Clustering of random scale-free networks
We derive the finite-size dependence of the clustering coefficient of scale-free random graphs generated by the configuration model with degree distribution exponent 2<γ<3. Degree heterogeneity increases the presence of triangles in the network up to levels that compare to those found in many...
Uložené v:
| Vydané v: | Physical review. E, Statistical, nonlinear, and soft matter physics Ročník 86; číslo 2; s. 026120 - 26124 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
American Physical Society
30.08.2012
|
| Predmet: | |
| ISSN: | 1539-3755, 1550-2376, 1550-2376 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We derive the finite-size dependence of the clustering coefficient of scale-free random graphs generated by the configuration model with degree distribution exponent 2<γ<3. Degree heterogeneity increases the presence of triangles in the network up to levels that compare to those found in many real networks even for extremely large nets. We also find that for values of γ≈2, clustering is virtually size independent and, at the same time, becomes a de facto non-self-averaging topological property. This implies that a single-instance network is not representative of the ensemble even for very large network sizes. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1539-3755 1550-2376 1550-2376 |
| DOI: | 10.1103/PhysRevE.86.026120 |