Anomaly Detection in COVID-19 Time-Series Data
Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-ser...
Uloženo v:
| Vydáno v: | SN computer science Ročník 2; číslo 4; s. 279 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Singapore
01.07.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 2662-995X, 2661-8907, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown. |
|---|---|
| AbstractList | Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown.Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown. Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown. |
| ArticleNumber | 279 |
| Author | Ray, Indrakshi Kahn, Michael G. Ghosh, Sudipto Gondalia, Shlok Homayouni, Hajar |
| Author_xml | – sequence: 1 givenname: Hajar surname: Homayouni fullname: Homayouni, Hajar organization: Computer Science Department, Colorado State University – sequence: 2 givenname: Indrakshi surname: Ray fullname: Ray, Indrakshi organization: Computer Science Department, Colorado State University – sequence: 3 givenname: Sudipto orcidid: 0000-0001-6000-9646 surname: Ghosh fullname: Ghosh, Sudipto email: ghosh@colostate.edu organization: Computer Science Department, Colorado State University – sequence: 4 givenname: Shlok surname: Gondalia fullname: Gondalia, Shlok organization: Computer Science Department, Colorado State University – sequence: 5 givenname: Michael G. surname: Kahn fullname: Kahn, Michael G. organization: Anschutz Medical Campus, University of Colorado Denver |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34027432$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUlPHDEQha2IKCzhD-QQtZRLLiZe2tslEppJCBISB0iUm-V2VxOjbpvYPYz49zEMhOXAySX5e0-v6u2irZgiIPSBkgNKiPpSWmaUwYRRTIgUGq_foB0mJcXaELV1NzNsjPi9jfZLuSSEMEHaVop3aJu3hKmWsx10cBjT5MabZgkz-Dmk2ITYLE5_HS8xNc15mACfQQ5QmqWb3Xv0dnBjgf37dw_9_P7tfPEDn5weHS8OT7Dn2qxxLzrau473svPGgPRGC98RJT2VvXdOdE5oM3jfSz60lPSKQqt8D3XsBg18D33d-F6tugl6D3HObrRXOUwu39jkgn3-E8Mfe5GuraacMS2qwed7g5z-rqDMdgrFwzi6CGlVLBOcipYqqiv66QV6mVY51vUsM5wpbeqlK_XxaaL_UR5OWQG9AXxOpWQYrA-zu71oDRhGS4m9Lc5uirO1OHtXnF1XKXshfXB_VcQ3olLheAH5MfYrqn-B2qpa |
| CitedBy_id | crossref_primary_10_3390_computers14070276 crossref_primary_10_1371_journal_pcbi_1012423 crossref_primary_10_1016_j_ijdrr_2024_104625 crossref_primary_10_1016_j_eij_2025_100642 crossref_primary_10_3390_s23229272 crossref_primary_10_14746_sr_2024_8_3_03 crossref_primary_10_1016_j_inffus_2022_10_008 crossref_primary_10_1007_s41870_022_00967_0 crossref_primary_10_1016_j_compositesb_2024_111802 crossref_primary_10_2139_ssrn_5178847 |
| Cites_doi | 10.1007/978-3-030-55180-3_45 10.1109/ACCESS.2018.2870151 10.1016/j.neucom.2017.08.026 10.1016/j.jcrc.2020.03.005 10.1016/j.scs.2017.08.009 10.1144/geochem2016-024 10.1109/LRA.2018.2801475 10.3390/ijerph17155330 10.1016/S0140-6736(20)30526-2 10.1093/jamia/ocaa071 10.1016/j.envsoft.2018.06.004 10.1162/neco_a_01199 10.1109/ACCESS.2020.3022366 10.1007/s10100-017-0479-6 10.1007/s13347-017-0293-z 10.1111/j.1751-5823.2011.00148.x 10.1145/3097983.3098052 10.1109/BigData50022.2020.9378192 10.1109/SIEDS.2019.8735594 10.1109/CCECE.2018.8447597 10.1109/MDM.2018.00029 10.1109/PHM-Paris.2019.00055 10.1007/978-1-4842-3516-4_9 10.1109/ICDMW.2015.104 10.1007/s10489-020-01902-1 10.1007/978-981-15-3992-3_42 10.1101/2020.07.06.20147512 10.1101/2020.09.02.20186502 10.1145/2783258.2788611 10.1109/ICCIKE47802.2019.9004325 10.1080/10618600.2019.1617160 10.1155/2020/6152041 10.1093/oso/9780198538493.001.0001 10.1145/335191.335388 10.1109/DEPCOS-RELCOMEX.2006.38 10.1109/DSAA.2016.92 10.1109/IRI.2019.00023 10.1109/BigData47090.2019.9006446 10.1145/3338840.3355641 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.1007/s42979-021-00658-w |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Advanced Technologies & Aerospace Collection PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | PMC8132285 34027432 10_1007_s42979_021_00658_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Google funderid: http://dx.doi.org/10.13039/100006785 – fundername: National Science Foundation grantid: CNS 1650573 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: CableLabs, Furuno Electric Company, SecureNok, AFRL, and NIST – fundername: National Science Foundation (US) grantid: CNS 1822118; OAC 1931363 – fundername: National Science Foundation (US) grantid: IIS 2027750; IIS 2027750 – fundername: ; – fundername: ; grantid: IIS 2027750; IIS 2027750 – fundername: ; grantid: CNS 1650573 – fundername: ; grantid: CNS 1822118; OAC 1931363 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c389w-d5b1dab3d6bc99e6c985cb076c16dcaa5ba589fccd63f410d71e47cde10dbf8e3 |
| IEDL.DBID | RSV |
| ISSN | 2662-995X 2661-8907 |
| IngestDate | Tue Nov 04 01:57:44 EST 2025 Fri Sep 05 14:09:02 EDT 2025 Wed Nov 05 14:57:20 EST 2025 Wed Feb 19 02:26:33 EST 2025 Tue Nov 18 22:29:38 EST 2025 Sat Nov 29 05:16:49 EST 2025 Fri Feb 21 02:48:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | COVID-19 data LSTM-autoencoder Explainability Anomaly detection Time series Data quality tests |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389w-d5b1dab3d6bc99e6c985cb076c16dcaa5ba589fccd63f410d71e47cde10dbf8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6000-9646 |
| OpenAccessLink | http://dx.doi.org/10.1007/s42979-021-00658-w |
| PMID | 34027432 |
| PQID | 2932789297 |
| PQPubID | 6623307 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8132285 proquest_miscellaneous_2531541718 proquest_journals_2932789297 pubmed_primary_34027432 crossref_citationtrail_10_1007_s42979_021_00658_w crossref_primary_10_1007_s42979_021_00658_w springer_journals_10_1007_s42979_021_00658_w |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationTitleAlternate | SN Comput Sci |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Park, Hoshi, Kemp (CR35) 2018; 3 CR38 CR37 CR36 Kaminski, Jakubczyk, Szufel (CR42) 2018; 26 Chen, Wu (CR12) 2017; 17 de Laat (CR41) 2018; 31 Aljbali, Roy, Arai, Kapoor, Bhatia (CR46) 2021 Karadayi, Aydin, Öǧrencí (CR5) 2020; 8 CR2 CR4 Bishop (CR34) 1995 CR6 Park (CR39) 2017 CR7 Kuster, Rezgui, Mourshed (CR30) 2017; 35 CR49 CR47 CR45 CR44 CR43 CR40 Wenham, Smith, Morgan (CR1) 2020; 395 Yu, Si, Hu, Zhang (CR9) 2019; 31 Adhikari, Agrawal (CR33) 2013 Lu, Liu, Fei, Guan (CR18) 2018; 6 Wu, Zeng, Yan (CR11) 2018; 273 Agbehadji, Awuzie, Ngowi, Millham (CR8) 2020; 17 CR19 CR17 CR16 CR15 CR14 CR13 CR10 Hasani, Jakimovski, Velinov, Kon-Popovska (CR32) 2018 Wissel, Van Camp, Kouril, Weis, Glauser, White, Kohane, Dexheimer (CR50) 2020; 27 Finlay, Fung, Seneta (CR48) 2011; 79 CR52 CR51 Maçaira, Thomé, Oliveira, Ferrer (CR31) 2018; 107 Cortegiani, Ingoglia, Ippolito, Giarratano, Einav (CR3) 2020; 57 CR29 CR28 CR27 CR26 CR25 CR24 CR23 CR22 CR21 CR20 658_CR7 658_CR20 C Wenham (658_CR1) 2020; 395 658_CR6 658_CR24 658_CR23 658_CR22 658_CR21 658_CR28 658_CR27 658_CR26 658_CR25 658_CR29 D Park (658_CR35) 2018; 3 KI Park (658_CR39) 2017 IE Agbehadji (658_CR8) 2020; 17 J Wu (658_CR11) 2018; 273 658_CR38 658_CR37 658_CR36 Y Yu (658_CR9) 2019; 31 C Kuster (658_CR30) 2017; 35 H Lu (658_CR18) 2018; 6 Y Karadayi (658_CR5) 2020; 8 S Aljbali (658_CR46) 2021 R Adhikari (658_CR33) 2013 PM Maçaira (658_CR31) 2018; 107 Z Hasani (658_CR32) 2018 658_CR40 658_CR45 658_CR44 658_CR43 658_CR49 658_CR47 Y Chen (658_CR12) 2017; 17 CM Bishop (658_CR34) 1995 R Finlay (658_CR48) 2011; 79 658_CR52 658_CR51 658_CR13 658_CR10 658_CR17 658_CR16 658_CR15 BD Wissel (658_CR50) 2020; 27 658_CR14 658_CR19 PB de Laat (658_CR41) 2018; 31 B Kaminski (658_CR42) 2018; 26 658_CR4 658_CR2 A Cortegiani (658_CR3) 2020; 57 |
| References_xml | – ident: CR45 – ident: CR22 – ident: CR49 – ident: CR4 – ident: CR16 – start-page: 612 year: 2021 end-page: 619 ident: CR46 article-title: Anomaly detection using bidirectional LSTM publication-title: Intelligent systems and applications doi: 10.1007/978-3-030-55180-3_45 – ident: CR51 – volume: 6 start-page: 53593 year: 2018 end-page: 53610 ident: CR18 article-title: An outlier detection algorithm based on cross-correlation analysis for time series dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870151 – volume: 273 start-page: 535 year: 2018 end-page: 546 ident: CR11 article-title: Hierarchical temporal memory method for time-series-based anomaly detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.026 – ident: CR29 – ident: CR25 – volume: 57 start-page: 279 year: 2020 end-page: 283 ident: CR3 article-title: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19 publication-title: J Crit Care doi: 10.1016/j.jcrc.2020.03.005 – ident: CR21 – volume: 35 start-page: 257 year: 2017 end-page: 270 ident: CR30 article-title: Electrical load forecasting models: a critical systematic review publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2017.08.009 – volume: 17 start-page: 231 issue: 3 year: 2017 end-page: 238 ident: CR12 article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data publication-title: Geochem Explor Environ Anal doi: 10.1144/geochem2016-024 – ident: CR19 – start-page: 385 year: 2018 end-page: 397 ident: CR32 publication-title: An adaptive anomaly detection algorithm for periodic data streams, “intelligent data engineering and automated learning” – ident: CR15 – ident: CR36 – volume: 3 start-page: 1544 issue: 3 year: 2018 end-page: 1551 ident: CR35 article-title: A multimodalanomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2018.2801475 – year: 1995 ident: CR34 publication-title: Bishop PoNCCM. Neural networks for pattern recognition – ident: CR26 – volume: 17 start-page: 5330 issue: 15 year: 2020 ident: CR8 article-title: Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17155330 – year: 2017 ident: CR39 publication-title: Fundamentals of probability and stochastic processes with applications to communications – ident: CR43 – ident: CR47 – volume: 395 start-page: 846 issue: 10227 year: 2020 end-page: 848 ident: CR1 article-title: COVID-19: the gendered impacts of the outbreak publication-title: Lancet doi: 10.1016/S0140-6736(20)30526-2 – volume: 27 start-page: 1121 issue: 7 year: 2020 end-page: 1125 ident: CR50 article-title: An interactive online dashboard for tracking COVID-19 in US counties, cities, and states in real time publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa071 – ident: CR14 – ident: CR2 – volume: 107 start-page: 199 year: 2018 end-page: 209 ident: CR31 article-title: Time series analysis with explanatory variables: a systematic literature review publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2018.06.004 – ident: CR37 – ident: CR10 – volume: 31 start-page: 1235 issue: 7 year: 2019 end-page: 1270 ident: CR9 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput doi: 10.1162/neco_a_01199 – ident: CR6 – volume: 8 start-page: 164155 year: 2020 end-page: 164177 ident: CR5 article-title: Unsupervised anomaly detection in multivariate spatio-temporal data using deep learning: early detection of COVID-19 outbreak in Italy publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022366 – volume: 26 start-page: 135 issue: 1 year: 2018 end-page: 159 ident: CR42 article-title: A framework for sensitivity analysis of decision trees publication-title: Cent Eur J Oper Res doi: 10.1007/s10100-017-0479-6 – ident: CR40 – volume: 31 start-page: 525 issue: 4 year: 2018 end-page: 541 ident: CR41 article-title: Algorithmic decision-making based on machine learning from big data: can transparency restore accountability publication-title: Philos Technol doi: 10.1007/s13347-017-0293-z – ident: CR27 – ident: CR23 – volume: 79 start-page: 255 issue: 2 year: 2011 end-page: 271 ident: CR48 article-title: Autocorrelation functions publication-title: Int Stat Rev doi: 10.1111/j.1751-5823.2011.00148.x – ident: CR44 – ident: CR38 – ident: CR52 – ident: CR17 – ident: CR13 – ident: CR7 – ident: CR28 – ident: CR24 – year: 2013 ident: CR33 publication-title: An introductory study on time series modeling and forecasting – ident: CR20 – ident: 658_CR52 doi: 10.1145/3097983.3098052 – ident: 658_CR19 doi: 10.1109/BigData50022.2020.9378192 – volume-title: Fundamentals of probability and stochastic processes with applications to communications year: 2017 ident: 658_CR39 – ident: 658_CR10 doi: 10.1109/SIEDS.2019.8735594 – ident: 658_CR37 – ident: 658_CR40 doi: 10.1109/CCECE.2018.8447597 – ident: 658_CR44 doi: 10.1109/MDM.2018.00029 – ident: 658_CR23 – ident: 658_CR36 doi: 10.1109/PHM-Paris.2019.00055 – volume: 31 start-page: 1235 issue: 7 year: 2019 ident: 658_CR9 publication-title: Neural Comput doi: 10.1162/neco_a_01199 – volume: 6 start-page: 53593 year: 2018 ident: 658_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870151 – ident: 658_CR47 doi: 10.1007/978-1-4842-3516-4_9 – volume: 395 start-page: 846 issue: 10227 year: 2020 ident: 658_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(20)30526-2 – ident: 658_CR28 doi: 10.1109/ICDMW.2015.104 – ident: 658_CR2 doi: 10.1007/s10489-020-01902-1 – ident: 658_CR22 – volume: 8 start-page: 164155 year: 2020 ident: 658_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022366 – volume: 31 start-page: 525 issue: 4 year: 2018 ident: 658_CR41 publication-title: Philos Technol doi: 10.1007/s13347-017-0293-z – volume: 3 start-page: 1544 issue: 3 year: 2018 ident: 658_CR35 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2018.2801475 – ident: 658_CR26 – ident: 658_CR15 doi: 10.1007/978-981-15-3992-3_42 – ident: 658_CR4 doi: 10.1101/2020.07.06.20147512 – ident: 658_CR6 doi: 10.1101/2020.09.02.20186502 – ident: 658_CR29 doi: 10.1145/2783258.2788611 – ident: 658_CR27 doi: 10.1109/ICCIKE47802.2019.9004325 – volume: 107 start-page: 199 year: 2018 ident: 658_CR31 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2018.06.004 – ident: 658_CR43 doi: 10.1080/10618600.2019.1617160 – volume: 17 start-page: 5330 issue: 15 year: 2020 ident: 658_CR8 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17155330 – volume: 27 start-page: 1121 issue: 7 year: 2020 ident: 658_CR50 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa071 – start-page: 385 volume-title: An adaptive anomaly detection algorithm for periodic data streams, “intelligent data engineering and automated learning” year: 2018 ident: 658_CR32 – start-page: 612 volume-title: Intelligent systems and applications year: 2021 ident: 658_CR46 doi: 10.1007/978-3-030-55180-3_45 – ident: 658_CR7 doi: 10.1155/2020/6152041 – volume: 57 start-page: 279 year: 2020 ident: 658_CR3 publication-title: J Crit Care doi: 10.1016/j.jcrc.2020.03.005 – ident: 658_CR21 – ident: 658_CR25 – volume: 79 start-page: 255 issue: 2 year: 2011 ident: 658_CR48 publication-title: Int Stat Rev doi: 10.1111/j.1751-5823.2011.00148.x – volume-title: Bishop PoNCCM. Neural networks for pattern recognition year: 1995 ident: 658_CR34 doi: 10.1093/oso/9780198538493.001.0001 – volume-title: An introductory study on time series modeling and forecasting year: 2013 ident: 658_CR33 – ident: 658_CR13 doi: 10.1145/335191.335388 – ident: 658_CR51 – volume: 35 start-page: 257 year: 2017 ident: 658_CR30 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2017.08.009 – ident: 658_CR38 doi: 10.1109/DEPCOS-RELCOMEX.2006.38 – ident: 658_CR45 doi: 10.1109/DSAA.2016.92 – volume: 273 start-page: 535 year: 2018 ident: 658_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.026 – ident: 658_CR20 – ident: 658_CR16 doi: 10.1109/IRI.2019.00023 – volume: 17 start-page: 231 issue: 3 year: 2017 ident: 658_CR12 publication-title: Geochem Explor Environ Anal doi: 10.1144/geochem2016-024 – ident: 658_CR17 doi: 10.1109/BigData47090.2019.9006446 – ident: 658_CR14 doi: 10.1145/3338840.3355641 – ident: 658_CR49 – ident: 658_CR24 – volume: 26 start-page: 135 issue: 1 year: 2018 ident: 658_CR42 publication-title: Cent Eur J Oper Res doi: 10.1007/s10100-017-0479-6 |
| SSID | ssj0002504465 |
| Score | 2.262798 |
| Snippet | Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 279 |
| SubjectTerms | Anomalies Artificial Intelligence for HealthCare Computer Imaging Computer Science Computer Systems Organization and Communication Networks COVID-19 Data analysis Data Structures and Information Theory Datasets Epidemics Health care facilities Information Systems and Communication Service Machine learning Original Research Outliers (statistics) Pattern Recognition and Graphics Quality control Scientific visualization Software Engineering/Programming and Operating Systems Subject specialists Time series Vision Visualization |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9isMMubIhthDEUpN2Ytzix4_g0IboKLqwHmKpdIn9Fq9QlhRYq_vv5uWlQV60XbpHsKLHf83vP7-sH8MkJai21GdHapIRVXBIlrSKaV5Sa1IqksgFsQlxdFcOhHLQOt2mbVrmUiUFQ28agj_yrV0tYtJlK8W1ySxA1CqOrLYTGC9jBLgkI3TDgvzofC7bnYgFN0quhlEjJh23dTKie86JYSII5CkERk_mqblozONfzJv8Jngad1H_93NW8gd3WGo3PFuyzB1uu3ocvZ3XzR40f456bhUStOh7V8fmPn5c9QmWMRSMEnWpuGvfUTL2Fm_736_ML0sIqEOOtkzmxXFOrdGZzbaR0uZEFNzoRuaG5NUpxrXghK2NsnlWMJlZQx4Sxzj_qqnDZO9ium9odQGzTJGNOG1uIAjGMtamYYNzbVEoLWiUR0OWGlqbtOY7QF-Oy65YciFB6IpSBCOU8gtPuncmi48bG2UfLDS7b0zctn3Y3gpNu2J8bDIao2jX3fo4XPpxRr5ojeL8ga_e5jOFlPUsjECsE7yZgT-7VkXr0O_TmLvB2X_AIPi9Z4-m3_r-Kw82r-ACv0sCmmCV8BNuzu3v3EV6ah9loencceP4vv7YHkQ priority: 102 providerName: ProQuest |
| Title | Anomaly Detection in COVID-19 Time-Series Data |
| URI | https://link.springer.com/article/10.1007/s42979-021-00658-w https://www.ncbi.nlm.nih.gov/pubmed/34027432 https://www.proquest.com/docview/2932789297 https://www.proquest.com/docview/2531541718 https://pubmed.ncbi.nlm.nih.gov/PMC8132285 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjwdeNmAMso0qSLxtRnFix_bjtq4aQirVYFW1l8hfEZVGOvVjFf89tpsElcGk8RIl8uXDdznf2b67H8AHy7Ax2GRIKZ0iUlKBpDASKVpirFPDktIEsAnW7_PRSAzqpLBZE-3ebEmGkbpNdnMjJxPIhxQEu4mWG7DlzB33gA1XX4ftyoovykUChqQzPikSgo7qbJm_P2bdIj1wMx9GS_6xZRosUW_3__rwAnZqzzM-Xf0qL-GZrV7BboPqENdKvgcfT6vJD3n7M-7aeYjTquJxFZ9_GX7qIixinzOC_JqancVdOZev4bp38e38EtWoCkg752SJDFXYSJWZXGkhbK4Fp1olLNc4N1pKqiTlotTa5FlJcGIYtoRpY92pKrnN9mGzmlT2LcQmTTJilTaccQ9hrHRJGKHOpZKK4TKJADecLXRdctwjX9wWbbHkwJDCMaQIDCmWERy399ytCm48Sn3UCKyolW9WOA_G5_c62gjet81ObfxeiKzsZOFo3NhDCXaWOYI3K_m2r8uIn6tnaQRsTfItgS_Jvd5Sjb-H0tzcT-45jeCkkf_vz_p3Lw6eRn4Iz9PwC_mg4SPYnE8X9h1s6_v5eDbtwAYb8Q5snV30B1fu6jND7jigN52gJr8AYXUI1g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBQkuLGIbKDBIcAJD7LFj-4BQ1VA1SgkcCspt8DYiUpmUJiXqn-I34ufMTBUqeuuB20j2LJ7vbX5-C8CLIKn31BfEWscIr4QmRntDrKgodczLXuVTswk5HqvJRH_egN9tLgyGVbYyMQlqP3PoI38b1RImbTIt3x_9JNg1Ck9X2xYaK7IYhdNl3LLN3w0HEd-XjO1-ONjZI01XAeKicl4SLyz1xha-b53Woe-0Es7G7byjfe-MEdYIpSvnfL-oOO15SQOXzod4aSsVivjcK3CVF0oiX40k6Xw6WA6Mp-6VUe0xorWYNHk6KVsvin6pCcZEJMVPluu68JyBez5O86_D2qQDd2_9b3_vNtxsrO18e8Ued2Aj1HfhzXY9-2EOT_NBWKRAtDqf1vnOp6_DAaE6x6QYgk7DMM8HZmHuwZdL-cT7sFnP6vAQcs96BQ_WeSUV9mi2ruKSi2gzGitp1cuAtgCWrqmpjq09DsuuGnQCvYyglwn0cpnBq-6eo1VFkQtnb7WAlo10mZdnaGbwvBuOcgEPe0wdZidxThSugtNoemTwYEVG3esKjs6IgmUg1wism4A1x9dH6un3VHtcofdCiQxet6R49ln_XsWji1fxDK7vHXzcL_eH49FjuMESi2BE9BZsLo5PwhO45n4tpvPjp4nfcvh22ST6B47YaQg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8IEsOLKCCuIi6Jb1C57rbb7SPhvEA0BwlI7m3Tz3gJ9gi3ePG_t-3trp6AieFtk053t9OZzrSd-Q3AB8Ow1ljnSEqVIWIpR4JrgSS1GKtMs57VsdgEGw7L0Yif_ZHFH6Pd2yvJeU5DQGly9cG1tgdd4ptfRRlHIbwg2lA0W4KnJATSh_36-WV3yhIAukisJ-kNUYY4p6Mmc-b-1yxapzsu593Iyb-uT6NVGqw9fjwv4HnjkaaHcxF6CU-MW4e1ttpD2ij_Bnw8dJPv4upn2jd1jN9y6dilR6eXJ32EeRpySVA4azPTtC9qsQlfB58ujo5RU20BKe-0zJCmEmshc11IxbkpFC-pkj1WKFxoJQSVgpbcKqWL3Hpea4YNYUob_yhtafJXsOwmzryGVGe9nBipdMnKUNpYKksYod7VEpJh20sAt1yuVANFHipiXFUdiHJkSOUZUkWGVLME9ro-13Mgjn9Sb7eTVzVKOa28ZxPyfj1tArtds1encEcinJncehq_JlGCvcVOYGs-193nchL28HmWAFuQgo4gQHUvtrjxtwjZXYZNf0kT2G9l4fdvPTyKN_9H_h6enfUH1ZeT4ee3sJpFaQpxxduwXN_cmnewon7U4-nNTtSRX1tWEEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+COVID-19+Time-Series+Data&rft.jtitle=SN+computer+science&rft.au=Homayouni%2C+Hajar&rft.au=Ray%2C+Indrakshi&rft.au=Ghosh%2C+Sudipto&rft.au=Gondalia%2C+Shlok&rft.date=2021-07-01&rft.pub=Springer+Singapore&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-021-00658-w&rft_id=info%3Apmid%2F34027432&rft.externalDocID=PMC8132285 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |