A Hybrid Multi-Objective Evolutionary Algorithm-Based Semantic Foundation for Sustainable Distributed Manufacturing Systems

Rising energy prices, increasing maintenance costs, and strict environmental regimes have augmented the already existing pressure on the contemporary manufacturing environment. Although the decentralization of supply chain has led to rapid advancements in manufacturing systems, finding an efficient...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 11; číslo 14; s. 6314
Hlavní autori: Ramakurthi, Veera Babu, Manupati, V. K., Machado, José, Varela, Leonilde
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 08.07.2021
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Rising energy prices, increasing maintenance costs, and strict environmental regimes have augmented the already existing pressure on the contemporary manufacturing environment. Although the decentralization of supply chain has led to rapid advancements in manufacturing systems, finding an efficient supplier simultaneously from the pool of available ones as per customer requirement and enhancing the process planning and scheduling functions are the predominant approaches still needed to be addressed. Therefore, this paper aims to address this issue by considering a set of gear manufacturing industries located across India as a case study. An integrated classifier-assisted evolutionary multi-objective evolutionary approach is proposed for solving the objectives of makespan, energy consumption, and increased service utilization rate, interoperability, and reliability. To execute the approach initially, text-mining-based supervised machine-learning models, namely Decision Tree, Naïve Bayes, Random Forest, and Support Vector Machines (SVM) were adopted for the classification of suppliers into task-specific suppliers. Following this, with the identified suppliers as input, the problem was formulated as a multi-objective Mixed-Integer Linear Programming (MILP) model. We then proposed a Hybrid Multi-Objective Moth Flame Optimization algorithm (HMFO) to optimize process planning and scheduling functions. Numerical experiments have been carried out with the formulated problem for 10 different instances, along with a comparison of the results with a Non-Dominated Sorting Genetic Algorithm (NSGA-II) to illustrate the feasibility of the approach.
AbstractList Rising energy prices, increasing maintenance costs, and strict environmental regimes have augmented the already existing pressure on the contemporary manufacturing environment. Although the decentralization of supply chain has led to rapid advancements in manufacturing systems, finding an efficient supplier simultaneously from the pool of available ones as per customer requirement and enhancing the process planning and scheduling functions are the predominant approaches still needed to be addressed. Therefore, this paper aims to address this issue by considering a set of gear manufacturing industries located across India as a case study. An integrated classifier-assisted evolutionary multi-objective evolutionary approach is proposed for solving the objectives of makespan, energy consumption, and increased service utilization rate, interoperability, and reliability. To execute the approach initially, text-mining-based supervised machine-learning models, namely Decision Tree, Naïve Bayes, Random Forest, and Support Vector Machines (SVM) were adopted for the classification of suppliers into task-specific suppliers. Following this, with the identified suppliers as input, the problem was formulated as a multi-objective Mixed-Integer Linear Programming (MILP) model. We then proposed a Hybrid Multi-Objective Moth Flame Optimization algorithm (HMFO) to optimize process planning and scheduling functions. Numerical experiments have been carried out with the formulated problem for 10 different instances, along with a comparison of the results with a Non-Dominated Sorting Genetic Algorithm (NSGA-II) to illustrate the feasibility of the approach.
Author Machado, José
Manupati, V. K.
Varela, Leonilde
Ramakurthi, Veera Babu
Author_xml – sequence: 1
  givenname: Veera Babu
  orcidid: 0000-0003-2242-6814
  surname: Ramakurthi
  fullname: Ramakurthi, Veera Babu
– sequence: 2
  givenname: V. K.
  surname: Manupati
  fullname: Manupati, V. K.
– sequence: 3
  givenname: José
  orcidid: 0000-0002-4917-2474
  surname: Machado
  fullname: Machado, José
– sequence: 4
  givenname: Leonilde
  orcidid: 0000-0002-2299-1859
  surname: Varela
  fullname: Varela, Leonilde
BookMark eNptkU1PGzEQhleISqWUE3_AUo_Vtv7Y3djHlEJBAnFIOVvjr-BoY6f-QIr48zWklVDVuXhkP_POO54P3XGIwXbdOcFfGBP4K-x2hJBhYmQ46k4oXkw9G8ji-E3-vjvLeYNbCMI4wSfd8xJd71XyBt3Vufj-Xm2sLv7JosunONfiY4C0R8t5HZMvj9v-G2Rr0MpuIRSv0VWswcALhlxMaFVzAR9AzRZ997kkr2pp_B2E6kCXmnxYo9U-F7vNH7t3DuZsz_6cp93D1eXPi-v-9v7HzcXytteMi9I7LgSAYABGEMqBYiKYwqMexaRgYZx1gjklFoabkQ6KW8aVNq69GjZQxk67m4OuibCRu-S3bSQZwcvXi5jWElIbZraSsdbIYMcnRYfJEaEnBooAUA10mmjT-nTQ2qX4q9pc5CbWFJp9ScdxGPDEOG8UOVA6xZyTdVL78vpLJYGfJcHyZWXyzcpazed_av46_R_9G4W6m04
CitedBy_id crossref_primary_10_3390_app13020750
crossref_primary_10_3390_electronics10151857
crossref_primary_10_3390_app12052504
crossref_primary_10_1016_j_cirpj_2023_03_005
crossref_primary_10_3390_machines10121138
crossref_primary_10_1108_TQM_12_2022_0365
crossref_primary_10_1080_09537287_2024_2389879
crossref_primary_10_3390_su15043283
Cites_doi 10.1109/ACCESS.2020.3038719
10.1016/j.arcontrol.2009.05.003
10.1109/ACCESS.2019.2929582
10.1016/j.ejor.2020.11.016
10.1016/j.procir.2016.11.062
10.1080/00207543.2014.910627
10.3901/CJME.2015.0617.082
10.1080/713804987
10.1108/IJOPM-08-2019-0600
10.5334/jors.108
10.1109/CEC.2016.7743990
10.1016/S0924-0136(03)00088-8
10.1109/TSMC.2015.2507161
10.1016/S0166-3615(99)00078-0
10.3390/app11030986
10.1016/j.ecolind.2016.08.027
10.1016/j.eswa.2011.09.124
10.1007/s10845-011-0569-6
10.3390/app11031202
10.1080/09511920600667366
10.1155/2018/7231920
10.1016/j.cor.2009.10.006
10.5772/intechopen.76686
10.1016/j.compind.2004.06.005
10.3390/pr7030120
10.1016/j.compind.2015.10.001
10.1155/2019/5734149
10.1016/j.ijpe.2019.05.017
10.1109/FSKD.2016.7603187
10.1007/s11831-018-9300-5
10.1016/j.compind.2020.103244
10.1016/j.jmsy.2016.12.001
10.1016/j.dss.2009.09.003
10.1109/ACCESS.2017.2764047
10.1016/j.cie.2019.04.028
10.1016/j.omega.2019.01.003
10.1016/j.cie.2018.11.022
10.1016/j.cor.2008.07.006
10.1109/TSMCC.2006.874022
10.1016/j.cie.2007.06.024
10.1016/S0924-0136(03)00233-4
10.3390/app11031286
10.1080/0951192X.2017.1413252
10.1016/j.compind.2009.05.006
10.1016/S0007-8506(07)61801-0
10.1115/DETC2015-46694
10.1016/0736-5845(84)90020-6
10.1080/00207543.2014.942011
10.1109/TEVC.2018.2885075
10.1016/j.knosys.2015.07.006
10.1162/evco_a_00226
10.1016/j.cie.2016.05.018
10.1007/s00170-015-7991-4
10.1016/j.cie.2013.06.004
10.1080/00207543.2012.682181
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11146314
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_33a93d0f86b246f19c63ab1aa2ca2662
10_3390_app11146314
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-f899aa93aad9128a20193b05c596ba7dfef93fb97d8d524b8e38bcdf96bd34233
IEDL.DBID PIMPY
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675975600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:58 EDT 2025
Mon Jun 30 07:36:03 EDT 2025
Tue Nov 18 22:35:20 EST 2025
Sat Nov 29 07:20:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-f899aa93aad9128a20193b05c596ba7dfef93fb97d8d524b8e38bcdf96bd34233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2299-1859
0000-0002-4917-2474
0000-0003-2242-6814
OpenAccessLink https://www.proquest.com/publiccontent/docview/2554406388?pq-origsite=%requestingapplication%
PQID 2554406388
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_33a93d0f86b246f19c63ab1aa2ca2662
proquest_journals_2554406388
crossref_citationtrail_10_3390_app11146314
crossref_primary_10_3390_app11146314
PublicationCentury 2000
PublicationDate 2021-07-08
PublicationDateYYYYMMDD 2021-07-08
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-08
  day: 08
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Harding (ref_2) 2012; 39
Morariu (ref_9) 2020; 120
Li (ref_29) 2019; 135
Fararah (ref_23) 2020; 8
Wang (ref_17) 2003; 16
Tursi (ref_19) 2009; 33
ref_11
ref_52
(ref_25) 2016; 85
Park (ref_10) 2017; 72
Kumar (ref_4) 2003; 138
ref_18
Shao (ref_13) 2009; 36
ref_59
Cao (ref_30) 2019; 23
Li (ref_40) 2007; 20
Tiwari (ref_41) 2016; 99
Hou (ref_44) 2015; 47
Manupati (ref_21) 2013; 66
Mirjalili (ref_50) 2015; 89
Chryssolouris (ref_15) 1985; 34
Li (ref_42) 2017; 43
Barzanji (ref_27) 2020; 93
Bianchi (ref_12) 2018; 2018
Sohrabi (ref_33) 2018; 27
ref_20
Ying (ref_54) 2014; 52
Wang (ref_45) 2019; 2019
Shen (ref_35) 2006; 36
Kesen (ref_38) 2010; 37
Chryssolouris (ref_14) 1984; 1
ref_36
Ehm (ref_22) 2016; 57
ref_32
Sortrakul (ref_39) 2005; 56
Zhou (ref_31) 2018; 31
Beckham (ref_49) 2016; 4
Cheng (ref_53) 2019; 7
Montreuil (ref_16) 2000; 42
Lin (ref_55) 2014; 53
Choudhary (ref_5) 2009; 60
ref_37
Li (ref_6) 2010; 48
Lin (ref_46) 2011; 23
Audet (ref_56) 2021; 292
Zhang (ref_3) 2003; 139
Mohammadi (ref_26) 2020; 219
Haber (ref_58) 2017; 5
Piroozfard (ref_47) 2016; 2016
Srai (ref_1) 2020; 40
Ertogral (ref_28) 2019; 127
Tang (ref_43) 2016; 81
ref_48
ref_8
Tang (ref_51) 2015; 28
Manupati (ref_24) 2012; 50
Jia (ref_34) 2007; 53
Ishibuchi (ref_57) 2018; 26
ref_7
References_xml – volume: 8
  start-page: 208826
  year: 2020
  ident: ref_23
  article-title: Model for integrating production scheduling and maintenance planning of flow shop production system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038719
– volume: 33
  start-page: 238
  year: 2009
  ident: ref_19
  article-title: Ontological approach for products-centric information system interoperability in networked manufacturing enterprises
  publication-title: Annu. Rev. Control.
  doi: 10.1016/j.arcontrol.2009.05.003
– ident: ref_32
– volume: 7
  start-page: 98702
  year: 2019
  ident: ref_53
  article-title: Scheduling jobs of two competing agents on a single machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929582
– volume: 292
  start-page: 397
  year: 2021
  ident: ref_56
  article-title: Performance indicators in multiobjective optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.11.016
– volume: 57
  start-page: 357
  year: 2016
  ident: ref_22
  article-title: A heuristic optimisation approach for the scheduling of integrated manufacturing and distribution systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.062
– volume: 52
  start-page: 5735
  year: 2014
  ident: ref_54
  article-title: Bi-objective reentrant hybrid flowshop scheduling: An iterated Pareto greedy algorithm
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.910627
– volume: 28
  start-page: 1048
  year: 2015
  ident: ref_51
  article-title: Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem
  publication-title: Chin. J. Mech. Eng.
  doi: 10.3901/CJME.2015.0617.082
– volume: 16
  start-page: 81
  year: 2003
  ident: ref_17
  article-title: A multi-agent and distributed ruler based approach to production scheduling of agile manufacturing systems
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/713804987
– volume: 40
  start-page: 697
  year: 2020
  ident: ref_1
  article-title: Distributed manufacturing: A new form of localised production?
  publication-title: Int. J. Oper. Prod. Manag.
  doi: 10.1108/IJOPM-08-2019-0600
– volume: 4
  start-page: e33
  year: 2016
  ident: ref_49
  article-title: WekaPyScript: Classification, regression, and filter schemes for WEKA implemented in Python
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.108
– ident: ref_37
  doi: 10.1109/CEC.2016.7743990
– volume: 138
  start-page: 297
  year: 2003
  ident: ref_4
  article-title: Integration of scheduling with computer aided process planning
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(03)00088-8
– volume: 47
  start-page: 517
  year: 2015
  ident: ref_44
  article-title: Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2015.2507161
– volume: 42
  start-page: 299
  year: 2000
  ident: ref_16
  article-title: A strategic framework for networked manufacturing
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00078-0
– volume: 2016
  start-page: 7319036
  year: 2016
  ident: ref_47
  article-title: A hybrid genetic algorithm with a knowledge-based operator for solving the job shop scheduling problems
  publication-title: J. Optim.
– ident: ref_18
  doi: 10.3390/app11030986
– volume: 72
  start-page: 803
  year: 2017
  ident: ref_10
  article-title: Text mining-based categorization and user perspective analysis of environmental sustainability indicators for manufacturing and service systems
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.08.027
– volume: 39
  start-page: 4729
  year: 2012
  ident: ref_2
  article-title: Textual data mining for industrial knowledge management and text classification: A business-oriented approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.124
– volume: 23
  start-page: 2237
  year: 2011
  ident: ref_46
  article-title: Network modeling and evolutionary optimization for scheduling in manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-011-0569-6
– ident: ref_48
  doi: 10.3390/app11031202
– volume: 20
  start-page: 80
  year: 2007
  ident: ref_40
  article-title: A simulated annealing-based optimization approach for integrated process planning and scheduling
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/09511920600667366
– volume: 2018
  start-page: 7231920
  year: 2018
  ident: ref_12
  article-title: Identifying e-commerce in enterprises by means of text mining and classification algorithms
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/7231920
– volume: 37
  start-page: 1148
  year: 2010
  ident: ref_38
  article-title: A genetic algorithm based heuristic for scheduling of virtual manufacturing cells (VMCs)
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.10.006
– ident: ref_36
  doi: 10.5772/intechopen.76686
– volume: 56
  start-page: 161
  year: 2005
  ident: ref_39
  article-title: Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machine
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2004.06.005
– ident: ref_7
– ident: ref_52
  doi: 10.3390/pr7030120
– volume: 81
  start-page: 82
  year: 2016
  ident: ref_43
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.10.001
– volume: 2019
  start-page: 5734149
  year: 2019
  ident: ref_45
  article-title: A novel MOEA/D for multiobjective scheduling of flexible manufacturing systems
  publication-title: Complexity
  doi: 10.1155/2019/5734149
– volume: 219
  start-page: 347
  year: 2020
  ident: ref_26
  article-title: An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.05.017
– ident: ref_59
  doi: 10.1109/FSKD.2016.7603187
– ident: ref_11
– volume: 27
  start-page: 59
  year: 2018
  ident: ref_33
  article-title: A Survey on the combined use of optimization methods and game theory
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-018-9300-5
– volume: 120
  start-page: 103244
  year: 2020
  ident: ref_9
  article-title: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103244
– volume: 43
  start-page: 409
  year: 2017
  ident: ref_42
  article-title: Complex networks in advanced manufacturing systems
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2016.12.001
– volume: 48
  start-page: 354
  year: 2010
  ident: ref_6
  article-title: Using text mining and sentiment analysis for online forums hotspot detection and forecast
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2009.09.003
– volume: 5
  start-page: 22272
  year: 2017
  ident: ref_58
  article-title: A Simple multi-objective optimization based on the cross-entropy method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2764047
– volume: 135
  start-page: 1036
  year: 2019
  ident: ref_29
  article-title: Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.04.028
– volume: 93
  start-page: 102025
  year: 2020
  ident: ref_27
  article-title: Decomposition algorithms for the integrated process planning and scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2019.01.003
– volume: 127
  start-page: 832
  year: 2019
  ident: ref_28
  article-title: An integrated production scheduling and workforce capacity planning model for the maintenance and repair operations in airline industry
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.11.022
– volume: 36
  start-page: 2082
  year: 2009
  ident: ref_13
  article-title: Integration of process planning and scheduling—A modified genetic algorithm-based approach
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.07.006
– volume: 36
  start-page: 563
  year: 2006
  ident: ref_35
  article-title: Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2006.874022
– volume: 53
  start-page: 313
  year: 2007
  ident: ref_34
  article-title: Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2007.06.024
– volume: 139
  start-page: 267
  year: 2003
  ident: ref_3
  article-title: A holonic architecture of the concurrent integrated process planning system
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(03)00233-4
– ident: ref_20
  doi: 10.3390/app11031286
– volume: 31
  start-page: 318
  year: 2018
  ident: ref_31
  article-title: An event-triggered dynamic scheduling method for randomly arriving tasks in cloud manufacturing
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2017.1413252
– volume: 60
  start-page: 728
  year: 2009
  ident: ref_5
  article-title: The needs and benefits of text mining applications on post-project reviews
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2009.05.006
– volume: 34
  start-page: 413
  year: 1985
  ident: ref_15
  article-title: An integrated approach to process planning and scheduling
  publication-title: CIRP Ann.
  doi: 10.1016/S0007-8506(07)61801-0
– ident: ref_8
  doi: 10.1115/DETC2015-46694
– volume: 1
  start-page: 315
  year: 1984
  ident: ref_14
  article-title: Decision making on the factory floor: An integrated approach to process planning and scheduling
  publication-title: Robot. Comput. Manuf.
  doi: 10.1016/0736-5845(84)90020-6
– volume: 53
  start-page: 1065
  year: 2014
  ident: ref_55
  article-title: A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel machine scheduling problems
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.942011
– volume: 23
  start-page: 718
  year: 2019
  ident: ref_30
  article-title: Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2885075
– volume: 89
  start-page: 228
  year: 2015
  ident: ref_50
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 26
  start-page: 411
  year: 2018
  ident: ref_57
  article-title: How to specify a reference point in hypervolume calculation for fair performance comparison
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00226
– volume: 99
  start-page: 432
  year: 2016
  ident: ref_41
  article-title: A Hybrid Territory Defined evolutionary algorithm approach for closed loop green supply chain network design
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.05.018
– volume: 85
  start-page: 2535
  year: 2016
  ident: ref_25
  article-title: Chaotic particle swarm optimization algorithm for flexible process planning
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7991-4
– volume: 66
  start-page: 63
  year: 2013
  ident: ref_21
  article-title: Near optimal process plan selection for multiple jobs in networked based manufacturing using multi-objective evolutionary algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2013.06.004
– volume: 50
  start-page: 5239
  year: 2012
  ident: ref_24
  article-title: Optimal process plan selection in networked based manufacturing using game-theoretic approach
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2012.682181
SSID ssj0000913810
Score 2.2907612
Snippet Rising energy prices, increasing maintenance costs, and strict environmental regimes have augmented the already existing pressure on the contemporary...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6314
SubjectTerms Classification
Decision making
Employment
Energy consumption
Genetic algorithms
Integrated approach
Interoperability
Manufacturing
Mathematical models
moth flame optimization algorithm
Naive Bayes
network-based distributed manufacturing systems
Ontology
Optimization
Process planning
Product life cycle
random forest
Scheduling
Suppliers
Support vector machines
text mining
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSsRAEG1EPOhBXHHc6IMHFRon6c7Sx3HDgxuo4C1UetERHWVmFMSft6rT6oiCF69JQULtlfR7xdhG1vboKaAFKJMJpVwmwJlcAFgtHWSQ2rC15Lg4PS2vr_X5yKovOhPW0AM3ituRErS0bV_mdapyn2iTS6gTgNQAFpeQfduFHhmmQg7WCVFXNYA8iXM9_Q9OCIErE_WtBAWm_h-JOFSXwxk2HdtC3mleZ5aNud4cmxohC5xjszEMB3wzckVvzbO3Dj96JdAVD0hacVbfNRmMH7xEp4L-K-_c3zz2u8PbB7GLVcvyC_eAGu0a_rVViWP3yi--4FR8nyh1aRsWyp9A75kgEAHTyCPL-QK7Ojy43DsScZ-CMNiWDIXH2QpQm2QHLEuAtV_Lup2ZTOc1FNY7r6WvdWFLm6WqLp0sa2M93rVEFCgX2XjvseeWGJcm8eCxvcD4V0Qh40wBXkrvC8D8mrfY9oeKKxPJxmnnxX2FQwfZoxqxR4ttfAo_NRwbv4vtkq0-RYgYO1xAd6miu1R_uUuLrX5YuorROqhwrFKKerdy-T-escImUzr5Qh-By1U2Puw_uzU2YV6G3UF_PTjqO08W8CE
  priority: 102
  providerName: Directory of Open Access Journals
Title A Hybrid Multi-Objective Evolutionary Algorithm-Based Semantic Foundation for Sustainable Distributed Manufacturing Systems
URI https://www.proquest.com/docview/2554406388
https://doaj.org/article/33a93d0f86b246f19c63ab1aa2ca2662
Volume 11
WOSCitedRecordID wos000675975600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BwgEOQAuIQIn20AMgrWp7168TSiBVkWiIKEjlZI33UYrapCRppYo_z4y9SYpAnLjaY9nWzH4z-_i-AdhNI0-RgqVEbVKptUslOpNJRFsqhykmtula8iEfj4vj43IS6NGLcKxyhYkNULdqz3xum0B4z84Mr5jvUSGsNWfb4s3FD8k9pHivNTTUuA1dFt6KOtCdvD-cfF2vubAGZhFHLU1P0Wyfd4lj5uWqWP-WmBr9_j_guck5-w_-79c-hPuh9hSDNli24JabbsO9G4qE27AVxvpCvAyC1K8ewc-BOLhmZpdo6LryY_29hUkxugqRi_NrMTg7oZcuv53LIaVGK47cObnt1IhN6yZBJbI42nC2xDvW7eWWW2R_iNNL5lk0xEkRpNQfw5f90ee3BzI0bZCGap-l9DSBQywVO5tyH1KBUao6Sk1aZjXm1jtfKl-XuS1smui6cKqojfV017IaoXoCnels6p6CUCb26KmGIZDRrFPjTI5eKe9zJBDPevB65bHKBEVzbqxxVtHMht1b3XBvD3bXxhetkMffzYbs-rUJq283F2bzkyoMZnqIftBGvsjqRGc-Lk2msI4RE4NU8CQ92FlFRRUgYVFtguDZv28_h7sJH5zhNeRiBzrL-aV7AXfM1fJ0Me9DdzgaTz71m8WDfojwX-wcDc4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4AC0gAgX2UCRAsrC9a8d7QCilrRI1CZFapPZk1vtRitqkJGlRxH_iNzJjr5MiELceuHrHlr1--2b2Y94AbCahQ6QoGSihk0AImwTK6jRQykhuVaJiU1Yt6bUGg-zwUA5X4GedC0PHKmtOLInajDWtkb_F0FcI8q_Z-_NvAVWNot3VuoRGBYs9O_-OU7bpu-42_t-Xcby7c_ChE_iqAoFG5zwLHM4wlJKc3gbJWaEHlLwIE53ItFAt46yT3BWyZTKTxKLILM8KbRy2GpLL4_jcG7AqEOxhA1aH3f7waLGqQyqbWRRWiYCcy5D2oSPK_OWR-M31lRUC_nAApVfbvfe_9cd9uOvjZ9auAL8GK3a0DneuqCquw5rnqyl75UW1Xz-AH23WmVN2GitTjoOPxdeK6tnOpR99ajJn7dNj_MjZl7NgC927Yfv2DKF3otmy_BTDMJ_tL_PO2DZpD1PZMLTvq9EF5YqUyZ_My8E_hE_X0iWPoDEaj-xjYFxHTjmMw5AoBWntWN1SjnPnWgodUdqENzUmcu1V2ak4yGmOszMCUH4FQE3YXBifV2IkfzfbInAtTEhBvLwwnhznnpDwJvxAE7osLWKRukjqlKsiUirWCoO2uAkbNe5yT2vTfAm6J_9ufgG3Ogf9Xt7rDvaewu2YDgLRmni2AY3Z5MI-g5v6cnYynTz3I4jB5-sG6S_Pp159
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE4AC2gBgrsoUiAtKrt9WsPCCUkUauWEFGQejPrfbRFbVKStCjin_HrmHHWSRGIWw9cvWPLXn873-xjvgHYSgKHSFGSq1gnPI5twpXVKVfKSGFVoiJTVS3Zz_r9_PBQDlbgZ50LQ8cqa59YOWoz0rRGvo2hbxwTv-bbzh-LGHR6b8-_caogRTutdTmNOUT27Ow7Tt8mb3Y7-K9fRFGv--ndDvcVBrhGop5yh7MNpaSgN0NHrZANpSiDRCcyLVVmnHVSuFJmJjdJFJe5FXmpjcNWQ9J5Ap97A1YzgZOeBqy2u_3Bx8UKDylu5mEwTwoUQga0Jx1SFrAI499osKoW8AcZVAzXu_c_9819uOvjataaD4Q1WLHDdbhzRW1xHda8H5uwl15s-9UD-NFiOzPKWmNVKjL_UH6dUwDrXvpRqcYz1jo9wo-cHp_xNtK-YQf2DCF5otmyLBXD8J8dLPPRWIc0iamcGNq_V8MLyiGpkkKZl4l_CJ-vpUseQWM4GtoNYEKHTjmMz9CBxqTBY3WmnBDOZQoJKm3C6xofhfZq7VQ05LTAWRuBqbgCpiZsLYzP5yIlfzdrE9AWJqQsXl0YjY8K76jwJvxAE7g8LaM4daHUqVBlqFSkFQZzURM2awwW3t1NiiUAH_-7-TncQmQW-7v9vSdwO6LzQbRUnm9CYzq-sE_hpr6cnkzGz_xgYvDlujH6C13cZxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Multi-Objective+Evolutionary+Algorithm-Based+Semantic+Foundation+for+Sustainable+Distributed+Manufacturing+Systems&rft.jtitle=Applied+sciences&rft.au=Veera+Babu+Ramakurthi&rft.au=Manupati%2C+V+K&rft.au=Machado%2C+Jos%C3%A9&rft.au=Varela%2C+Leonilde&rft.date=2021-07-08&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=14&rft.spage=6314&rft_id=info:doi/10.3390%2Fapp11146314&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon