The JPEG Pleno Learning-Based Point Cloud Coding Standard: Serving Man and Machine

Efficient point cloud coding has become increasingly critical for multiple applications such as virtual reality, autonomous driving, and digital twin systems, where rich and interactive 3D data representations may functionally make the difference. Deep learning has emerged as a powerful tool in this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 43289 - 43315
Hlavní autoři: Guarda, Andre F. R., Rodrigues, Nuno M. M., Pereira, Fernando
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Efficient point cloud coding has become increasingly critical for multiple applications such as virtual reality, autonomous driving, and digital twin systems, where rich and interactive 3D data representations may functionally make the difference. Deep learning has emerged as a powerful tool in this domain, offering advanced techniques for compressing point clouds more efficiently than conventional coding methods while also allowing effective computer vision tasks performed in the compressed domain thus, for the first time, making available a common compressed visual representation effective for both man and machine. Taking advantage of this potential, JPEG has recently finalized the JPEG Pleno Learning-based Point Cloud Coding (PCC) standard offering efficient lossy coding of static point clouds, targeting both human visualization and machine processing by leveraging deep learning models for geometry and color coding. The geometry is processed directly in its original 3D form using sparse convolutional neural networks, while the color data is projected onto 2D images and encoded using the also learning-based JPEG AI standard. The goal of this paper is to provide a complete technical description of the JPEG PCC standard, along with a thorough benchmarking of its performance against the state-of-the-art, while highlighting its main strengths and weaknesses. In terms of compression performance, JPEG PCC outperforms the conventional MPEG PCC standards, especially in geometry coding, achieving significant rate reductions. Color compression performance is less competitive but this is overcome by the power of a full learning-based coding framework for both geometry and color and the associated effective compressed domain processing.
AbstractList Efficient point cloud coding has become increasingly critical for multiple applications such as virtual reality, autonomous driving, and digital twin systems, where rich and interactive 3D data representations may functionally make the difference. Deep learning has emerged as a powerful tool in this domain, offering advanced techniques for compressing point clouds more efficiently than conventional coding methods while also allowing effective computer vision tasks performed in the compressed domain thus, for the first time, making available a common compressed visual representation effective for both man and machine. Taking advantage of this potential, JPEG has recently finalized the JPEG Pleno Learning-based Point Cloud Coding (PCC) standard offering efficient lossy coding of static point clouds, targeting both human visualization and machine processing by leveraging deep learning models for geometry and color coding. The geometry is processed directly in its original 3D form using sparse convolutional neural networks, while the color data is projected onto 2D images and encoded using the also learning-based JPEG AI standard. The goal of this paper is to provide a complete technical description of the JPEG PCC standard, along with a thorough benchmarking of its performance against the state-of-the-art, while highlighting its main strengths and weaknesses. In terms of compression performance, JPEG PCC outperforms the conventional MPEG PCC standards, especially in geometry coding, achieving significant rate reductions. Color compression performance is less competitive but this is overcome by the power of a full learning-based coding framework for both geometry and color and the associated effective compressed domain processing.
Author Pereira, Fernando
Rodrigues, Nuno M. M.
Guarda, Andre F. R.
Author_xml – sequence: 1
  givenname: Andre F. R.
  orcidid: 0000-0001-5996-1074
  surname: Guarda
  fullname: Guarda, Andre F. R.
  email: andre.guarda@lx.it.pt
  organization: Instituto de Telecomunicações, Lisbon, Portugal
– sequence: 2
  givenname: Nuno M. M.
  orcidid: 0000-0001-9536-1017
  surname: Rodrigues
  fullname: Rodrigues, Nuno M. M.
  organization: Instituto de Telecomunicações, Lisbon, Portugal
– sequence: 3
  givenname: Fernando
  orcidid: 0000-0001-6100-947X
  surname: Pereira
  fullname: Pereira, Fernando
  organization: Instituto de Telecomunicações, Lisbon, Portugal
BookMark eNpNUV1rGzEQFCWBukl-Qfsg6PM5-jhJp765h5ukOMTEybPQSSvnjCu5unOg_75yL5TsyyyzO7ML8wmdxRQBoc-UzCkl-nrRtsvNZs4IE3Muas2p_IBmjEpdccHl2bv-I7oahh0p1RRKqBl6fHoB_HO9vMHrPcSEV2Bz7OO2-m4H8Hid-jjidp-OHrfJlwHejDZ6m_03vIH8emLubcSFK-he-giX6DzY_QBXb3iBnn8sn9rbavVwc9cuVpXjjR6rQGolnW4s0YJa7XXXeBZ4J8ErIjvSBGm9pKoDX_ugnHWi5p6yRokgWQP8At1Nvj7ZnTnk_pfNf0yyvflHpLw1No-924NRoqkF15wpIerOKU1rx7rgfU1lF4IqXl8nr0NOv48wjGaXjjmW9w2nSjFKy89li09bLqdhyBD-X6XEnLIwUxbmlIV5y6KovkyqHgDeKTSVkin-F52ohKQ
CODEN IAECCG
Cites_doi 10.1109/ICIP40778.2020.9191180
10.1109/ICIP.2019.8803413
10.1109/TCSVT.2023.3240391
10.1109/icip.2017.8296925
10.1145/3552457.3555727
10.1109/TPAMI.2022.3225816
10.1186/s13640-024-00631-6
10.1109/MMUL.2023.3245919
10.1109/MMSP48831.2020.9287077
10.1109/TMM.2023.3338081
10.1109/access.2023.3332599
10.1109/ISCAS46773.2023.10182229
10.1109/TMM.2021.3068580
10.1109/MIPR54900.2022.00018
10.1109/PCS.2015.7170048
10.1109/jproc.2021.3085957
10.1109/VCIP56404.2022.10008892
10.1109/TCSVT.2021.3051377
10.1109/vcip53242.2021.9675369
10.1007/s00530-022-01026-1
10.1109/icip42928.2021.9506712
10.1109/VCIP49819.2020.9301804
10.1117/12.2597814
10.1109/EUVIP53989.2022.9922784
10.1186/s13640-024-00629-0
10.1109/jstsp.2017.2747126
10.1109/TPAMI.2024.3367293
10.5555/3298023.3298188
10.1109/mmul.2016.64
10.1109/qomex48832.2020.9123147
10.1109/3DV62453.2024.00112
10.1109/ICASSP48485.2024.10448359
10.1007/978-3-319-46723-8_49
10.1109/DCC50243.2021.00015
10.1109/ICCV.2017.324
10.1109/MMSP59012.2023.10337709
10.1109/CVPR.2019.00319
10.1142/IMS
10.1109/ICPR56361.2022.9956532
10.1109/TCSVT.2021.3101953
10.1109/ICASSP43922.2022.9747496
10.1017/atsip.2020.12
10.1117/12.2569115
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3549316
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 43315
ExternalDocumentID oai_doaj_org_article_7584539327554bc7914c2bfdd416bff7
10_1109_ACCESS_2025_3549316
10916627
Genre orig-research
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia, I.P. (FCT, Funder ID = 50110000187), under the project with reference UIDB/50008/2020 [Digital Object Identifier (DOI): 10.54499/UIDB/50008/2020] and the project with reference PTDC/EEI-COM/1125/2021 entitled “Deep Learning-based Point Cloud Representation.”
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c389t-f0476c98a0951a9d9b8d2f3b6ed706b08f6ad617bed4df7cac543d12875f628e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445065100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:30 EDT 2025
Mon Jun 30 12:10:07 EDT 2025
Sat Nov 29 08:09:51 EST 2025
Wed Aug 27 01:42:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-f0476c98a0951a9d9b8d2f3b6ed706b08f6ad617bed4df7cac543d12875f628e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5996-1074
0000-0001-6100-947X
0000-0001-9536-1017
OpenAccessLink https://doaj.org/article/7584539327554bc7914c2bfdd416bff7
PQID 3177211389
PQPubID 4845423
PageCount 27
ParticipantIDs proquest_journals_3177211389
crossref_primary_10_1109_ACCESS_2025_3549316
ieee_primary_10916627
doaj_primary_oai_doaj_org_article_7584539327554bc7914c2bfdd416bff7
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
Kingma (ref51)
ref11
ref55
ref17
ref16
ref19
ref18
ref50
(ref5) 2020
ref45
ref47
ref42
(ref24) 2022
ref41
ref44
ref43
ref49
ref7
ref6
ref40
(ref53) 2022
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
(ref48) 2023
ref2
ref1
(ref21) 2022
ref39
ref38
Ballé (ref9)
Astola (ref3) 2020; 3
Toderici (ref8)
(ref4) 2017
(ref22) 2022
(ref52) 2023
ref23
ref26
ref25
(ref54) 2023
ref28
ref27
ref29
Minnen (ref10)
(ref60) 2019
(ref20) 2020
(ref46) 2024
References_xml – ident: ref38
  doi: 10.1109/ICIP40778.2020.9191180
– ident: ref28
  doi: 10.1109/ICIP.2019.8803413
– volume-title: Final Call for Proposals on JPEG Pleno Point Cloud Coding
  year: 2022
  ident: ref24
– ident: ref15
  doi: 10.1109/TCSVT.2023.3240391
– volume-title: JPEG AI Common Training and Test Conditions
  year: 2023
  ident: ref52
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref8
  article-title: Variable rate image compression with recurrent neural networks
– volume: 3
  issue: 1
  year: 2020
  ident: ref3
  article-title: JPEG Pleno: Standardizing a coding framework and tools for plenoptic imaging modalities
  publication-title: ITU J., ICT Discoveries
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent
  ident: ref9
  article-title: Variational image compression with a scale hyperprior
– volume-title: JPEG AI Verification Model V1.0 Description
  year: 2022
  ident: ref53
– volume-title: [AI-3DGC/G-PCC][New] Objective Point Cloud Classification According to Density Distribution
  year: 2023
  ident: ref54
– ident: ref55
  doi: 10.1109/icip.2017.8296925
– ident: ref27
  doi: 10.1145/3552457.3555727
– ident: ref32
  doi: 10.1109/TPAMI.2022.3225816
– ident: ref58
  doi: 10.1186/s13640-024-00631-6
– ident: ref19
  doi: 10.1109/MMUL.2023.3245919
– ident: ref29
  doi: 10.1109/MMSP48831.2020.9287077
– ident: ref40
  doi: 10.1109/TMM.2023.3338081
– ident: ref57
  doi: 10.1109/access.2023.3332599
– volume-title: JPEG Pleno Call for Proposals on Light Field Coding
  year: 2017
  ident: ref4
– ident: ref36
  doi: 10.1109/ISCAS46773.2023.10182229
– ident: ref17
  doi: 10.1109/TMM.2021.3068580
– ident: ref39
  doi: 10.1109/MIPR54900.2022.00018
– ident: ref42
  doi: 10.1109/PCS.2015.7170048
– volume-title: JPEG Pleno Point Cloud Coding Common Training and Test Conditions V2.1
  year: 2024
  ident: ref46
– volume-title: Performance Evaluation of Learning Based Image Coding Solutions and Quality Metrics
  year: 2019
  ident: ref60
– ident: ref7
  doi: 10.1109/jproc.2021.3085957
– volume-title: Call for Evidence on Learning-Based Image Coding Technologies
  year: 2020
  ident: ref20
– ident: ref26
  doi: 10.1109/VCIP56404.2022.10008892
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Joint global and local hierarchical priors for learned image compression
– ident: ref30
  doi: 10.1109/TCSVT.2021.3051377
– volume-title: JPEG AI Overview Slides
  year: 2023
  ident: ref48
– ident: ref12
  doi: 10.1109/vcip53242.2021.9675369
– ident: ref14
  doi: 10.1007/s00530-022-01026-1
– ident: ref11
  doi: 10.1109/icip42928.2021.9506712
– ident: ref45
  doi: 10.1109/VCIP49819.2020.9301804
– ident: ref33
  doi: 10.1117/12.2597814
– ident: ref41
  doi: 10.1109/EUVIP53989.2022.9922784
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref51
  article-title: Adam: A method for stochastic optimization
– ident: ref59
  doi: 10.1186/s13640-024-00629-0
– ident: ref2
  doi: 10.1109/jstsp.2017.2747126
– ident: ref18
  doi: 10.1109/TPAMI.2024.3367293
– ident: ref31
  doi: 10.5555/3298023.3298188
– ident: ref1
  doi: 10.1109/mmul.2016.64
– ident: ref56
  doi: 10.1109/qomex48832.2020.9123147
– ident: ref35
  doi: 10.1109/3DV62453.2024.00112
– ident: ref43
  doi: 10.1109/ICASSP48485.2024.10448359
– volume-title: Final Call for Proposals for JPEG AI
  year: 2022
  ident: ref21
– ident: ref44
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref25
  doi: 10.1109/DCC50243.2021.00015
– ident: ref49
  doi: 10.1109/ICCV.2017.324
– ident: ref16
  doi: 10.1109/MMSP59012.2023.10337709
– ident: ref50
  doi: 10.1109/CVPR.2019.00319
– volume-title: Final Call for Evidence on JPEG Pleno Point Cloud Coding
  year: 2020
  ident: ref5
– volume-title: Report on the JPEG AI Call for Proposals Results
  year: 2022
  ident: ref22
– ident: ref47
  doi: 10.1142/IMS
– ident: ref13
  doi: 10.1109/ICPR56361.2022.9956532
– ident: ref23
  doi: 10.1109/TCSVT.2021.3101953
– ident: ref34
  doi: 10.1109/ICASSP43922.2022.9747496
– ident: ref6
  doi: 10.1017/atsip.2020.12
– ident: ref37
  doi: 10.1117/12.2569115
SSID ssj0000816957
Score 2.347695
Snippet Efficient point cloud coding has become increasingly critical for multiple applications such as virtual reality, autonomous driving, and digital twin systems,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 43289
SubjectTerms Artificial intelligence
Artificial neural networks
Codecs
Coding standards
Color coding
Compressing
Computer vision
Deep learning
Digital twins
Encoding
Geometry
Image coding
Image color analysis
Image compression
JPEG Pleno standard
learning-based coding
Machine learning
man and machine
point cloud coding
Point cloud compression
Representations
Three-dimensional displays
Transform coding
Virtual reality
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAHnyuuL3LwaLX2ldbbWnwgKosv9haalyxIK_vw9zuTRlkQD17aElKaziSdb6aTbwCO4koTTKA8HTygxyCD3KgKl3uchdxYaV1M9_WOPzzkw2Ex8JvV3V4YY4xLPjMndOn-5etGzShUdkoklkRYvgiLnGftZq2fgApVkChS7pmFsOtpvyzxJdAHjNKTGP2gmIqaz1kfR9Lvq6r8-hQ7-3K19s-RrcOqB5Ks32p-AxZMvQkrc_SCW_CIc4DdDi6vGWW8N8xzqb4FF2i6NBs0o3rKyvdmplnZkA1jTz6wcM7cNwRb7quaYRueKenSdOHl6vK5vAl8DYVAIRSZBjZMeKaKvCIoVRW6kLmObCwzo3mYyTC3WaURxUijE225qlSaxBqNFk9tFuUm3oZO3dRmB5hWhO7MmbUIwqRSRRWlKlNK2lTJyOQ9OP6WrfhoqTKEczHCQrSqEKQK4VXRgwuS_09X4rl2DShY4ZeNQG8mSWPEmBxhj1S8OEtUJK3WiCOltbwHXVLG3PNaPfRg_1udwi_KiUCoRP4uymX3j9v2YJmG2IZY9qEzHc_MASypz-loMj508-0LExPSUQ
  priority: 102
  providerName: IEEE
Title The JPEG Pleno Learning-Based Point Cloud Coding Standard: Serving Man and Machine
URI https://ieeexplore.ieee.org/document/10916627
https://www.proquest.com/docview/3177211389
https://doaj.org/article/7584539327554bc7914c2bfdd416bff7
Volume 13
WOSCitedRecordID wos001445065100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrFaSw4eXbvdR7Lx1i5VEVuKL3oLm5cUZFf68Ohvd5JNZcGDFy9ZGBay-WaT-WaYzCB0ERfK0gSbpwMDeAwiyLQsYLvHJKTaCONiuq8PdDzOplM2abT6sjlhdXngGrgu8NkkjYFlUDB8QlLWS2QkjFLAJIQx7h55SFnDmXJncNYjLKW-zFAvZN1-nsOKwCGM0qsYnKLYdjhvmCJXsd-3WPl1Ljtjc7OHdj1LxP366_bRhi4P0E6jduAhegQF4_vJ8BbbdPYK-0Kpb8EA7JLCk2pWLnH-Xq0UzitroPCTjxpcY3dAgGRUlBhk8LQZlfoIvdwMn_O7wDdICCTwjGVgwoQSybLC8qSCKSYyFZlYEK1oSESYGVIooChCq0QZKguZJrECi0RTQ6JMx8dos6xKfYKwkpa66Z4xwLCElKyIUkmkFCaVItJZC12useIfdR0M7vyHkPEaWm6h5R7aFhpYPH9etUWsnQBUy71q-V-qbaEjq43GfMBlSQTy9lo93O-4BQceZJ1ZwOX0P-Y-Q9t2PXWwpY02l_OVPkdb8nM5W8w77meDcfQ17Lgrg9-mRNZU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEB7cQD24i881B49Wa7e03rS4Px8PN7yFZhNBWtH3_P3OpFEeiAcvbQkpTWeSzjfTyTcAu3GlCSZQng4e0GOQQW5Uhcs9zkJurLQupvvY5b1e_vRU9P1mdbcXxhjjks_MPl26f_m6UUMKlR0QiSURlo_DZJokUdhu1_oJqVANiSLlnlsIOx8clyW-BnqBUbofoycUU1nzEfvjaPp9XZVfH2NnYc7m_zm2BZjzUJIdt7pfhDFTL8HsCMHgMtziLGBX_dNzRjnvDfNsqs_BCRovzfrNSz1g5Wsz1KxsyIqxOx9aOGLuK4ItN1XNsA3PlHZpVuDh7PS-vAh8FYVAIRgZBDZMeKaKvCIwVRW6kLmObCwzo3mYyTC3WaURx0ijE225qlSaxBrNFk9tFuUmXoWJuqnNGjCtCN-ZQ2sRhkmliipKVaaUtKmSkck7sPctW_HWkmUI52SEhWhVIUgVwquiAyck_5-uxHTtGlCwwi8cgf5MksaIMjkCH6l4cZioSFqtEUlKa3kHVkgZI89r9dCBzW91Cr8sPwSCJfJ4US7rf9y2A9MX9zdd0b3sXW_ADA23DbhswsTgfWi2YEp9Dl4-3rfd3PsCLB7VmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+JPEG+Pleno+Learning-Based+Point+Cloud+Coding+Standard%3A+Serving+Man+and+Machine&rft.jtitle=IEEE+access&rft.au=Andre+F.+R.+Guarda&rft.au=Nuno+M.+M.+Rodrigues&rft.au=Fernando+Pereira&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=43289&rft.epage=43315&rft_id=info:doi/10.1109%2FACCESS.2025.3549316&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7584539327554bc7914c2bfdd416bff7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon