Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms
Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While...
Uložené v:
| Vydané v: | SN computer science Ročník 3; číslo 4; s. 300 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature Singapore
01.07.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default instantiations yield acceptable analytical quality in terms of model accuracy, GPM inference algorithms automatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for automated inference of GPMs are searching the space of possible models in a rather intricate way and thus result in super-quadratic computation time complexity for model selection and evaluation. Since these properties only enable processing small datasets with low statistical versatility, various methods and algorithms using global as well as local approximations have been proposed for efficient inference of large-scale GPMs. While the latter approximation relies on representing data via local sub-models, global approaches capture data’s inherent characteristics by means of an educated sample. In this paper, we investigate the current state-of-the-art in automated model inference for Gaussian processes and outline strengths and shortcomings of the respective approaches. A performance analysis backs our theoretical findings and provides further empirical evidence. It indicates that approximated inference algorithms, especially locally approximating ones, deliver superior runtime performance, while maintaining the quality level of those using non-approximative Gaussian processes. |
|---|---|
| AbstractList | Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default instantiations yield acceptable analytical quality in terms of model accuracy, GPM inference algorithms automatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for automated inference of GPMs are searching the space of possible models in a rather intricate way and thus result in super-quadratic computation time complexity for model selection and evaluation. Since these properties only enable processing small datasets with low statistical versatility, various methods and algorithms using global as well as local approximations have been proposed for efficient inference of large-scale GPMs. While the latter approximation relies on representing data via local sub-models, global approaches capture data’s inherent characteristics by means of an educated sample. In this paper, we investigate the current state-of-the-art in automated model inference for Gaussian processes and outline strengths and shortcomings of the respective approaches. A performance analysis backs our theoretical findings and provides further empirical evidence. It indicates that approximated inference algorithms, especially locally approximating ones, deliver superior runtime performance, while maintaining the quality level of those using non-approximative Gaussian processes. Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default instantiations yield acceptable analytical quality in terms of model accuracy, GPM inference algorithms automatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for automated inference of GPMs are searching the space of possible models in a rather intricate way and thus result in super-quadratic computation time complexity for model selection and evaluation. Since these properties only enable processing small datasets with low statistical versatility, various methods and algorithms using global as well as local approximations have been proposed for efficient inference of large-scale GPMs. While the latter approximation relies on representing data via local sub-models, global approaches capture data's inherent characteristics by means of an educated sample. In this paper, we investigate the current state-of-the-art in automated model inference for Gaussian processes and outline strengths and shortcomings of the respective approaches. A performance analysis backs our theoretical findings and provides further empirical evidence. It indicates that approximated inference algorithms, especially locally approximating ones, deliver superior runtime performance, while maintaining the quality level of those using non-approximative Gaussian processes.Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default instantiations yield acceptable analytical quality in terms of model accuracy, GPM inference algorithms automatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for automated inference of GPMs are searching the space of possible models in a rather intricate way and thus result in super-quadratic computation time complexity for model selection and evaluation. Since these properties only enable processing small datasets with low statistical versatility, various methods and algorithms using global as well as local approximations have been proposed for efficient inference of large-scale GPMs. While the latter approximation relies on representing data via local sub-models, global approaches capture data's inherent characteristics by means of an educated sample. In this paper, we investigate the current state-of-the-art in automated model inference for Gaussian processes and outline strengths and shortcomings of the respective approaches. A performance analysis backs our theoretical findings and provides further empirical evidence. It indicates that approximated inference algorithms, especially locally approximating ones, deliver superior runtime performance, while maintaining the quality level of those using non-approximative Gaussian processes. |
| ArticleNumber | 300 |
| Author | Beecks, Christian Hüwel, Jan Berns, Fabian |
| Author_xml | – sequence: 1 givenname: Fabian surname: Berns fullname: Berns, Fabian email: fabian.berns@fernuni-hagen.de organization: University of Hagen – sequence: 2 givenname: Jan surname: Hüwel fullname: Hüwel, Jan organization: University of Hagen – sequence: 3 givenname: Christian surname: Beecks fullname: Beecks, Christian organization: University of Hagen, Fraunhofer Institute for Applied Information Technology FIT |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35647556$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAYRS1UREvpC7BAltiwMfgnsWMWSFFFS6VWRQLWluN8mbjK2MVOhuHt6zItlC66ciSfe3Wd8xLthRgAodeMvmeUqg-54lppQjknlLFGku0zdMClZKTRVO09-N5HRzlfUUp5TatK1i_QvqhlpepaHqCxXea4tjP0-CL2MOGzMECC4AAPMeFTu-TsbcBfU3SQM-SPuA34cgNp4-EXjgP-Npc0iQOZRyBtmvEFzGPsM7ahx-20isnP4zq_Qs8HO2U4ujsP0Y-Tz9-Pv5Dzy9Oz4_acONHoLVEVZ66uQVIrleo7pZwWamiGivXcAncDB66EZF3H-sY5sML2teDaAe-EYuIQfdr1Xi_dGnoHYU52MtfJr236baL15v-b4EezihujGReay1Lw7q4gxZ8L5NmsfXYwTTZAXLLhUnHBlNK0oG8foVdxSaE8z3AtBNVVcVCoNw8X_Z1yL6EAzQ5wKeacYDDOl5_q4-1APxlGza1ys1NuinLzR7nZlih_FL1vfzIkdqFc4LCC9G_2E6kb6Na_cg |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0296511 crossref_primary_10_3390_w16070949 crossref_primary_10_1016_j_jpowsour_2024_235891 crossref_primary_10_1122_8_0000930 |
| Cites_doi | 10.1007/s10115-016-0987-z 10.1016/j.enbuild.2014.04.034 10.1162/089976602760128018 10.1080/01621459.2015.1044091 10.1111/j.1467-8640.1989.tb00315.x 10.5220/0010109700650074 10.1162/neco.2007.19.11.3088 10.1016/j.image.2019.02.001 10.1109/TNNLS.2012.2200299 10.1007/s10462-012-9338-y 10.1109/TNNLS.2019.2957109 10.1016/j.chaos.2020.109924 10.1016/j.matcom.2015.11.005 10.1016/j.enbuild.2012.03.003 10.1109/TGRS.2011.2168962 10.1038/nature14541 10.1145/2338676.2338682 10.1109/ICDMW.2017.89 10.1016/j.sigpro.2019.107299 10.1098/rsta.2011.0550 10.1007/s40745-015-0040-1 10.1609/aaai.v29i1.9575 10.1137/1.9781611976700.41 10.1016/B978-1-55860-307-3.50037-X 10.1145/3340531.3412182 10.1016/j.ijepes.2014.02.027 10.1080/23249935.2021.1898487 10.1016/j.ijforecast.2013.07.001 10.1609/aaai.v28i1.8904 10.13140/RG.2.2.23937.20325 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.1007/s42979-022-01186-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Advanced Technologies & Aerospace Collection CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | PMC9123926 35647556 10_1007_s42979_022_01186_x |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 957331 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: FernUniversität in Hagen (3099) – fundername: Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen funderid: http://dx.doi.org/10.13039/501100009591 – fundername: ; – fundername: ; grantid: 957331 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ C6C CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BSONS CITATION EJD KOV PHGZM PHGZT PQGLB NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c389x-7421c55e60a677db77c937f8f41d2ae2cf2e27361bb1d8ccea3ad5329ce2b3713 |
| IEDL.DBID | P5Z |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Tue Nov 04 01:42:33 EST 2025 Thu Oct 02 05:43:21 EDT 2025 Wed Nov 05 14:49:29 EST 2025 Wed Feb 19 02:25:41 EST 2025 Tue Nov 18 21:15:01 EST 2025 Sat Nov 29 05:16:51 EST 2025 Fri Feb 21 02:46:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Gaussian processes Machine learning Probabilistic machine learning |
| Language | English |
| License | The Author(s) 2022. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389x-7421c55e60a677db77c937f8f41d2ae2cf2e27361bb1d8ccea3ad5329ce2b3713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s42979-022-01186-x |
| PMID | 35647556 |
| PQID | 2933094661 |
| PQPubID | 6623307 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9123926 proquest_miscellaneous_2672317790 proquest_journals_2933094661 pubmed_primary_35647556 crossref_citationtrail_10_1007_s42979_022_01186_x crossref_primary_10_1007_s42979_022_01186_x springer_journals_10_1007_s42979_022_01186_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationTitleAlternate | SN Comput Sci |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | RobertsSOsborneMEbdenMReeceSGibsonNAigrainSGaussian processes for time-series modellingPhilos Trans Ser A Math Phys Eng Sci2013371198420110550300566810.1098/rsta.2011.05501353.62103 Hayashi K, Imaizumi M, Yoshida Y. On random subsampling of gaussian process regression: a graphon-based analysis. In: AISTATS, Proceedings of machine learning research, vol 108, p. PMLR 2020;2055–2065. Malkomes G, Schaff C, Garnett R. Bayesian optimization for automated model selection. In: NIPS. 2016;2892–2900. Rossi S, Heinonen M, Bonilla EV, Shen Z, Filippone M. Sparse gaussian processes revisited: Bayesian approaches to inducing-variable approximations. In: AISTATS, Proceedings of machine learning research, vol. 130, p. PMLR 2021;1837–1845. Berns F, Beecks C. Complexity-adaptive gaussian process model inference for large-scale data. In: SDM. SIAM 2021. Rivera R, Burnaev E. Forecasting of commercial sales with large scale gaussian processes. In: ICDM workshops, IEEE Computer Society 2017;625–634. GhahramaniZProbabilistic machine learning and artificial intelligenceNature2015521755345245910.1038/nature14541 CholletFDeep learning with Python2018Shelter IslandManning Publications Co DattaABanerjeeSFinleyAOGelfandAEHierarchical nearest-neighbor gaussian process models for large geostatistical datasetsJ Am Stat Assoc2016111514800812353870610.1080/01621459.2015.1044091 SteinrueckenCSmithEJanzDLloydJRGhahramaniZThe automatic statisticianAutomated machine learning, The Springer series on challenges in machine learning2019New YorkSpringer161173 Snelson E, Ghahramani Z. Sparse gaussian processes using pseudo-inputs. In: NIPS. 2005;1257–1264. Duvenaud D, Lloyd JR, Grosse RB, Tenenbaum JB, Ghahramani Z. Structure discovery in nonparametric regression through compositional kernel search. In: ICML (3), JMLR workshop and conference proceedings, vol. 28. JMLR.org 2013;1166–1174. MasoudniaSEbrahimpourRMixture of experts: a literature surveyArtif Intell Rev201442227529310.1007/s10462-012-9338-y Quinlan JR. Combining instance-based and model-based learning. In: ICML. Morgan Kaufmann 1993;236–243. Hebrail G, Berard A. Individual household electric power consumption data set. https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption. 2012. Accessed: 09 Jan 2020. Berns F, Schmidt K, Bracht I, Beecks C. 3CS algorithm for efficient gaussian process model retrieval. In: 25th international conference on pattern recognition (ICPR). 2020. ParkCApleyDWPatchwork kriging for large-scale gaussian process regressionJ Mach Learn Res2018197:17:4338997731444.62088 Titsias MK. Variational learning of inducing variables in sparse gaussian processes. In: AISTATS, JMLR proceedings, vol. 5, pp. 567–574. JMLR.org 2009. Snelson E, Ghahramani Z. Local and global sparse gaussian process approximations. In: AISTATS, JMLR Proceedings, vol. 2. JMLR.org 2007;524–531. Hensman J, Fusi N, Lawrence ND. Gaussian processes for big data. In: UAI. AUAI Press; 2013. Zamora-MartínezFRomeuPBotella-RocamoraPPardoJOn-line learning of indoor temperature forecasting models towards energy efficiencyEnergy Build20148316217210.1016/j.enbuild.2014.04.034 RasmussenCEWilliamsCKIGaussian processes for machine learning. Adaptive computation and machine learning2006New YorkMIT Press1177.68165 TsanasAXifaraAAccurate quantitative estimation of energy performance of residential buildings using statistical machine learning toolsEnergy Build20124956056710.1016/j.enbuild.2012.03.003 Low KH, Yu J, Chen J, Jaillet P. Parallel gaussian process regression for big data: Low-rank representation meets Markov approximation. In: AAAI. AAAI Press 2015;2821–2827. YükselSEWilsonJNGaderPDTwenty years of mixture of expertsIEEE Trans Neural Netw Learn Syst20122381177119310.1109/TNNLS.2012.2200299 IlievAIKyurkchievNMarkovSOn the approximation of the step function by some sigmoid functionsMath Comput Simul2017133223234357527810.1016/j.matcom.2015.11.005 VerrelstJAlonsoLCamps-VallsGDelegidoJMorenoJFRetrieval of vegetation biophysical parameters using gaussian process techniquesIEEE Trans Geosci Remote Sens2012505–21832184310.1109/TGRS.2011.2168962 KiblerDFAhaDWAlbertMKInstance-based prediction of real-valued attributesComput Intell19895515710.1111/j.1467-8640.1989.tb00315.x Kim H, Teh YW. Scaling up the automatic statistician: scalable structure discovery using gaussian processes. In: AISTATS, Proceedings of machine learning research, vol. 84. PMLR 2018;575–584. Truong C, Oudre L, Vayatis N. Selective review of offline change point detection methods. Signal Process. 2020;167 Arias Velásquez RM, Mejía Lara JV. Forecast and evaluation of covid-19 spreading in USA with reduced-space gaussian process regression. Chaos Solit Fractals. 2020;136:109924. https://doi.org/10.1016/j.chaos.2020.109924. https://www.sciencedirect.com/science/article/pii/S0960077920303234. Berns F, Beecks C. Automatic gaussian process model retrieval for big data. In: CIKM. ACM 2020;1965–1968. HintonGETraining products of experts by minimizing contrastive divergenceNeural Comput20021481771180010.1162/089976602760128018 LohYPLiangXChanCSLow-light image enhancement using gaussian process for features retrievalSignal Process Image Commun20197417519010.1016/j.image.2019.02.001 Csató L, Opper M. Sparse representation for gaussian process models. In: NIPS. MIT Press 2000;444–450. Li SC, Marlin BM. A scalable end-to-end gaussian process adapter for irregularly sampled time series classification. In: NIPS, 2016;1804–1812. LiuHOngYShenXCaiJWhen gaussian process meets big data: a review of scalable gpsIEEE Trans Neural Netw Learn Syst2020311144054423416996210.1109/TNNLS.2019.2957109 Wilson AG, Nickisch H. Kernel interpolation for scalable structured gaussian processes (KISS-GP). In: ICML, JMLR workshop and conference proceedings, vol. 37, pp. 1775–1784. JMLR.org. 2015. Berns F, Beecks C. Large-scale retrieval of Bayesian machine learning models for time series data via gaussian processes. In: KDIR. SciTePress 2020;71–80. Abrahamsen P. A review of gaussian random fields and correlation functions. In: Technical report. 1997, p 917. https://doi.org/10.13140/RG.2.2.23937.20325. https://www.nr.no/directdownload/917_Rapport.pdf Lloyd JR, Duvenaud D, Grosse RB, Tenenbaum JB, Ghahramani Z. Automatic construction and natural-language description of nonparametric regression models. In: AAAI. AAAI Press 2014;1242–1250. Bauer M, van der Wilk M, Rasmussen CE. Understanding probabilistic sparse gaussian process approximations. In: NIPS. 2016;1525–1533. AminikhanghahiSCookDJA survey of methods for time series change point detectionKnowl Inf Syst201751233936710.1007/s10115-016-0987-z Cheng C, Boots B. Variational inference for gaussian process models with linear complexity. In: NIPS. 2017;5184–5194. Alsaleh R, Sayed T. Microscopic modeling of cyclists interactions with pedestrians in shared spaces: a gaussian process inverse reinforcement learning approach. Transportmetrica A Transport Sci. 2021. https://doi.org/10.1080/23249935.2021.1898487. Stanton S, Maddox W, Delbridge IA, Wilson AG. Kernel interpolation for scalable online gaussian processes. In: Banerjee A, Fukumizu K (eds) The 24th international conference on artificial intelligence and statistics, AISTATS 2021, April 13–15, 2021, Virtual event, Proceedings of machine learning research, vol. 130, PMLR 2021;3133–3141. http://proceedings.mlr.press/v130/stanton21a.html. HongTPinsonPFanSGlobal energy forecasting competition 2012Int J Forecast201430235736310.1016/j.ijforecast.2013.07.001 KimHLeeJClustering based on gaussian processesNeural Comput2007191130883107235297410.1162/neco.2007.19.11.30881143.68574 Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2(2). TüfekciPPrediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methodsInt J Electric Power Energy Syst20146012614010.1016/j.ijepes.2014.02.027 GittensAMahoneyMWRevisiting the Nystrom method for improved large-scale machine learningJ Mach Learn Res201617117:1117:6535435231367.68223 Max Planck Institute for Biogeochemistry: Weather Station Beutenberg/Weather Station Saaleaue: Jena Weather Data Analysis. https://www.bgc-jena.mpg.de/wetter/. 2019. Accessed: 09 Jan 2020. Taubert N, Christensen A, Endres D, Giese MA. Online simulation of emotional interactive behaviors with hierarchical gaussian process dynamical models. In: Proceedings of the ACM symposium on applied perception, SAP ’12, pp. 25–32. Association for Computing Machinery, New York. 2012. https://doi.org/10.1145/2338676.2338682. Wilson AG, Adams RP. Gaussian process kernels for pattern discovery and extrapolation. In: ICML (3), JMLR workshop and conference proceedings, vol. 28, pp. 1067–1075. JMLR.org. 2013. 1186_CR31 1186_CR30 F Zamora-Martínez (1186_CR54) 2014; 83 P Tüfekci (1186_CR48) 2014; 60 DF Kibler (1186_CR23) 1989; 5 J Verrelst (1186_CR49) 2012; 50 GE Hinton (1186_CR20) 2002; 14 SE Yüksel (1186_CR53) 2012; 23 A Gittens (1186_CR16) 2016; 17 1186_CR39 1186_CR37 1186_CR35 1186_CR33 H Kim (1186_CR24) 2007; 19 1186_CR42 1186_CR41 AI Iliev (1186_CR22) 2017; 133 1186_CR40 Z Ghahramani (1186_CR15) 2015; 521 S Roberts (1186_CR38) 2013; 371 A Datta (1186_CR13) 2016; 111 1186_CR46 1186_CR45 1186_CR44 1186_CR10 S Masoudnia (1186_CR32) 2014; 42 H Liu (1186_CR27) 2020; 31 1186_CR52 1186_CR51 1186_CR50 1186_CR9 1186_CR8 1186_CR19 1186_CR7 1186_CR18 1186_CR6 1186_CR17 1186_CR5 1186_CR4 1186_CR14 1186_CR2 1186_CR1 1186_CR12 YP Loh (1186_CR29) 2019; 74 C Steinruecken (1186_CR43) 2019 CE Rasmussen (1186_CR36) 2006 S Aminikhanghahi (1186_CR3) 2017; 51 T Hong (1186_CR21) 2014; 30 C Park (1186_CR34) 2018; 19 F Chollet (1186_CR11) 2018 1186_CR28 1186_CR26 1186_CR25 A Tsanas (1186_CR47) 2012; 49 |
| References_xml | – reference: Cheng C, Boots B. Variational inference for gaussian process models with linear complexity. In: NIPS. 2017;5184–5194. – reference: KiblerDFAhaDWAlbertMKInstance-based prediction of real-valued attributesComput Intell19895515710.1111/j.1467-8640.1989.tb00315.x – reference: Bauer M, van der Wilk M, Rasmussen CE. Understanding probabilistic sparse gaussian process approximations. In: NIPS. 2016;1525–1533. – reference: GhahramaniZProbabilistic machine learning and artificial intelligenceNature2015521755345245910.1038/nature14541 – reference: Berns F, Beecks C. Automatic gaussian process model retrieval for big data. In: CIKM. ACM 2020;1965–1968. – reference: Low KH, Yu J, Chen J, Jaillet P. Parallel gaussian process regression for big data: Low-rank representation meets Markov approximation. In: AAAI. AAAI Press 2015;2821–2827. – reference: Wilson AG, Adams RP. Gaussian process kernels for pattern discovery and extrapolation. In: ICML (3), JMLR workshop and conference proceedings, vol. 28, pp. 1067–1075. JMLR.org. 2013. – reference: TüfekciPPrediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methodsInt J Electric Power Energy Syst20146012614010.1016/j.ijepes.2014.02.027 – reference: Zamora-MartínezFRomeuPBotella-RocamoraPPardoJOn-line learning of indoor temperature forecasting models towards energy efficiencyEnergy Build20148316217210.1016/j.enbuild.2014.04.034 – reference: Berns F, Beecks C. Large-scale retrieval of Bayesian machine learning models for time series data via gaussian processes. In: KDIR. SciTePress 2020;71–80. – reference: Duvenaud D, Lloyd JR, Grosse RB, Tenenbaum JB, Ghahramani Z. Structure discovery in nonparametric regression through compositional kernel search. In: ICML (3), JMLR workshop and conference proceedings, vol. 28. JMLR.org 2013;1166–1174. – reference: Berns F, Schmidt K, Bracht I, Beecks C. 3CS algorithm for efficient gaussian process model retrieval. In: 25th international conference on pattern recognition (ICPR). 2020. – reference: Abrahamsen P. A review of gaussian random fields and correlation functions. In: Technical report. 1997, p 917. https://doi.org/10.13140/RG.2.2.23937.20325. https://www.nr.no/directdownload/917_Rapport.pdf – reference: Hayashi K, Imaizumi M, Yoshida Y. On random subsampling of gaussian process regression: a graphon-based analysis. In: AISTATS, Proceedings of machine learning research, vol 108, p. PMLR 2020;2055–2065. – reference: Rossi S, Heinonen M, Bonilla EV, Shen Z, Filippone M. Sparse gaussian processes revisited: Bayesian approaches to inducing-variable approximations. In: AISTATS, Proceedings of machine learning research, vol. 130, p. PMLR 2021;1837–1845. – reference: Hebrail G, Berard A. Individual household electric power consumption data set. https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption. 2012. Accessed: 09 Jan 2020. – reference: Berns F, Beecks C. Complexity-adaptive gaussian process model inference for large-scale data. In: SDM. SIAM 2021. – reference: RobertsSOsborneMEbdenMReeceSGibsonNAigrainSGaussian processes for time-series modellingPhilos Trans Ser A Math Phys Eng Sci2013371198420110550300566810.1098/rsta.2011.05501353.62103 – reference: YükselSEWilsonJNGaderPDTwenty years of mixture of expertsIEEE Trans Neural Netw Learn Syst20122381177119310.1109/TNNLS.2012.2200299 – reference: TsanasAXifaraAAccurate quantitative estimation of energy performance of residential buildings using statistical machine learning toolsEnergy Build20124956056710.1016/j.enbuild.2012.03.003 – reference: AminikhanghahiSCookDJA survey of methods for time series change point detectionKnowl Inf Syst201751233936710.1007/s10115-016-0987-z – reference: LiuHOngYShenXCaiJWhen gaussian process meets big data: a review of scalable gpsIEEE Trans Neural Netw Learn Syst2020311144054423416996210.1109/TNNLS.2019.2957109 – reference: ParkCApleyDWPatchwork kriging for large-scale gaussian process regressionJ Mach Learn Res2018197:17:4338997731444.62088 – reference: DattaABanerjeeSFinleyAOGelfandAEHierarchical nearest-neighbor gaussian process models for large geostatistical datasetsJ Am Stat Assoc2016111514800812353870610.1080/01621459.2015.1044091 – reference: GittensAMahoneyMWRevisiting the Nystrom method for improved large-scale machine learningJ Mach Learn Res201617117:1117:6535435231367.68223 – reference: Wilson AG, Nickisch H. Kernel interpolation for scalable structured gaussian processes (KISS-GP). In: ICML, JMLR workshop and conference proceedings, vol. 37, pp. 1775–1784. JMLR.org. 2015. – reference: HintonGETraining products of experts by minimizing contrastive divergenceNeural Comput20021481771180010.1162/089976602760128018 – reference: Malkomes G, Schaff C, Garnett R. Bayesian optimization for automated model selection. In: NIPS. 2016;2892–2900. – reference: KimHLeeJClustering based on gaussian processesNeural Comput2007191130883107235297410.1162/neco.2007.19.11.30881143.68574 – reference: Li SC, Marlin BM. A scalable end-to-end gaussian process adapter for irregularly sampled time series classification. In: NIPS, 2016;1804–1812. – reference: Titsias MK. Variational learning of inducing variables in sparse gaussian processes. In: AISTATS, JMLR proceedings, vol. 5, pp. 567–574. JMLR.org 2009. – reference: Taubert N, Christensen A, Endres D, Giese MA. Online simulation of emotional interactive behaviors with hierarchical gaussian process dynamical models. In: Proceedings of the ACM symposium on applied perception, SAP ’12, pp. 25–32. Association for Computing Machinery, New York. 2012. https://doi.org/10.1145/2338676.2338682. – reference: CholletFDeep learning with Python2018Shelter IslandManning Publications Co – reference: Stanton S, Maddox W, Delbridge IA, Wilson AG. Kernel interpolation for scalable online gaussian processes. In: Banerjee A, Fukumizu K (eds) The 24th international conference on artificial intelligence and statistics, AISTATS 2021, April 13–15, 2021, Virtual event, Proceedings of machine learning research, vol. 130, PMLR 2021;3133–3141. http://proceedings.mlr.press/v130/stanton21a.html. – reference: IlievAIKyurkchievNMarkovSOn the approximation of the step function by some sigmoid functionsMath Comput Simul2017133223234357527810.1016/j.matcom.2015.11.005 – reference: Rivera R, Burnaev E. Forecasting of commercial sales with large scale gaussian processes. In: ICDM workshops, IEEE Computer Society 2017;625–634. – reference: Truong C, Oudre L, Vayatis N. Selective review of offline change point detection methods. Signal Process. 2020;167 – reference: Quinlan JR. Combining instance-based and model-based learning. In: ICML. Morgan Kaufmann 1993;236–243. – reference: SteinrueckenCSmithEJanzDLloydJRGhahramaniZThe automatic statisticianAutomated machine learning, The Springer series on challenges in machine learning2019New YorkSpringer161173 – reference: RasmussenCEWilliamsCKIGaussian processes for machine learning. Adaptive computation and machine learning2006New YorkMIT Press1177.68165 – reference: Max Planck Institute for Biogeochemistry: Weather Station Beutenberg/Weather Station Saaleaue: Jena Weather Data Analysis. https://www.bgc-jena.mpg.de/wetter/. 2019. Accessed: 09 Jan 2020. – reference: Arias Velásquez RM, Mejía Lara JV. Forecast and evaluation of covid-19 spreading in USA with reduced-space gaussian process regression. Chaos Solit Fractals. 2020;136:109924. https://doi.org/10.1016/j.chaos.2020.109924. https://www.sciencedirect.com/science/article/pii/S0960077920303234. – reference: Lloyd JR, Duvenaud D, Grosse RB, Tenenbaum JB, Ghahramani Z. Automatic construction and natural-language description of nonparametric regression models. In: AAAI. AAAI Press 2014;1242–1250. – reference: Hensman J, Fusi N, Lawrence ND. Gaussian processes for big data. In: UAI. AUAI Press; 2013. – reference: Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2(2). – reference: LohYPLiangXChanCSLow-light image enhancement using gaussian process for features retrievalSignal Process Image Commun20197417519010.1016/j.image.2019.02.001 – reference: HongTPinsonPFanSGlobal energy forecasting competition 2012Int J Forecast201430235736310.1016/j.ijforecast.2013.07.001 – reference: Snelson E, Ghahramani Z. Local and global sparse gaussian process approximations. In: AISTATS, JMLR Proceedings, vol. 2. JMLR.org 2007;524–531. – reference: Alsaleh R, Sayed T. Microscopic modeling of cyclists interactions with pedestrians in shared spaces: a gaussian process inverse reinforcement learning approach. Transportmetrica A Transport Sci. 2021. https://doi.org/10.1080/23249935.2021.1898487. – reference: Csató L, Opper M. Sparse representation for gaussian process models. In: NIPS. MIT Press 2000;444–450. – reference: MasoudniaSEbrahimpourRMixture of experts: a literature surveyArtif Intell Rev201442227529310.1007/s10462-012-9338-y – reference: VerrelstJAlonsoLCamps-VallsGDelegidoJMorenoJFRetrieval of vegetation biophysical parameters using gaussian process techniquesIEEE Trans Geosci Remote Sens2012505–21832184310.1109/TGRS.2011.2168962 – reference: Snelson E, Ghahramani Z. Sparse gaussian processes using pseudo-inputs. In: NIPS. 2005;1257–1264. – reference: Kim H, Teh YW. Scaling up the automatic statistician: scalable structure discovery using gaussian processes. In: AISTATS, Proceedings of machine learning research, vol. 84. PMLR 2018;575–584. – volume: 51 start-page: 339 issue: 2 year: 2017 ident: 1186_CR3 publication-title: Knowl Inf Syst doi: 10.1007/s10115-016-0987-z – ident: 1186_CR17 – volume: 83 start-page: 162 year: 2014 ident: 1186_CR54 publication-title: Energy Build doi: 10.1016/j.enbuild.2014.04.034 – ident: 1186_CR33 – ident: 1186_CR10 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 1186_CR20 publication-title: Neural Comput doi: 10.1162/089976602760128018 – volume: 111 start-page: 800 issue: 514 year: 2016 ident: 1186_CR13 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2015.1044091 – ident: 1186_CR14 – volume-title: Gaussian processes for machine learning. Adaptive computation and machine learning year: 2006 ident: 1186_CR36 – volume: 5 start-page: 51 year: 1989 ident: 1186_CR23 publication-title: Comput Intell doi: 10.1111/j.1467-8640.1989.tb00315.x – ident: 1186_CR7 doi: 10.5220/0010109700650074 – volume: 19 start-page: 3088 issue: 11 year: 2007 ident: 1186_CR24 publication-title: Neural Comput doi: 10.1162/neco.2007.19.11.3088 – volume: 74 start-page: 175 year: 2019 ident: 1186_CR29 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2019.02.001 – volume: 23 start-page: 1177 issue: 8 year: 2012 ident: 1186_CR53 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2200299 – volume: 42 start-page: 275 issue: 2 year: 2014 ident: 1186_CR32 publication-title: Artif Intell Rev doi: 10.1007/s10462-012-9338-y – ident: 1186_CR45 – ident: 1186_CR51 – volume: 31 start-page: 4405 issue: 11 year: 2020 ident: 1186_CR27 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2957109 – ident: 1186_CR4 doi: 10.1016/j.chaos.2020.109924 – volume: 133 start-page: 223 year: 2017 ident: 1186_CR22 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2015.11.005 – volume: 49 start-page: 560 year: 2012 ident: 1186_CR47 publication-title: Energy Build doi: 10.1016/j.enbuild.2012.03.003 – volume: 50 start-page: 1832 issue: 5–2 year: 2012 ident: 1186_CR49 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2011.2168962 – volume: 521 start-page: 452 issue: 7553 year: 2015 ident: 1186_CR15 publication-title: Nature doi: 10.1038/nature14541 – ident: 1186_CR40 – start-page: 161 volume-title: Automated machine learning, The Springer series on challenges in machine learning year: 2019 ident: 1186_CR43 – ident: 1186_CR44 doi: 10.1145/2338676.2338682 – ident: 1186_CR37 doi: 10.1109/ICDMW.2017.89 – ident: 1186_CR25 – ident: 1186_CR50 – ident: 1186_CR19 – ident: 1186_CR46 doi: 10.1016/j.sigpro.2019.107299 – ident: 1186_CR12 – volume: 17 start-page: 117:1 year: 2016 ident: 1186_CR16 publication-title: J Mach Learn Res – ident: 1186_CR41 – ident: 1186_CR31 – volume: 371 start-page: 20110550 issue: 1984 year: 2013 ident: 1186_CR38 publication-title: Philos Trans Ser A Math Phys Eng Sci doi: 10.1098/rsta.2011.0550 – ident: 1186_CR52 doi: 10.1007/s40745-015-0040-1 – ident: 1186_CR30 doi: 10.1609/aaai.v29i1.9575 – ident: 1186_CR8 doi: 10.1137/1.9781611976700.41 – ident: 1186_CR35 doi: 10.1016/B978-1-55860-307-3.50037-X – volume-title: Deep learning with Python year: 2018 ident: 1186_CR11 – ident: 1186_CR26 – ident: 1186_CR6 doi: 10.1145/3340531.3412182 – ident: 1186_CR18 – volume: 60 start-page: 126 year: 2014 ident: 1186_CR48 publication-title: Int J Electric Power Energy Syst doi: 10.1016/j.ijepes.2014.02.027 – ident: 1186_CR2 doi: 10.1080/23249935.2021.1898487 – volume: 30 start-page: 357 issue: 2 year: 2014 ident: 1186_CR21 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2013.07.001 – ident: 1186_CR39 – volume: 19 start-page: 7:1 year: 2018 ident: 1186_CR34 publication-title: J Mach Learn Res – ident: 1186_CR28 doi: 10.1609/aaai.v28i1.8904 – ident: 1186_CR1 doi: 10.13140/RG.2.2.23937.20325 – ident: 1186_CR42 – ident: 1186_CR9 – ident: 1186_CR5 |
| SSID | ssj0002504465 |
| Score | 2.2657254 |
| SecondaryResourceType | review_article |
| Snippet | Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 300 |
| SubjectTerms | Algorithms Approximation Automation Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Empirical analysis Gaussian process Inference Information Systems and Communication Service Interpolation Knowledge Discovery Knowledge Engineering and Knowledge Management Model accuracy Pattern Recognition and Graphics Random variables Review Review Article Software Engineering/Programming and Operating Systems State-of-the-art reviews Statistical analysis Vision |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQcOilvNqyZUGuxK21tHZiO-ktQrwk2KI-ELco8YNdaUmqzWbLz2fsTYK221ai54xlx54Zf7ZnvkHoWMdWqtAEBLZaQULOFAHUOiA6zgzVPBbcc-ndXsnhMLq7i2-apLCqjXZvnyS9p-6S3cBzypi46HOXLSkIIMcN2O4iV7Dh67fb7mbFkXKFgjcZMn9uurwLrUDL1QjJ355J_e5ztvV_495Grxu0iZOFeuygNVPsoq22kgNuDHsPjZJ6VgJ2NRq74mgTfNnmAWIAtfg8qyuXbImbtAJTfcZJgb_MnaMxv3BpsQetpLQEACWB_vC1L01d4azQOJncl9PxbPRQvUE_zk6_n1yQpgYDUQBlHgmcnKni3IhBJqTUuZQKAI2NbEg1ywxTlhlAQILmOdWRUiYLMs0DFivD8gBOwG_RelEWZh9haQeRlQA3aG5DwIm5CUVOlQwC8CtwbOsh2q5JqhqCclcnY5J21Mp-KlOYytRPZfrYQx-7Nj8X9Bz_lO63S502plqlzF3pOJZ92kMfus9gZO7lJCtMWYOMkICDHTVjD71baEbXXcBFKDmH4cslnekEHIH38pdiPPJE3jHAhphBy0-t5jwP6-9_8f5l4gfoFfPK50KM-2h9Nq3NIdpU89m4mh5503kC1ykVrw priority: 102 providerName: Springer Nature |
| Title | Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
| URI | https://link.springer.com/article/10.1007/s42979-022-01186-x https://www.ncbi.nlm.nih.gov/pubmed/35647556 https://www.proquest.com/docview/2933094661 https://www.proquest.com/docview/2672317790 https://pubmed.ncbi.nlm.nih.gov/PMC9123926 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYxoELDPGxsq0yEjewqJ3YjrlMBW2AgFINmCouUeIPOqkk29Ju_fN5dp1MZWIXLpEi24mt9_z8e7bf7yH0wigndWoTAkutIClnmgBqHRCjCksNV4IHLr2Tz3I0yiYTNY4bbk28VtnaxGCoTa39Hvlr5j1vT4ZOD87Oic8a5U9XYwqNDbTlWRJ86oYx_9ntsXh6rjRkk4RliBGl-CTGzYToOTDFUhF_nd2HXwqyXF-bbgDOm_cm_zo8DWvS0YP_Hc02uh_RKB6u1OchumOrR2g6XMxrALLWYJ8pbYY_tkGBGBAufl8sGh95iWOMgW3e4GGFv156q2OvcO1wQLCkdgTQJYGP4y8hT3WDi8rg4ewX9GQ-_d08Rj-ODr-_-0BiQgaiAdcsCbjRVHNuxaAQUppSSg3oxmUupYYVlmnHLMAhQcuSmkxrWySF4QlT2rIyAXf4Cdqs6sruICzdIHMSsActXQqgsbSpKKmWSQJGBny4HqKtKHId2cp90oxZ3vEsB_HlIL48iC9f9tDLrs3Ziqvj1tp7rWjyOG-b_FouPfS8K4YZ549RisrWC6gjJIBiz9PYQ09XCtH9LuEilZxD9-WaqnQVPJv3ekl1Og2s3gowhGLQ8lWrVNfd-vcont0-il10jwUF9_eL99Dm_GJh99FdfTk_bS76aENOsj7aens4Gh_D2ydJ-mEGwfP428kfCGgfCw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aAwle-BCwdRtgJHgCi9qJ43gSQhUwVrUrPAzUt5DYDp3UJWNpt_Kn-I1cu0mmMrG3PfBs58Px8b3nxr7nArwwKpc6tAFFVxvRUHBNkbV2qVGpZUaoSHgtvW9DORrF47H6sga_m1wYd6yysYneUJtSu3_kb7iLvJ0YOnt38pO6qlFud7UpobGExcD-OseQrXrb_4Dz-5LzvY-H7_dpXVWAanTOC4qxINNC2KibRlKaTEqNLjqP85AZnlquc27Rp0csy5iJtbZpkBoRcKUtzwKM6fC-N-BmGMTSrauBpO0_HScHFvrqlej2OFVKjOs8HZ-th6ZfKuqOz7t0z4guVn3hJYJ7-ZzmX5u13gfu3fvfvt59uFuzbdJbLo8HsGaLhzDpzWclEnVriKsENyX9JumRIIMnn9J55TJLSZ1DYatd0ivI5zNnVe05KXPiGTotc4rsmeLNyYGvw12RtDCkN_2BI59NjqtH8PVaBvcY1ouysJtAZN6Nc4ncimV5iKQ4s2GUMS2DAI0oxqgdYM3UJ7pWY3dFQaZJqyPt4ZIgXBIPl2TRgVftNSdLLZIre-80UEhqu1QlFzjowPO2GS2K2yZKC1vOsU8kkfQ7HcoObCwB2D4uEFEohcDXlyvQbDs4tfLVluJo4lXLFXIkxfHK1w2IL17r36PYunoUz-D2_uHBMBn2R4NtuMP94nJnqXdgfXY6t0_glj6bHVWnT_1KJfD9usH9ByHBeBU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hDSFetvE1ug0wEm9grXZiu9lbNShMjDIJmPYWJf6glbpkatJtf_7ObhIoAyTEs8_y1539s333O4BXJnFKxzaieNRKGguuKaLWPjVJZpkRiRSBS-_0WI3Hg7Oz5OSnKP7g7d5-SS5jGjxLU1HvXxi33wW-4S6qEuo90X3kpKSIItdj70jv7-tfTrtXFk_QFUvRRMv8vurqiXQLZt72lvzlyzScRKPN_x_DFmw0KJQMl2rzAO7Y4iFsthkeSGPwj2AyXNQlYlpriE-aNiNHbXwgQbBL3meLygdhkibcwFYHZFiQz5d-A7JXpHQkgFlaOopAk2J75FNIWV2RrDBkOPtezqf15Lx6DN9G774efqBNbgaqEeJcU7xRMy2Elf1MKmVypTQCHTdwMTM8s1w7bhEZSZbnzAy0tlmUGRHxRFueR3gzfgJrRVnYp0CU6w-cQhjCchcjfsxtLHOmVRThfoPXuR6wdn1S3RCX-_wZs7SjXA5TmeJUpmEq0-sevO7qXCxpO_4qvdcue9qYcJVy_9Tj2fdZD152xWh8_kclK2y5QBmpEB97ysYebC-1pGsuEjJWQmD31Yr-dAKe2Hu1pJhOAsF3gnAi4VjzTatFP7r151Hs_Jv4C7h38naUHh-NP-7CfR700Hsh78FaPV_YZ3BXX9bTav48WNQN3XIhdw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Model+Inference+for+Gaussian+Processes%3A+An+Overview+of+State-of-the-Art+Methods+and+Algorithms&rft.jtitle=SN+computer+science&rft.au=Berns%2C+Fabian&rft.au=H%C3%BCwel%2C+Jan&rft.au=Beecks%2C+Christian&rft.date=2022-07-01&rft.eissn=2661-8907&rft.volume=3&rft.issue=4&rft.spage=300&rft_id=info:doi/10.1007%2Fs42979-022-01186-x&rft_id=info%3Apmid%2F35647556&rft.externalDocID=35647556 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |