Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms
Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While...
Uloženo v:
| Vydáno v: | SN computer science Ročník 3; číslo 4; s. 300 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.07.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!