Clustering of random scale-free networks

We derive the finite-size dependence of the clustering coefficient of scale-free random graphs generated by the configuration model with degree distribution exponent 2<γ<3. Degree heterogeneity increases the presence of triangles in the network up to levels that compare to those found in many...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review. E, Statistical, nonlinear, and soft matter physics Ročník 86; číslo 2; s. 026120 - 26124
Hlavní autoři: Colomer-de-Simon, Pol, Boguñá, Marián
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society 30.08.2012
Témata:
ISSN:1539-3755, 1550-2376, 1550-2376
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We derive the finite-size dependence of the clustering coefficient of scale-free random graphs generated by the configuration model with degree distribution exponent 2<γ<3. Degree heterogeneity increases the presence of triangles in the network up to levels that compare to those found in many real networks even for extremely large nets. We also find that for values of γ≈2, clustering is virtually size independent and, at the same time, becomes a de facto non-self-averaging topological property. This implies that a single-instance network is not representative of the ensemble even for very large network sizes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1539-3755
1550-2376
1550-2376
DOI:10.1103/PhysRevE.86.026120