1016/j.eswa.2021.114809 – volume: 103 start-page: 101789 year: 2020 ident: 3868_CR147 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101789 – volume: 9 start-page: 2331 issue: 11 year: 2019 ident: 3868_CR35 publication-title: Appl Sci doi: 10.3390/app9112331 – ident: 3868_CR169 doi: 10.1109/BioCAS.2015.7348372 – volume: 19 start-page: 4408 issue: 20 year: 2019 ident: 3868_CR53 publication-title: Sensors doi: 10.3390/s19204408 – volume: 45 start-page: 1051 issue: 4ve year: 2007 ident: 3868_CR130 publication-title: Engineering – ident: 3868_CR195 doi: 10.1016/j.knosys.2020.105596 – volume: 8 start-page: 95 issue: 1 year: 2018 ident: 3868_CR66 publication-title: Biomed Eng Lett doi: 10.1007/s13534-017-0055-y – ident: 3868_CR139 doi: 10.1109/ICDSP.2016.7868505 – ident: 3868_CR182 – ident: 3868_CR248 doi: 10.1007/978-3-319-10590-1_53 – volume: 4 start-page: 243 issue: 4 year: 2018 ident: 3868_CR213 publication-title: ICT Express doi: 10.1016/j.icte.2018.10.005 – ident: 3868_CR104 doi: 10.1016/j.compbiomed.2020.103801 – volume: 21 start-page: 127 issue: 1 year: 2020 ident: 3868_CR134 publication-title: Scalable Computing: Practice and Experience – volume: 405 start-page: 81 year: 2017 ident: 3868_CR4 publication-title: Inf Sci doi: 10.1016/j.ins.2017.04.012 – ident: 3868_CR58 doi: 10.1109/BIOCAS.2019.8918723 – ident: 3868_CR183 doi: 10.1109/ICACCS.2019.8728362 – ident: 3868_CR43 doi: 10.1109/KI48306.2020.9039871 – volume: 16 start-page: 2481 issue: 4 year: 2019 ident: 3868_CR226 publication-title: Math Biosci engineering: MBE doi: 10.3934/mbe.2019124 – volume: 7 start-page: 19143 year: 2019 ident: 3868_CR165 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896880 – volume: 132 start-page: 62 year: 2017 ident: 3868_CR3 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.06.003 – volume: 48 start-page: 2095 issue: 12 year: 2018 ident: 3868_CR179 publication-title: IEEE Trans Syst Man Cybernetics: Syst doi: 10.1109/TSMC.2017.2705582 – ident: 3868_CR28 doi: 10.1109/TENCON.2018.8650429 – ident: 3868_CR131 – ident: 3868_CR22 doi: 10.1109/KCIC.2017.8228452 – ident: 3868_CR86 – ident: 3868_CR191 doi: 10.1109/ICASSP.2017.7952519 – ident: 3868_CR200 doi: 10.1145/3219819.3219912 – ident: 3868_CR64 doi: 10.1109/CEEICT.2018.8628044 – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 3868_CR246 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2018.2840738 – volume: 7 start-page: 92871 year: 2019 ident: 3868_CR107 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928017 – ident: 3868_CR120 doi: 10.1109/ICMLA.2016.0154 – ident: 3868_CR17 doi: 10.1109/CAIS.2018.8441942 – volume: 132 start-page: 1290 year: 2018 ident: 3868_CR207 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.05.045 – ident: 3868_CR47 doi: 10.1016/j.cjca.2020.02.096 – ident: 3868_CR113 – ident: 3868_CR245 – volume: 13 start-page: 26 year: 2018 ident: 3868_CR151 publication-title: Inf Med Unlocked doi: 10.1016/j.imu.2018.08.002 – volume: 93 start-page: 84 year: 2018 ident: 3868_CR233 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.12.007 – volume: 18 start-page: 570 issue: 4 year: 2017 ident: 3868_CR138 publication-title: Korean J Radiol doi: 10.3348/kjr.2017.18.4.570 – volume: 7 start-page: 53040 year: 2019 ident: 3868_CR205 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – ident: 3868_CR123 doi: 10.1063/1.5138541 – volume: 20 start-page: 2136 issue: 7 year: 2020 ident: 3868_CR105 publication-title: Sensors doi: 10.3390/s20072136 – ident: 3868_CR145 doi: 10.1145/3290818.3290819 – ident: 3868_CR255 doi: 10.1109/SNSP.2018.00037 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 3868_CR171 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 3868_CR99 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – ident: 3868_CR27 doi: 10.23919/EUSIPCO.2019.8902936 – volume: 2 start-page: 230 issue: 4 year: 2017 ident: 3868_CR119 publication-title: Stroke and vascular neurology doi: 10.1136/svn-2017-000101 – volume: 19 start-page: 1950004 issue: 03 year: 2019 ident: 3868_CR56 publication-title: J Mech Med Biology doi: 10.1142/S0219519419500040 – ident: 3868_CR141 doi: 10.1109/HealthCom.2017.8210784 – ident: 3868_CR75 – volume: 81 start-page: 107 year: 2019 ident: 3868_CR93 publication-title: Computers & Security doi: 10.1016/j.cose.2018.11.003 – volume: 132 start-page: 1192 year: 2018 ident: 3868_CR212 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.05.034 – volume: 20 start-page: 969 issue: 4 year: 2020 ident: 3868_CR188 publication-title: Sensors doi: 10.3390/s20040969 – volume: 8 start-page: 74 issue: 5 year: 2011 ident: 3868_CR29 publication-title: IJCSI Int J Comput Sci – ident: 3868_CR51 doi: 10.1109/EMBC.2018.8512263 – ident: 3868_CR72 doi: 10.3346/jkms.2019.34.e64 – volume: 27 start-page: 098 issue: 01 year: 2018 ident: 3868_CR83 publication-title: Yearb Med Inform doi: 10.1055/s-0038-1667083 – volume: 130 start-page: 400 year: 2018 ident: 3868_CR117 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.04.060 – ident: 3868_CR71 doi: 10.3389/frai.2020.00004 – volume: 187 start-page: 105219 year: 2020 ident: 3868_CR204 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105219 – volume: 9 start-page: 988 issue: 3 year: 2020 ident: 3868_CR10 publication-title: Bull Electr Eng Inf doi: 10.11591/eei.v9i3.2172 – ident: 3868_CR57 doi: 10.22489/CinC.2017.065-469 – ident: 3868_CR80 – volume: 39 start-page: 93 issue: 1 year: 2019 ident: 3868_CR234 publication-title: J Plann Educ Res doi: 10.1177/0739456X17723971 – volume: 42 start-page: 1129 issue: 4 year: 2019 ident: 3868_CR172 publication-title: Australasian Phys Eng Sci Med doi: 10.1007/s13246-019-00815-9 – ident: 3868_CR98 doi: 10.1109/CVPR.2016.90 – ident: 3868_CR124 – ident: 3868_CR143 doi: 10.1016/j.neucom.2020.01.019 – volume: 161 start-page: 1 year: 2018 ident: 3868_CR76 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.04.005 – volume: 63 start-page: 664 issue: 3 year: 2015 ident: 3868_CR129 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2468589 – ident: 3868_CR219 doi: 10.1007/s41745-019-0102-z – volume: 89 start-page: 389 year: 2017 ident: 3868_CR8 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.08.022 – volume: 7 start-page: 145395 year: 2019 ident: 3868_CR153 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939947 – ident: 3868_CR198 doi: 10.35940/ijitee.C8728.019320 – volume: 415 start-page: 190 year: 2017 ident: 3868_CR5 publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.027 – volume: 180 start-page: 105001 year: 2019 ident: 3868_CR73 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105001 – ident: 3868_CR214 doi: 10.1109/CVPR.2015.7298594 – ident: 3868_CR162 doi: 10.1109/INES.2017.8118534 – ident: 3868_CR65 doi: 10.1109/ICCUBEA.2018.8697579 – ident: 3868_CR24 doi: 10.1109/MySec.2014.6985987 – ident: 3868_CR82 doi: 10.1016/0925-2312(94)00061-V – volume: 138 start-page: 112793 year: 2019 ident: 3868_CR185 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.07.010 – volume: 99 start-page: 53 year: 2018 ident: 3868_CR155 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.013 – ident: 3868_CR41 doi: 10.1109/KI48306.2020.9039871 – ident: 3868_CR121 doi: 10.1109/ICHI.2018.00092 – volume: 5 start-page: 035015 issue: 3 year: 2019 ident: 3868_CR84 publication-title: Biomedical Phys Eng Express doi: 10.1088/2057-1976/ab1104 – ident: 3868_CR206 – ident: 3868_CR159 doi: 10.1201/9781315371658 – volume: 61 start-page: 85 year: 2015 ident: 3868_CR194 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 39 start-page: 035006 issue: 3 year: 2018 ident: 3868_CR122 publication-title: Physiol Meas doi: 10.1088/1361-6579/aaaa9d – ident: 3868_CR68 doi: 10.1007/978-3-030-33327-0_13 – ident: 3868_CR152 doi: 10.1155/2017/4108720 – volume: 19 start-page: 1236 issue: 6 year: 2018 ident: 3868_CR158 publication-title: Brief Bioinform doi: 10.1093/bib/bbx044 – volume: 50 start-page: 808 issue: 3 year: 2001 ident: 3868_CR33 publication-title: IEEE Trans Instrum Meas doi: 10.1109/19.930458 – volume: 19 start-page: 935 issue: 4 year: 2019 ident: 3868_CR42 publication-title: Sensors doi: 10.3390/s19040935 – volume: 96 start-page: 189 year: 2018 ident: 3868_CR242 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.03.016 – volume: 20 start-page: 70 issue: 3 year: 2001 ident: 3868_CR161 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.932728 – volume: 8 start-page: 35592 year: 2020 ident: 3868_CR197 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974712 – ident: 3868_CR250 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 3868_CR125 publication-title: Synthesis Lectures on Computer Vision doi: 10.1007/978-3-031-01821-3 – volume: 47 start-page: 25 issue: 1 year: 2014 ident: 3868_CR79 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.05.025 – volume: 161 start-page: 1 year: 2018 ident: 3868_CR239 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.05.014 – volume: 25 start-page: 1472 issue: 11 year: 2018 ident: 3868_CR156 publication-title: Acad Radiol doi: 10.1016/j.acra.2018.02.018 – volume: 15 start-page: 1650021 issue: 04 year: 2016 ident: 3868_CR231 publication-title: Int J Comput Intell Appl doi: 10.1142/S1469026816500218 – volume: 9 start-page: 50 year: 2018 ident: 3868_CR215 publication-title: Smart Health doi: 10.1016/j.smhl.2018.07.022 – volume: 8 start-page: 8614 year: 2020 ident: 3868_CR237 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964749 – ident: 3868_CR67 doi: 10.1109/ISDFS.2019.8757522 – volume: 39 start-page: 065003 issue: 6 year: 2018 ident: 3868_CR221 publication-title: Physiol Meas doi: 10.1088/1361-6579/aac7b7 – volume: 29 start-page: 207 issue: 4 year: 2019 ident: 3868_CR16 publication-title: Neural Netw World doi: 10.14311/NNW.2019.29.014 – volume: 22 start-page: 351 issue: 4 year: 2016 ident: 3868_CR127 publication-title: Healthc Inf Res doi: 10.4258/hir.2016.22.4.351 – ident: 3868_CR209 – ident: 3868_CR102 doi: 10.1109/EMBC.2019.8856916 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 3868_CR39 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3241737 – ident: 3868_CR501 doi: 10.1155/2019/1306039 – ident: 3868_CR218 doi: 10.2196/11966 – ident: 3868_CR154 doi: 10.1109/CISP-BMEI.2018.8633273 – ident: 3868_CR70 doi: 10.5220/0006195404630470 – ident: 3868_CR30 doi: 10.1155/2015/370194 – volume: 16 start-page: 351 issue: 4 year: 2000 ident: 3868_CR160 publication-title: Future Generation Computer Systems doi: 10.1016/S0167-739X(99)00059-X – volume: 11 start-page: 1923 issue: 5 year: 2020 ident: 3868_CR126 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-019-01401-3 – ident: 3868_CR178 doi: 10.3233/XST-200757 – ident: 3868_CR235 doi: 10.22489/CinC.2017.066-138 – ident: 3868_CR49 doi: 10.1109/BHI.2019.8834468 – volume: 8 start-page: 217 issue: 4 year: 2016 ident: 3868_CR227 publication-title: Found Trends Signal Process doi: 10.1561/2000000071 – ident: 3868_CR50 doi: 10.1109/SmartWorld.2018.00119 – ident: 3868_CR150 – ident: 3868_CR184 doi: 10.1109/ICB45273.2019.8987383 – ident: 3868_CR69 doi: 10.1007/s00521-020-04709-w – ident: 3868_CR78 doi: 10.1007/978-3-642-33275-3_2 – volume: 116 start-page: 103378 year: 2020 ident: 3868_CR44 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103378 – ident: 3868_CR14 doi: 10.1007/s11042-020-08769-x – ident: 3868_CR199 doi: 10.1016/j.compbiomed.2020.103753 – ident: 3868_CR210 doi: 10.1007/978-3-319-68385-0_18 – volume: 115 start-page: 465 year: 2019 ident: 3868_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.011 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: 3868_CR229 publication-title: J Big data doi: 10.1186/s40537-016-0043-6 – ident: 3868_CR170 doi: 10.1109/CAIPT.2017.8320684 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 3868_CR101 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 102 start-page: 327 year: 2018 ident: 3868_CR77 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.07.001 – volume: 79 start-page: 952 year: 2018 ident: 3868_CR7 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.08.039 – volume: 132 start-page: 1253 year: 2018 ident: 3868_CR211 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.05.041 – volume: 7 start-page: 75577 year: 2019 ident: 3868_CR60 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918792 – ident: 3868_CR230 doi: 10.1109/IDAACS.2017.8095063 – ident: 3868_CR223 doi: 10.1109/ICACCI.2018.8554541 – volume: 46 start-page: 122 issue: 1 year: 2018 ident: 3868_CR252 publication-title: Ann Biomed Eng doi: 10.1007/s10439-017-1944-z – ident: 3868_CR164 doi: 10.1109/MeMeA.2018.8438739 – volume: 9 start-page: 611 issue: 4 year: 2018 ident: 3868_CR238 publication-title: Insights into imaging doi: 10.1007/s13244-018-0639-9 – ident: 3868_CR9 doi: 10.1145/3348445.3348459 – ident: 3868_CR111 – volume: 102 start-page: 278 year: 2018 ident: 3868_CR167 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.002 – ident: 3868_CR181 doi: 10.1109/IECBES.2018.8626624 – ident: 3868_CR20 – ident: #cr-split#-3868_CR112.2 – volume: 86 start-page: 105778 year: 2020 ident: 3868_CR256 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105778 – volume: 15 start-page: 643 issue: 6 year: 2018 ident: 3868_CR240 publication-title: Int J Autom Comput doi: 10.1007/s11633-018-1136-9 – ident: 3868_CR142 doi: 10.1155/2018/7354081 – ident: 3868_CR85 doi: 10.1109/ACIIW.2019.8925020 – ident: 3868_CR201 doi: 10.1109/ICMEW.2017.8026250 – volume: 188 start-page: 105036 year: 2020 ident: 3868_CR203 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105036 – volume: 30 start-page: 2047 issue: 7 year: 2018 ident: 3868_CR18 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3616-9 – volume: 12 start-page: 118 issue: 6 year: 2019 ident: 3868_CR63 publication-title: Algorithms doi: 10.3390/a12060118 – volume: 49 start-page: 3383 issue: 9 year: 2019 ident: 3868_CR81 publication-title: Appl Intell doi: 10.1007/s10489-019-01461-0 |
| SSID | ssj0000393111 |
| Score | 2.4371634 |
| Snippet | The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing,... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9677 |
| SubjectTerms | Algorithms Artificial Intelligence Big Data Biometrics Computational Intelligence Computer vision Data analysis Deep learning Electrocardiography Engineering Health care Heart Image processing Literature reviews Machine learning Medical imaging Neural networks Object recognition Original Research Popularity Robotics and Automation Signal processing Speech recognition Systematic review Systems analysis Taxonomy Trends User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RhUN74E0bCshI3MBS4pDYPq4oiAsItVBxixzbCyuhLGKXHvbXM-M8li20UnuMPHnYnrE_Z2a-AThw0uFMlwNU3tjzY2vQpKTNuCd8jnDBl64MxSbk5aW6vdVXTVLYuI12b12SYaWeJbuJPBOcos_jVOWKTz_AIm53iszx-4-f3Z8VyjZNQuFdooLnWZLKJlvm_cfM70hvYObbaMnfXKZhJzpb-b8-rMJygzxZv1aVNVjw1Tp8esVHuAGuz2bMzqzOamGmcuzCTwynYFK8qklM2KhiiB3Zawc4Gw3YN-8fWUPaeseGFTut6-zYEPdKoWCbcHN2en1yzpsyDNwimply5cSxQqAoqCD1wJc6zr1HIJY7LZzUJR6CjM5SrwYOsabXsSoNOUeT1EirnU23oFeNKv8FmM0o8TYvnaRy9To2pRfOOVwzYqmNkxEk7VQUtuEop1IZD8WMXZlGsMARLMIIFtMIDrt7HmuGjr9K77QzXDTWOi6oYlci00TEEex3zWhn5DwxlR89o0yO35sTd04En2uF6F4Xso2V1BHIOVXpBIjDe76lGt4HLm9NJ9hYRHDUKszss_7ci-1_E_8KHwViszrKeAd6k6dnvwtL9tdkOH7aC9bzAhg0FRk priority: 102 providerName: Springer Nature |
| Title | A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram |
| URI | https://link.springer.com/article/10.1007/s12652-022-03868-z https://www.ncbi.nlm.nih.gov/pubmed/35821879 https://www.proquest.com/docview/2920173120 https://www.proquest.com/docview/2689060388 https://pubmed.ncbi.nlm.nih.gov/PMC9261902 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1868-5145 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: K7- dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1868-5145 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: P5Z dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 1868-5145 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: RSV dateStart: 20100301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4asMMusGk_CLDKk3Zj1hKHxPEJsa1o0rSqAjZVu0SO7W6VUFJo4dC_nvccN6VD47JLpMiOEus921_83vs-gPdWWrR0NUbnjR0_MhqnlDQZd4TPES64ylZebEIOBsVopIbhwG0W0iqXa6JfqG1j6Iz8I6kqJTJNRHw8veKkGkXR1SChsQFbiRAJ-fk3ybszFqo7TbwEL5HC8yxJZaibaavnRJ4JTunscUrti_W96QHgfJg3-Vfw1O9Jpzv_O5rnsB3QKDtp3ecFPHH1S7AnbMXvzNraFqZry767ueaUUop3LZUJa2qGCJLdD4OzZsy-ODdlgbr1N5vUrN-q7Rif_UoJYa_gx2n_4vNXHsQYuEFMs-CFFUcFwkVBstRjV6k4dw7hWG6VsFJV-CukVZa6YmwRcToVF5WmEGmSammUNelr2Kyb2u0CMxmV3-aVlSRar2JdOWGtxZUjlkpbGUGyNENpAlM5CWZcliuOZTJdiaYrvenKRQSH3TPTlqfj0d4HS7OUYc7OypVNInjXNeNsoxCKrl1zg31y_N6cGHQieNM6Q_c6X3NcSBWBXHOTrgMxea-31JM_ntFb0X9sLCL4sHSo1Wf9exR7j49iH54JRGRtbvEBbM6vb9xbeGpu55PZdQ825Kjowdan_mB41vPzBq_D7Bdez85_3gEbDR3Y |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXPsRXoICR4AQWibOJ4wNCFW3Vqu2qhyJVXIJje9uVULJ0tyD2R_U3dsZOsiwVvfXAMbJ3E8fP4-fMzBuAN1ZanOlqhOCNHR8YjUtKmow74udIF1xlK19sQg6HxdGROliB8y4XhsIqO5voDbVtDH0j_0BVlRKZJiL-NPnBqWoUeVe7EhoBFrvu9y88sk0_7mzg_L4VYmvz8PM2b6sKcIOb85wXVgwK5D2C6iuPXKXi3DnkFblVwkpVIafXKktdMbJInZyKi0qTry9JtTTKmhT_9wbcHAzwsITr5yD72n_ToTzXxJf8JRF6niWpbPN0QraeyDPBKXw-Tql9vrwXXiK4l-M0_3LW-j1w697_9vbuw92WbbP1sDwewIqrH4JdZwv9ahZyd5iuLdt3M80pZBavglQLa2qGDJn96eZnzYhtODdhrTTtMRvXbDNUEzI-upcC3h7Bl2sZ2GNYrZvaPQVmMkovzisrczwPqlhXTlhr0TLGUmkrI0i6aS9Nq8ROBUG-lwsNaYJKiVApPVTKeQTv-t9Mgg7Jlb3XOhiUrU2algsMRPC6b0ZrQi4iXbvmDPvk-Lw5KQRF8CSAr7-dz6kupIpALsGy70BK5cst9fjEK5YrOqfHIoL3HYAXj_XvUTy7ehSv4Pb24f5eubcz3H0OdwSyzxBHvQars9Mz9wJumZ-z8fT0pV-lDL5dN7AvAOn_dFI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQYgeKJQCoS0YiVtrNXE2cXys2q6ogFWlFtRb5NgOrIS8q3bLYX99Z5xsdrdfEuIY2Un8MY6fMzPvAXy20uJMVzUab-x4z2hcUtJk3BE-R7jgKlsFsQk5GBTn5-pkIYs_RLvPXJJNTgOxNPnJ3tjWe_PEN5FnglMkepwWecGnj-FJj0SD6Lx--rP7y0KZp0kQ4SVaeJ4lqWwzZ-5-zPLudAty3o6cvOE-DbtSf-3_-_MSXrSIlO03JvQKHjm_DqsLPIWvwe6zOeMza7JdmPaWfXcTzSnIFK8achM28gwxJVt0jLNRzQ6dG7OWzPUXG3p21OjvmBAPSyFiG_Cjf3R28IW38gzcIMqZ8sKKXoEAUpBQde0qFefOIUDLrRJWqgoPR1plqStqixjUqbioNDlNk1RLo6xJ38CKH3n3DpjJKCE3r6wkGXsV68oJay1-S2KptJURJLNpKU3LXU4SGn_KOesyjWCJI1iGESynEex094wb5o4Ha2_NZrtsV_FlSUpeiUwTEUfwqSvG9UdOFe3d6Arr5NjenDh1InjbGEf3upCFXEgVgVwym64CcXsvl_jh78DxrehkG4sIdmfGM2_W_b14_2_VP8Kzk8N--e148HUTnguEb00g8hasTC6u3DY8NX8nw8uLD2FRXQMh0iDh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+and+Meta-data+analysis+on+the+applications+of+Deep+Learning+in+Electrocardiogram&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Musa%2C+Nehemiah&rft.au=Gital%2C+Abdulsalam+Ya%E2%80%99u&rft.au=Aljojo%2C+Nahla&rft.au=Chiroma%2C+Haruna&rft.date=2023-07-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=14&rft.issue=7&rft.spage=9677&rft.epage=9750&rft_id=info:doi/10.1007%2Fs12652-022-03868-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_022_03868_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon |