ECG Signal Denoising Method Based on Disentangled Autoencoder
The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are usually disturbed by various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this study proposes a...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 12; číslo 7; s. 1606 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.04.2023
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are usually disturbed by various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this study proposes a method for denoising ECG based on disentangled autoencoders. A disentangled autoencoder is an improved autoencoder suitable for denoising ECG data. In our proposed method, we use a disentangled autoencoder model based on a fully convolutional neural network to effectively separate the clean ECG data from the noise. Unlike conventional autoencoders, we disentangle the features of the coding hidden layer to separate the signal-coding features from the noise-coding features. We performed simulation experiments on the MIT-BIH Arrhythmia Database and found that the algorithm had better noise reduction results when dealing with four different types of noise. In particular, using our method, the average improved signal-to-noise ratios for the three noises in the MIT-BIH Noise Stress Test Database were 27.45 db for baseline wander, 25.72 db for muscle artefacts, and 29.91 db for electrode motion artefacts. Compared to a denoising autoencoder based on a fully convolutional neural network (FCN), the signal-to-noise ratio was improved by an average of 12.57%. We can conclude that the model has scientific validity. At the same time, our noise reduction method can effectively remove noise while preserving the important information conveyed by the original signal. |
|---|---|
| AbstractList | The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are usually disturbed by various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this study proposes a method for denoising ECG based on disentangled autoencoders. A disentangled autoencoder is an improved autoencoder suitable for denoising ECG data. In our proposed method, we use a disentangled autoencoder model based on a fully convolutional neural network to effectively separate the clean ECG data from the noise. Unlike conventional autoencoders, we disentangle the features of the coding hidden layer to separate the signal-coding features from the noise-coding features. We performed simulation experiments on the MIT-BIH Arrhythmia Database and found that the algorithm had better noise reduction results when dealing with four different types of noise. In particular, using our method, the average improved signal-to-noise ratios for the three noises in the MIT-BIH Noise Stress Test Database were 27.45 db for baseline wander, 25.72 db for muscle artefacts, and 29.91 db for electrode motion artefacts. Compared to a denoising autoencoder based on a fully convolutional neural network (FCN), the signal-to-noise ratio was improved by an average of 12.57%. We can conclude that the model has scientific validity. At the same time, our noise reduction method can effectively remove noise while preserving the important information conveyed by the original signal. |
| Audience | Academic |
| Author | Lin, Haicai Liu, Ruixia Liu, Zhaoyang |
| Author_xml | – sequence: 1 givenname: Haicai orcidid: 0009-0007-7365-4186 surname: Lin fullname: Lin, Haicai – sequence: 2 givenname: Ruixia orcidid: 0000-0002-4044-5384 surname: Liu fullname: Liu, Ruixia – sequence: 3 givenname: Zhaoyang surname: Liu fullname: Liu, Zhaoyang |
| BookMark | eNp9kUtLAzEQx4NUsNZ-Ai8LnlfzaPM4eKhtrULFg3oOaTZZU7ZJTdKD395IBR8UZw7z4P8bhplT0PPBGwDOEbwkRMAr0xmdY_BOJ4QhQxTSI9AvmagFFrj3Iz8Bw5TWsJhAhBPYB9fz6aJ6cq1XXTUzPrjkfFs9mPwamupGJdNUwVczl4zPyrddqSe7HIzXoTHxDBxb1SUz_IoD8HI7f57e1cvHxf10sqw14SLXRgtFtEGKMGwpYpRopawaYy0Y4rqhljeK6bLgWDA44pDoFaScN3hFFLSKDMDFfu42hredSVmuwy6WnZPETAiKEaL8W9WqzkjnbchR6Y1LWk7YiApMR0wU1eUBVfHGbJwup7Wu9H8BYg_oGFKKxkrtssou-AK6TiIoP_8gD_yhsOQPu41uo-L7v9QHGNePUw |
| CitedBy_id | crossref_primary_10_1109_TCSI_2025_3533544 crossref_primary_10_1080_10255842_2024_2332942 crossref_primary_10_47164_ijngc_v15i3_1773 crossref_primary_10_3390_a18040236 crossref_primary_10_1007_s10470_024_02277_w crossref_primary_10_1088_2631_8695_adede3 crossref_primary_10_1016_j_ascom_2024_100886 |
| Cites_doi | 10.37896/YMER21.08/36 10.1109/ICCIC.2010.5705839 10.1016/j.bspc.2018.05.002 10.1109/ACCESS.2021.3072640 10.14257/ijbsbt.2016.8.4.05 10.1016/j.engappai.2016.02.015 10.1109/ICASSP.2017.7953017 10.3991/ijoe.v16i09.14485 10.1016/j.measurement.2018.05.033 10.22489/CinC.2019.015 10.3390/app12178839 10.1109/SMC.2014.6974120 10.1049/htl.2015.0029 10.1088/0967-3334/26/5/R01 10.1016/j.jacc.2020.11.010 10.1109/TCBB.2020.2976981 10.1109/ACCESS.2019.2912036 10.1016/j.irbm.2013.07.012 10.1109/JSEN.2013.2257742 10.1016/j.bspc.2013.06.005 10.1038/s41598-018-35053-8 10.1038/s41598-019-42516-z 10.1109/FABS52071.2021.9702655 10.1016/j.jelectrocard.2003.09.038 10.1088/0967-3334/37/12/2093 10.1016/j.probengmech.2015.10.005 10.1007/BF02351029 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics12071606 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A746926479 10_3390_electronics12071606 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c389t-ec9a3ce1a372f61763caafa52c9718cd6f8da7c29259704803cb0688d2b3a0fa3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970164300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 08:48:45 EST 2025 Tue Nov 11 11:13:37 EST 2025 Tue Nov 04 18:32:37 EST 2025 Tue Nov 18 20:58:03 EST 2025 Sat Nov 29 07:10:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-ec9a3ce1a372f61763caafa52c9718cd6f8da7c29259704803cb0688d2b3a0fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-7365-4186 0000-0002-4044-5384 |
| OpenAccessLink | https://www.proquest.com/docview/2799621168?pq-origsite=%requestingapplication% |
| PQID | 2799621168 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2799621168 gale_infotracmisc_A746926479 gale_infotracacademiconefile_A746926479 crossref_citationtrail_10_3390_electronics12071606 crossref_primary_10_3390_electronics12071606 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ning (ref_20) 2013; 8 Fan (ref_33) 2016; 43 Syed (ref_3) 2005; 43 Tan (ref_17) 2021; 45 ref_36 ref_12 Roth (ref_1) 2020; 76 Costa (ref_29) 2003; 36 ref_32 ref_31 Sun (ref_34) 2018; 8 Bengio (ref_28) 2014; 35 Sarangi (ref_6) 2022; 21 Sharma (ref_10) 2018; 45 ref_16 Hammad (ref_5) 2018; 125 Singh (ref_26) 2021; 18 Goel (ref_14) 2016; 8 Zhou (ref_19) 2016; 37 Das (ref_18) 2013; 34 Xiong (ref_22) 2016; 52 ref_25 ref_24 ref_23 Bing (ref_15) 2021; 9 ref_21 Chiang (ref_30) 2019; 7 Labate (ref_11) 2013; 13 Addison (ref_13) 2005; 26 Zhu (ref_27) 2019; 9 Moridani (ref_2) 2020; 16 Gupta (ref_9) 2015; 2 Duchi (ref_35) 2011; 12 ref_8 ref_4 ref_7 |
| References_xml | – volume: 21 start-page: 400 year: 2022 ident: ref_6 article-title: Singular Spectrum Analysis Based EMG Artifact Removal from ECG Signal publication-title: YMER Digit. doi: 10.37896/YMER21.08/36 – ident: ref_16 doi: 10.1109/ICCIC.2010.5705839 – ident: ref_32 – volume: 45 start-page: 33 year: 2018 ident: ref_10 article-title: Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2018.05.002 – volume: 9 start-page: 56699 year: 2021 ident: ref_15 article-title: DeepCEDNet: An Efficient Deep Convolutional Encoder-Decoder Networks for ECG Signal Enhancement publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072640 – ident: ref_24 – volume: 8 start-page: 39 year: 2016 ident: ref_14 article-title: An Optimal Wavelet Approach for ECG Noise Cancellation publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2016.8.4.05 – volume: 52 start-page: 194 year: 2016 ident: ref_22 article-title: ECG signal enhancement based on improved denoising auto-encoder publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.02.015 – ident: ref_21 doi: 10.1109/ICASSP.2017.7953017 – volume: 16 start-page: 137 year: 2020 ident: ref_2 article-title: A Review of the Methods for Sudden Cardiac Death Detection: A Guide for Emergency Physicians publication-title: Int. J. Online Biomed. Eng. doi: 10.3991/ijoe.v16i09.14485 – volume: 125 start-page: 634 year: 2018 ident: ref_5 article-title: Detection of abnormal heart conditions based on characteristics of ECG signals publication-title: Measurement doi: 10.1016/j.measurement.2018.05.033 – ident: ref_23 doi: 10.22489/CinC.2019.015 – ident: ref_8 doi: 10.3390/app12178839 – ident: ref_7 doi: 10.1109/SMC.2014.6974120 – volume: 2 start-page: 164 year: 2015 ident: ref_9 article-title: Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition publication-title: Health Technol. Lett. doi: 10.1049/htl.2015.0029 – volume: 26 start-page: R155 year: 2005 ident: ref_13 article-title: Wavelet transforms and the ECG: A review publication-title: Physiol. Meas. doi: 10.1088/0967-3334/26/5/R01 – volume: 76 start-page: 2982 year: 2020 ident: ref_1 article-title: Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.11.010 – volume: 18 start-page: 759 year: 2021 ident: ref_26 article-title: A New ECG Denoising Framework Using Generative Adversarial Network publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.2976981 – volume: 45 start-page: 1 year: 2021 ident: ref_17 article-title: Application of improved wavelet threshold in ECG signal de-noising publication-title: Chin. J. Med. Devices – volume: 7 start-page: 60806 year: 2019 ident: ref_30 article-title: Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912036 – ident: ref_4 – ident: ref_31 – ident: ref_12 – volume: 34 start-page: 362 year: 2013 ident: ref_18 article-title: Analysis of ECG signal denoising method based on S-transform publication-title: IRBM doi: 10.1016/j.irbm.2013.07.012 – volume: 13 start-page: 2666 year: 2013 ident: ref_11 article-title: Empirical Mode Decomposition vs. Wavelet Decomposition for the Extraction of Respiratory Signal from Single-Channel ECG: A Comparison publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2257742 – volume: 8 start-page: 713 year: 2013 ident: ref_20 article-title: ECG Enhancement and QRS Detection Based on Sparse Derivatives publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2013.06.005 – volume: 35 start-page: 1798 year: 2014 ident: ref_28 article-title: Representation Learning: A Review and New Perspectives publication-title: arXiv – volume: 8 start-page: 17211 year: 2018 ident: ref_34 article-title: Root Mean Square Minimum Distance as a Quality Metric for Stochastic Optical Localization Nanoscopy Images publication-title: Sci. Rep. doi: 10.1038/s41598-018-35053-8 – volume: 9 start-page: 6734 year: 2019 ident: ref_27 article-title: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network publication-title: Sci. Rep. doi: 10.1038/s41598-019-42516-z – ident: ref_25 doi: 10.1109/FABS52071.2021.9702655 – volume: 36 start-page: 139 year: 2003 ident: ref_29 article-title: PhysioNet: An NIH research resource for complex signals publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2003.09.038 – ident: ref_36 – volume: 37 start-page: 2093 year: 2016 ident: ref_19 article-title: Sparse representation-based ECG signal enhancement and QRS detection publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/12/2093 – volume: 43 start-page: 50 year: 2016 ident: ref_33 article-title: Adaptive estimation of statistical moments of the responses of random systems publication-title: Probabilistic Eng. Mech. doi: 10.1016/j.probengmech.2015.10.005 – volume: 43 start-page: 561 year: 2005 ident: ref_3 article-title: Atrial cell action potential parameter fitting using genetic algorithms publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02351029 – volume: 12 start-page: 39 year: 2011 ident: ref_35 article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization publication-title: J. Mach. Learn. Res. |
| SSID | ssj0000913830 |
| Score | 2.3353589 |
| Snippet | The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1606 |
| SubjectTerms | Algorithms Artificial neural networks Cardiovascular disease Coding Deep learning Diagnosis Electrocardiogram Electrocardiography Electrodes Heart Heart diseases Methods Neural networks Noise Noise reduction Scientific validity Signal processing Signal to noise ratio Wavelet transforms |
| Title | ECG Signal Denoising Method Based on Disentangled Autoencoder |
| URI | https://www.proquest.com/docview/2799621168 |
| Volume | 12 |
| WOSCitedRecordID | wos000970164300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58HfTgW6zWkoPgxaDdbbPJQaTW-gBbgi_US9jMZqUgibbVo7_dmTRVC9KLx2QnYcnsPLP7fQC7aCiJVUa7NrbGrWkkk_JN3ZWCkUowqJp8t_v9lep0_IeHICwabv1iW-XIJ-aO2mTIPfIDoSgzp2rF849f31xmjeK_qwWFxjTMMkoCUzeE9afvHgtjXvrycAg2JKm6P_jhlulXBUVXj5mOfgWkv91yHmvOlv47y2VYLLJMpzFcFiswlaSrsPALe3ANjlrNc-em-8xyp0madblp4LRzQmnnhGKbcbLUOe3mh5PS5xe6brwPMsa9NElvHe7OWrfNC7fgUnCRUpKBm2CgJSZVLZWwlLV4ErW2ui4woOiExrO-0QpFQOWQ4nPmEmPmozEilvrQarkBM2mWJpvg6KoiRyBkYEVSk8rquBZTniaQMYBtzSuBGH3QCAugcea7eImo4GAtRH9ooQT73w-9DnE2JovvsaYitkJ6N-riMAHNkPGsooaisp9yPRWUoDwmSdaD48MjRUaF9fajHy1uTR7ehnmmnx_u5CnDzKD3nuzAHH4Muv1eBWZPWp3wugLT7c9WJV-adC-8bIePXzKv7ck |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4NmqoQV8AHHBarLrer2HCoWmpVGTKBIFlZNZz-5WkSq7JCmIP9XfyIwffUhVbz1wtHa9Wnlm57Ge-T6Ad2gpiFXWhD7zNowM0pFK7HYoBSOVoO7astr9-1CNx8nxsZ4swUXTC8NllY1NLA21LZDvyLeEosicspU4-XT2K2TWKP672lBoVGpx6P7-oZRtvjPok3zfC7G_d7R7ENasAiGSc16EDrWR6LpGKuHJf8cSjfFmW6AmO4029ok1CoWmxEBxx7XEjJlZrMik6Xgjad0HsByxsrdgeTIYTX5c3uowymYiOxW8kZS6s3XFZjPvCvLnMXMrXXOBtzuC0rvtP_3fvsszeFLH0UGvUvznsOTyF_D4GrriS9jZ2_0SfJ2e8Ly-y4spX4sEo5IyO_hM3tsGRR70p2X7VX5ySs-980XByJ7WzVbh273sfw1aeZG7dQhMV5GpE1J74SKpvMmijCJRgYxy7KO4DaIRYIo1lDozepymlFKx1NNbpN6Gj5cvnVVIIndP_8CakbKdobXR1O0StENG7Ep7Koo1RbNKt2HzxkyyD3hzuFGctLZP8_RKa17dPfwWHh0cjYbpcDA-3IAVQSFeVbe0Ca3F7Ny9hof4ezGdz97URyGAn_etZf8A5v9Ijg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xEmoPBUqrpgW6B1AvXSWxk_XuAaFASEFAFAmoEJfFO7ZRJLRLk1DEX-uv68w-eEiIGweOK3sta_15Ht7x9wGso6EgVhntu8QZv6WRtlRo2r4UzFSCUdPk1e6_D1W_H56dRYMp-FfdheGyysom5obaZMhn5HWhKDKnbCUI664sixh0e1vXf3xWkOI_rZWcRgGRA3t3S-nbeHO_S2u9IURv92Rnzy8VBnwkRz3xLUZaom1qqYQjXx5I1NrptsCIbDaawIVGKxQRJQmKb19LTFilxYhE6obTksadhllFOSaXEw7a5_fnO8y3GcpGQXQkZdSoP-jajJuCPHvAKkuPnOHzLiH3c72Ft_yFFuFDGV17nWI7LMGUTT_C-0eci8uwubvzyzseXnK_rk2zIR-WeEe5kLa3TT7deFnqdYf5paz08oqeOzeTjPk-jR19gtNXmf9nmEmz1H4BTzcVGUAhIydsSyqnk1ZC8alA5j52raAGolrMGEuCddb5uIop0WIExM8goAY_71-6LvhFXu7-g1ESs_WhsVGXlyhohszjFXcYihTjqqgGK096ktXAp80ViOLSao3jBwR9fbn5O8wTtOLD_f7BN3gnKO4riplWYGYyurGrMId_J8PxaC3fEx5cvDbE_gM1B0_x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Signal+Denoising+Method+Based+on+Disentangled+Autoencoder&rft.jtitle=Electronics+%28Basel%29&rft.au=Lin%2C+Haicai&rft.au=Liu%2C+Ruixia&rft.au=Liu%2C+Zhaoyang&rft.date=2023-04-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=7&rft.spage=1606&rft_id=info:doi/10.3390%2Felectronics12071606&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12071606 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |