Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants
[Display omitted] •miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using high-throughput sequencing plant stress-responsive conserved and novel miRNAs can be identified. MicroRNAs (miRNAs) are a distinct groups of single-str...
Saved in:
| Published in: | Gene Vol. 821; p. 146283 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
05.05.2022
|
| Subjects: | |
| ISSN: | 0378-1119, 1879-0038, 1879-0038 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using high-throughput sequencing plant stress-responsive conserved and novel miRNAs can be identified.
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review. |
|---|---|
| AbstractList | [Display omitted]
•miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using high-throughput sequencing plant stress-responsive conserved and novel miRNAs can be identified.
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review. MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review. MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review. |
| ArticleNumber | 146283 |
| Author | Begum, Yasmin |
| Author_xml | – sequence: 1 givenname: Yasmin surname: Begum fullname: Begum, Yasmin email: yasmin_b8@yahoo.co.in organization: Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35143944$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9LHTEUxUNR6tP2C3RRstTFPPN_EnAjorYgLUi7DpnMHZvHzOSZ5Al--2Z8tosupHdz7-J3DpdzjtHBHGdA6BMla0qoOt-sH2CGNSOMralQTPN3aEV1axpCuD5AK8Jb3VBKzRE6znlD6kjJ3qMjLqngRogVgnt42I2uxPSMUxwBxwFPwad4_-0y49MpLPsMhxmXX4ATeJgL7uEJxridlrvyrguxBI9zSZAzLtUmudm_eG1HN5f8AR0Obszw8XWfoJ831z-uvjR332-_Xl3eNZ5rUxpQzGtNyACuMw5aobk0VBHZdqb1VDE3KM6cFgzavoVeKM06KQfOlQDpDD9Bp3vfbYqPO8jFTiF7GOsTEHfZMiW0FsTI_0FrnoQKLSr6-RXddRP0dpvC5NKz_ZNiBdgeqLnlnGD4i1Bil6rsxi5V2aUqu6-qivQ_Ih-KKyHOJbkwvi292EuhZvkUINnsA9TE-1AbKraP4S35b1C0rT4 |
| CitedBy_id | crossref_primary_10_2478_sg_2023_0018 crossref_primary_10_1007_s11738_022_03501_8 crossref_primary_10_1111_ppa_14054 crossref_primary_10_3389_fpls_2022_1019538 crossref_primary_10_3390_plants13020163 crossref_primary_10_1038_s41598_025_88689_8 crossref_primary_10_3390_horticulturae9091051 crossref_primary_10_1111_pce_15566 crossref_primary_10_1007_s13562_023_00833_5 crossref_primary_10_1007_s42398_025_00354_y crossref_primary_10_3390_ijms26136385 crossref_primary_10_1007_s11816_024_00914_4 crossref_primary_10_1093_hr_uhad220 crossref_primary_10_3390_life12111811 crossref_primary_10_3390_plants12132558 crossref_primary_10_1016_j_indcrop_2025_121607 crossref_primary_10_3390_horticulturae11020141 crossref_primary_10_1016_j_ijbiomac_2025_144300 crossref_primary_10_1134_S1021443723603622 crossref_primary_10_3389_fpls_2025_1497064 crossref_primary_10_1007_s12042_025_09429_w crossref_primary_10_3390_plants14121769 crossref_primary_10_1002_adma_202212272 crossref_primary_10_1007_s10142_023_01014_2 crossref_primary_10_1111_pbi_14326 crossref_primary_10_3390_life13091917 crossref_primary_10_1007_s00344_024_11283_1 crossref_primary_10_1093_plphys_kiaf003 crossref_primary_10_1038_s41598_023_27847_2 crossref_primary_10_3389_fpls_2022_952397 crossref_primary_10_3390_ijms232214484 crossref_primary_10_1016_j_ijbiomac_2025_147195 crossref_primary_10_1007_s11033_022_07871_7 crossref_primary_10_1007_s13562_025_00986_5 crossref_primary_10_1007_s00344_025_11674_y crossref_primary_10_1016_j_plaphy_2025_110242 crossref_primary_10_1016_j_rhisph_2022_100572 crossref_primary_10_1007_s10142_023_01219_5 crossref_primary_10_3389_fpls_2022_919243 crossref_primary_10_1007_s13562_022_00821_1 crossref_primary_10_1007_s12298_025_01564_8 crossref_primary_10_1016_j_plaphy_2023_107857 crossref_primary_10_1080_13880209_2023_2208636 crossref_primary_10_3389_fmicb_2023_1210890 crossref_primary_10_1016_j_pmpp_2023_102047 crossref_primary_10_1080_15592324_2024_2361174 crossref_primary_10_1007_s00344_025_11737_0 crossref_primary_10_1016_j_plaphy_2024_108524 |
| Cites_doi | 10.3389/fpls.2016.01567 10.1038/s41598-019-52858-3 10.1371/journal.pone.0183253 10.1016/j.plaphy.2019.10.042 10.1016/j.molcel.2018.01.007 10.1590/S1677-04202005000100008 10.3389/fpls.2020.00300 10.1111/j.1469-8137.2009.02846.x 10.1098/rsos.180735 10.3389/fpls.2016.01192 10.1371/journal.pcbi.1004391 10.1007/978-3-030-64994-4_3 10.1038/s41598-019-41189-y 10.3389/fpls.2020.00752 10.1016/j.febslet.2005.07.071 10.1093/bioinformatics/btv534 10.1007/s13562-013-0246-2 10.1016/j.cell.2009.01.046 10.1186/s12864-018-5258-9 10.3390/genes10040303 10.1111/jipb.12634 10.1016/S2095-3119(17)61879-3 10.7717/peerj.9105 10.1073/pnas.1919722117 10.1089/omi.2011.0115 10.1007/s11104-015-2561-y 10.1038/srep23890 10.1104/pp.18.01424 10.1002/etc.3097 10.4161/psb.19337 10.1016/j.molcel.2010.05.015 10.1007/s12298-013-0211-5 10.1371/journal.pgen.1006416 10.1104/pp.19.00741 10.1007/s11103-019-00840-y 10.3389/fpls.2015.00255 10.1105/tpc.003210 10.1104/pp.20.00476 10.1073/pnas.0802493105 10.1038/s41438-019-0157-z 10.1016/j.molp.2018.09.003 10.1093/jxb/erv013 10.1146/annurev.arplant.59.032607.092911 10.1073/pnas.0405570102 10.1155/2014/476917 10.1093/bioinformatics/btq233 10.1186/s12864-020-06913-3 10.3390/ijms19051431 10.1016/j.bbagrm.2011.05.001 10.1186/s12870-017-1172-6 10.1371/journal.pone.0113782 10.1007/s10535-017-0752-5 10.1186/s12870-020-02511-3 10.3390/genes11030264 10.3389/fpls.2017.00374 10.1016/j.jplph.2004.01.004 10.1038/s41438-019-0130-x 10.1146/annurev-arplant-050718-100334 10.1016/j.cpb.2016.10.003 10.1186/s12870-018-1242-4 10.2174/1389202921666200106111813 10.1016/j.ecoenv.2017.01.042 10.1016/j.chemosphere.2014.09.099 10.1371/journal.pone.0228850 10.1186/1471-2229-13-33 10.1093/bioinformatics/btu638 10.4161/psb.26758 10.1111/j.1365-3040.2006.01576.x 10.1093/nar/gku1162 10.1186/s12864-018-4897-1 10.1186/s12864-018-4953-x 10.1093/jxb/eraa290 10.1111/j.1365-313X.2007.03363.x 10.3389/fpls.2021.615114 10.1186/s12870-016-0830-4 10.1016/j.cub.2008.04.042 10.1016/j.plantsci.2017.01.018 10.1038/s41477-020-0726-z 10.1007/978-3-030-35772-6_5 10.3389/fpls.2016.00817 10.1105/tpc.106.041673 10.1111/j.1365-313X.2006.02697.x 10.1038/sj.emboj.7600385 10.1007/s10725-010-9526-1 10.1038/s41598-019-39397-7 10.1155/2018/9395261 10.1093/nar/gkt485 10.1038/s41477-018-0334-3 10.3389/fpls.2017.00378 10.3390/genes11030319 10.1093/gbe/evs002 10.1199/tab.0024 10.1371/journal.pone.0169212 10.1111/ppl.12787 10.1186/s12870-019-1698-x 10.1155/2012/217037 10.1186/s12864-017-4347-5 10.1093/nar/gky316 10.1093/jexbot/53.372.1331 10.1186/s12870-020-2296-7 10.1186/s12284-018-0253-y 10.1093/jxb/erw346 10.1007/s10142-016-0480-5 10.1371/journal.pone.0219176 10.1016/j.phytochem.2005.05.003 10.1104/pp.007047 10.3390/ijms21082795 10.1007/s11816-016-0401-z 10.1007/s10646-017-1843-y 10.1007/s11738-016-2337-x 10.3389/fpls.2017.00272 10.1016/j.cell.2009.01.035 10.1039/b904571f 10.1093/bioinformatics/bty338 10.1105/tpc.113.113159 10.1093/jxb/erab336 10.3389/fpls.2017.00356 10.3389/fpls.2019.00324 10.1105/tpc.111.090431 10.3389/fpls.2015.00188 10.1046/j.1469-8137.2000.00630.x 10.1093/pcp/pcy136 10.1007/s12042-013-9127-z 10.3389/fpls.2017.00006 10.1186/s12870-019-1823-x 10.1007/s11738-018-2758-9 10.1371/journal.pone.0230958 10.1101/gad.1004402 10.1186/s12864-019-6111-5 10.1186/1471-2164-13-S7-S16 10.3389/fpls.2018.00499 10.1007/s10142-015-0451-2 10.1016/j.devcel.2008.04.005 10.1186/s12864-018-5395-1 10.3390/biom9050182 10.1186/s12864-019-5913-9 10.1093/bioinformatics/btx797 10.1371/journal.pone.0091357 10.1093/nar/gkp818 10.1093/bioinformatics/bty972 10.1093/nar/gkz894 10.1038/srep32805 10.1101/gad.1399806 10.1104/pp.18.00485 10.1080/15476286.2019.1574163 10.1105/tpc.105.032185 10.1093/pcp/pcz038 10.1007/s00299-018-2313-6 10.1093/jxb/ers339 10.1016/S0960-9822(02)01017-5 10.1093/bioinformatics/btv583 10.1093/pcp/pcw108 10.1016/j.jplph.2004.02.003 10.1093/nar/gkt1156 10.1016/j.plantsci.2016.07.009 10.1186/s12864-019-5799-6 10.1038/srep14024 10.1023/A:1006314001430 10.1146/annurev.arplant.53.091401.143329 10.3390/ijms20102391 10.1016/j.tplants.2005.08.006 10.1186/s41544-018-0002-9 10.3390/genes8060156 10.1139/cjps-2018-0327 10.3389/fpls.2018.00602 10.1016/j.molcel.2010.03.008 10.1105/tpc.17.00842 10.3389/fpls.2014.00708 10.1046/j.1469-8137.2002.00363.x 10.1007/978-1-4939-7136-7_22 10.1186/1471-2105-12-107 10.1002/jcp.24685 10.1371/journal.pone.0142753 10.1093/nar/gky1141 10.1111/j.1747-0765.2007.00214.x 10.3389/fgene.2018.00168 10.3390/ijms17101712 10.1186/s12870-019-1679-0 10.1186/1471-2105-8-341 10.1016/j.plantsci.2019.05.003 10.3389/fpls.2018.00383 10.1039/C4MT00264D 10.1016/j.plgene.2019.100210 10.1080/13102818.2019.1581085 10.1016/j.molcel.2010.05.014 10.1021/acs.jafc.5b04191 10.1038/nplants.2016.33 10.3389/fpls.2016.00023 10.1093/bioinformatics/btw189 10.3389/fpls.2015.00232 10.3389/fpls.2017.00565 10.3390/plants9010034 10.1186/s12870-020-02595-x 10.1105/tpc.112.096636 10.1080/15226514.2014.898018 10.1016/j.cj.2020.07.005 10.1186/s12864-017-3556-2 10.1007/s11356-015-5273-1 10.1016/j.plgene.2019.100213 10.3389/fpls.2017.01598 10.1126/science.1163728 10.1016/j.ecoenv.2018.08.077 10.1007/s11240-018-01529-8 10.3390/ijms20061474 10.3389/fpls.2017.00864 10.1007/s11103-014-0224-7 10.1146/annurev.arplant.59.032607.092752 10.1111/nph.14938 10.1371/journal.pone.0236829 10.1007/s00438-018-1516-4 10.1007/s10142-017-0565-9 10.3389/fpls.2019.00340 10.1146/annurev.arplant.57.032905.105218 10.1186/s12870-020-02489-y 10.1016/j.envexpbot.2017.01.015 10.1016/j.indcrop.2020.112484 10.1038/srep32158 10.1007/s00299-017-2146-8 10.1016/j.ygeno.2018.11.022 10.1186/1471-2164-10-366 10.1111/pce.12597 10.1093/pcp/pcm099 10.1186/s12867-019-0131-1 10.1007/s10142-018-0619-7 10.1111/j.1469-8137.2007.01996.x 10.1016/j.cub.2007.04.005 10.1007/978-3-030-35772-6_11 10.17221/57/2018-CJGPB 10.1007/s11103-016-0488-1 10.1080/21655979.2016.1141838 10.1016/j.pld.2015.04.001 10.1104/pp.104.046755 10.1093/nar/gkz415 10.1073/pnas.1204915109 10.1016/j.gene.2018.09.049 10.3390/plants8030058 10.1080/07352680500365232 10.1093/jxb/erz264 10.1007/s10725-019-00479-1 10.12688/f1000research.7035.1 10.1186/1471-2105-15-275 10.1111/tpj.14369 10.1093/jxb/erz132 10.3389/fpls.2019.00748 10.1002/jcp.25125 10.1186/s12870-019-2189-9 10.1186/s12864-021-07680-5 10.3389/fpls.2019.00989 10.1105/tpc.19.00395 10.1007/s11105-016-0973-3 10.1016/S0065-2296(08)60089-0 10.1016/S0092-8674(04)00045-5 10.1128/AEM.03132-18 10.1016/0092-8674(93)90529-Y 10.1186/s12870-019-2203-2 10.1111/j.1469-8137.2012.04154.x 10.3389/fcell.2020.00143 10.1093/bioinformatics/btr132 10.1093/bioinformatics/bti802 10.1038/s41598-020-59981-6 10.1007/s00425-018-2927-5 10.1104/pp.20.00129 10.1016/j.envint.2005.02.003 10.1093/jxb/eru002 10.1016/j.chemosphere.2009.02.033 10.1101/gr.2908205 10.1104/pp.17.01169 10.1016/j.ymeth.2012.10.006 10.1007/s11356-019-06760-0 10.1105/tpc.111.094144 10.1080/15592324.2016.1213474 10.1007/s00709-010-0256-z 10.1093/pcp/pcaa079 10.1186/s12870-018-1460-9 10.1111/tpj.12999 10.1371/journal.pone.0217806 10.1002/9781119312994.apr0649 10.1146/annurev-arplant-042110-103921 10.1007/s00425-010-1255-1 10.3389/fpls.2013.00145 10.1007/s10142-019-00692-1 10.1111/j.1399-3054.2010.01384.x 10.3389/fpls.2019.00360 10.1186/s12870-020-2313-x 10.1007/s13258-019-00848-0 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.gene.2022.146283 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Biology |
| EISSN | 1879-0038 |
| ExternalDocumentID | 35143944 10_1016_j_gene_2022_146283 S0378111922001020 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K WH7 ZA5 ~G- .55 .GJ 29H 53G 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM R2- SBG SEW VH1 WUQ X7M XOL XPP Y6R ZGI ~HD ~KM AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c389t-e62c8800feab9ae74835916057b97c162af632a842e7d7ed4682b55f3364e5a93 |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781099600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-1119 1879-0038 |
| IngestDate | Thu Oct 02 11:46:55 EDT 2025 Wed Oct 01 13:26:40 EDT 2025 Mon Jul 21 06:08:16 EDT 2025 Sat Nov 29 07:20:15 EST 2025 Tue Nov 18 20:38:47 EST 2025 Fri Feb 23 02:41:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ABA Transcription factors TF High-throughput sequencing Abiotic stress HTS miRNA AGO MicoRNAs DE miRNAs |
| Language | English |
| License | Copyright © 2022 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-e62c8800feab9ae74835916057b97c162af632a842e7d7ed4682b55f3364e5a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 35143944 |
| PQID | 2628301484 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2648840959 proquest_miscellaneous_2628301484 pubmed_primary_35143944 crossref_primary_10_1016_j_gene_2022_146283 crossref_citationtrail_10_1016_j_gene_2022_146283 elsevier_sciencedirect_doi_10_1016_j_gene_2022_146283 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-05 |
| PublicationDateYYYYMMDD | 2022-05-05 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Gene |
| PublicationTitleAlternate | Gene |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jin, Yarra, Zhou, Zhao, Cao (b0475) 2020; 10 Keunen, Schellingen, Vangronsveld, Cuypers (b0510) 2016; 7 Samardjieva, Gonçalves, Valentão, Andrade, Pissarra, Pereira, Tavares (b0975) 2015; 17 Lee, Kim, Han, Yeom, Lee, Baek, Kim (b0550) 2004; 23 Humphreys, D.T., Suter, C.M., 2013. miRspring: a compact standalone research tool for analyzing miRNA-seq data. is involved in abiotic stress responses in Pegler, Oultram, Grof, Eamens (b0870) 2019; 8 Parveen, Mustafa, Yadav, Kumar (b0835) 2019; 20 Patel, Yadav, Srivastava, Suprasanna, Ganapath (b0845) 2019; 9 Moro, Chorostecki, Arikit, Suarez, Höbartner, Rasia, Meyers, Palatnik (b0760) 2018; 46 Patra, Fasold, Langenberger, Steger, Grosse, Stadler (b0850) 2014; 5 Hou, Jiang, Zheng, Wu (b0405) 2019; 19 Ai, Liang, Zhang, Yu (b0035) 2016; 38 Banerjee, Roychoudhury, Krishnamoorthi (b0120) 2016; 10 Reinhart, Weinstein, Rhoades, Bartel, Bartel (b0935) 2002; 16 Li, Zhang (b0575) 2019; 1 Requejo, Tena (b0950) 2005; 66 Poirier, Bucher (b0895) 2002; 1 Song, Zhang, Zhang, Zhang, Li, Gao, Han, Chen, Wang, Li, Li (b1055) 2017; 18 Fahlgren, Hill, Carrington, Carbonell (b0275) 2016; 32 84, 1, 169–187. https://doi.org/10.1111/tpj.12999. Pant, Buhtz, Kehr, Scheible (b0815) 2008; 53 Zhu, Zhang, Tang, Qu, Duan, Jiang (b1480) 2019; 20 Manavella, P.A., Yang, S.W., Palatnik, J., 2019. Keep calm and carry on: miRNA biogenesis under stress. Plant J. 99, 5, 832–843. https://doi.org/10.1111/tpj.14369. Yu, Ma, Zuo, Wang, Meng (b1310) 2018; 9 Li, Zhang, Liu, Zhao, Wang, Zhang (b0595) 2016; 252 11 An, Lai, Sajjanhar, Lehman, Nelson (b0060) 2014; 15 Lin, Y., Zhu, Y., Cui, Y., Chen, R., Chen, Z., Li, G., Fan, M., Chen, J., Li, Y., Guo, X., Zheng, X., Chen, L., Wang, F., 2021. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9. L.). mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 18, 8, 2051–2065. https://doi.org/10.1105/tpc.106.041673. Jiang, Zhou, Chen, Ye, Xia, Zhuang (b0470) 2019; 12 Waheed, Zeng (b1180) 2020; 11 Zhang, Yao, Zhang, Yang, Zhu, Tang, Calderón-Urrea, Si (b1410) 2018; 9 Bharath, Gahir, Raghavendra (b0150) 2021; 12 Arshad, Gruber, Wall, Hannoufa (b0085) 2017; 8 Bioinformatics. Shanker, Cervantes, Loza-Tavera, Avudainayagam (b0990) 2005; 31 Shanker, Djanaguiraman, Venkateswarlu (b0995) 2009; 1 Zhang, Wang (b1385) 2015; 230 Zhang, Yu, Li, Zhang, Liu, Zhou, Wang, Ling, Su (b1435) 2010; 38 Llave, Kasschau, Rector, Carrington (b0655) 2002; 14 Love, Anders, Kim, Huber (b0670) 2015; 4 Yu, Wang (b1330) 2020; 61 Teotia, S., Tang, G., 2017. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. Zhou, Yu, Ottosen, Zhang, Wu, Zhao (b1475) 2020; 20 . Alzahrani, Alaraidh, Khan, Migdadi, Alghamdi, Alsahli (b0050) 2019; 10 Lundmark, Korner, Nielsen (b0685) 2010; 140 Aparicio-Puerta, Lebrón, Rueda, Gómez-Martín, Giannoukakos, Jaspez, Medina, Zubkovic, Jurak, Fromm, Marchal, Oliver, Hackenberg (b0070) 2019; 47 6 Esposito, Carputo, Cardi, Tripodi (b0270) 2020; 9 Gong, Li, Li, Zhou, Xu (b0355) 2019; 55 Ramachandran, Chen (b0920) 2008; 321 Zeng, Zhang, Ding, Zhu (b1365) 2019; 19 Ding, Gong, Wang, Wang, Bao, Sun, Cai, Yi, Chen, Zhu (b0250) 2018; 177 Srivastava, Suprasanna, D'Souza (b1070) 2011; 248 Ma, Han, Shao, Meng, Zheng (b0705) 2017; 12 Zhang, Wang, Wang, Zhang, Liu (b1430) 2016; 57 Bhat, Mondal, Gaikwad, Kole, Chandel, Mohapatra (b0155) 2020; 21 Wang, Fang, Wu, Qing, Li, Xie, Deng, Guo (b1205) 2020; 183 Niu, Li, Jiang, Yan, Li, Geng, Xie, Yan, Shen, Chen, Dong, Ma, Guan (b0780) 2019; 6 Takahashi, Kopriva, Giordano, Saito, Hell (b1125) 2011; 62 Armstrong (b0075) 1979; 7 Feng, X., Liu, W., dai, H., Qiu, Y., Zhang, G., Chen, Z.H., Wu, F., 2020. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. J. Exp Bot. 71, 19, 6057–6073. https://doi.org/10.1093/jxb/eraa290. Parmar, Gharat, Tagirasa, Chandra, Behera, Dash, Shaw, Amato (b0830) 2020; 15 Puig (b0890) 2014; 2014 Tirumalai, Swetha, Nair, Pandit, Shivaprasad (b1150) 2019; 70 Nucleic Acids Res. Matthews, Arshad, Hannoufa (b0730) 2019; 165 Kuang, Z., Wang, Y., Li, L., Yang, X., 2019. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. Siddiqui, Abbas, Ansari, Khan (b1030) 2019; 111 Silva, Rosa-Santos, França, Kottapalli, Kottapalli, Zingaretti, Singh (b1035) 2019; 14 Singh, Gautam, Singh, Sarkar Das, Verma, Mishra, Mukherjee, Sarkar (b1040) 2018; 248 Carthew, Sontheimer (b0200) 2009; 136 Qiu, He, Zhang, Guo, Wang (b0910) 2018; 164 Shi, Jiang, Wen, Wu (b1015) 2019; 19 Cui, Zhai, Ma, Li (b0230) 2015; 10 Front. Plant Sci. Katz, Salem (b0500) 1994 Garcia, Mansilla, Ocampos, Pagani, Welchen, Gonzalez (b0335) 2019; 99 Ghosh, Singh, Shaw, Azahar, Adhikari, Ghosh, Basu, Roy, Saha, Sherpa, Hossain (b0345) 2017; 137 Zhang, F., Zhang, Y, C., Zhang, J. P., Yu, Y., Zhou, Y. F., Feng, Y. Z., Yang, Y. W., Lei, M. Q., He, H., Lian, J. P., Chen, Y. Q., 2018. Rice Dmitriev, Kudryavtseva, Bolsheva, Zyablitsin, Rozhmina, Kishlyan, Krasnov, Speranskaya, Krinitsina, Sadritdinova, Snezhkina, Fedorova, Yurkevich, Muravenko, Belenikin, Melnikova (b0260) 2017; 4975146 Liu, Q., Hu, H., Zhu, L., Li, R., Feng, Y., Zhang, L., Yang, Y., Liu, X., Zhang, H., 2015. Involvement of miR528 in the regulation of arsenite tolerance in rice Hou, Du, Gao, Liu, Sun, Lu, Kang, Xie, Ma, Wang (b0400) 2020; 20 Zhou, Deng, Cheng, Zhong, Tian, Tang, Tang, Zheng, Zhang, Qi, Zhang (b1465) 2017; 8 roots. Environ. Toxicol. Chem. 34, 11, 2573–2582. https://doi.org/10.1002/etc.3097. Peng, Qiao, Liu, Teotia, Zhang, Zhao, Wang, Zhao, Shi, Zhang, Le, Rogers, Gunasekara, Duan, Gu, Tian, Nie, Qi, Meng, Huang, Chen, Wang, Tang, Tang, Lan, Chen, Wei, Zhao, Tang (b0880) 2018; 11 Ren, Xie, Dou, Zhang, Zhang, Yu (b0945) 2012; 109 Sabzehzari, Naghavi (b0960) 2019; 682 Pan, Huang, Guo, Kuang, Zhang, Xie, Ma, Gao, Lerdau, Chu, Li (b0800) 2018; 60 Bologna, Iselin, Abriata, Sarazin, Pumplin, Jay, Grentzinger, Dal Peraro, Voinnet (b0160) 2018; 69 Casati, P., 2013. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal Behav. 8(10), 10.4161/psb.26758. https://doi.org/10.4161/psb.26758. 60. https://doi.org/10.1186/s12284-018-0253-y. Catalanotto, Cogoni, Zardo (b0205) 2016; 17 Yuan, Zhao, Li, Hu, Yuan, Zhou, Xia, Noorai, Saski, Li, Luo (b1350) 2019; 6 Wang, Cheng, Chen, Zhang, Zhang, Jiang, Tan (b1185) 2019; 20 Frazier, Xie, Freistaedter, Burklew, Zhang (b0300) 2010; 232 Jha, Nayyar, Jha, Khurshid, Zhou, Mantri, Siddique (b0465) 2020; 20 Das, Yadav, Singh, Gautam, Sarkar, Nandi, Karmakar, Majee, Sanan-Mishra (b0240) 2018; 8 Hu, Wang, Deng, Li, Zhang, Zhang, Chu (b0410) 2015; 6 Liu, Zhang, Sun, Hao, Liu, Zhang, Tang, Li, Li, Shi, Xie, Song, Wang, Li, Wu (b0645) 2019; 14 Bonnet, He, Billiau, Van de Peer (b0165) 2010; 26 Huen, Bally, Smith (b0430) 2018; 19 Bernal, M., Casero, D., Singh, V., Wilson, G.T., Grande, A., Yang, H., Dodani, S.C., Pellegrini, M., Huijser, P., Connolly, E.L., Merchant, S.S., Krämer, U., 2012. Transcriptome sequencing identifies SPL7-regulated Cu acquisition genes FRO4/FRO5 and the Cu dependence of Fe homeostasis in Tang, Yan, Gu, Qiao, Fan, Mao, Tang (b1115) 2012; 58 Jacobs, LaFayette, Schmitz, Parrott (b0455) 2015; 15 Swarup, Denyer (b1100) 2019; 2 Bailey-Serres, Voesenek (b0115) 2008; 59 Zhu, Li, Cong, Lu (b1495) 2020; 9 R. Lorenzetti, A. de Antonio, Paschoal, Domingues (b0915) 2016; 16 Wang, Wang, Yang, Xie, Cheng, Qin, Tang, Huang (b1230) 2019; 85 Agarwal, Grover (b0020) 2006; 25 Pandey, Gedda, Verma (b0810) 2020; 11 Fang, Spector (b0280) 2007; 17 Zhao, Wang, Zhou, Wang, Zhang, Wang, Pan, Xu (b1445) 2017; 8 Tian, Liu, Ren, Ku, Wu, Li, Wang, Zhou, Song, Zhang, Dou, Liu, Tang, Chen (b1145) 2018; 18 Gomes, Hauser-Davis, Suzuki, Vitória (b0350) 2017; 140 López-Galiano, García-Robles, González-Hernández, Camañes, Vicedo, Real, Rausell (b0660) 2019; 8 Bukhari, S. A., Shang, S., Zhang, M., Zheng, W., Zhang, G., Wang, T.Z., Shamsi I, H., Wu, F., 2015. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco Yang, Wang, Teotia, Wang, Shi, Sun, Gu, Zhang, Tang (b1290) 2019; 9 Takahashi, H., 2019. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J Exp Bot. 70, 16, 4075–4087. https://doi.org/10.1093/jxb/erz132. Plotnikova, Kellner, Schon, Mosiolek, Nodine (b0885) 2019; 31 Thody, Folkes, Medina-Calzada, Xu, Dalmay, Moulton (b1140) 2018; 46 J Exp Bot. Xie, Zhang, Zhao, Wang, Gao, Xu (b1255) 2017; 39 Zhang, Smith, Harberd, Jiang (b1415) 2016; 91 8, 864. https://doi.org/10.3389/fpls.2017.00864. Agarwal, S., Mangrauthia, S.K., Sarla N., 2015. Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar × Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil. 396, 1/2, 137–150. https://www.jstor.org/stable/43872510. Huang, Lin, Li, Huang, Shrestha, Hong, Tang, Chen, Jin, Yu, Xu, Li, Cai, Zhou, Chen, Pei, Hu, Su, Cui, Wang, Xie, Ding, Luo, Chou, Chang, Chen, Cheng, Wan, Hsu, Lee, Wei, Huang (b0415) 2020; 48 Li, Ross, Arighi, Peng, Wu, Vijay-Shanker, Rzhetsky (b0570) 2015; 11 Chen, J., and Li, L. (2018). Multiple regression analysis reveals MicroRNA regulatory networks in Liu, Huang, Tseng, Lai, Lin, Lin, Chen, Chiou (b0630) 2012; 24 under drought stress. Int J Genomics. 2018, 9395261. https://doi.org/10.1155/2018/9395261. ‘Millennium’) lines. Can. J. Plant Sci. Rogers, Chen (b0955) 2013; 25 Shin, Jeong, Lim, Kim, Park, Kim, Shin (b1020) 2018; 19 Bai, Wang, Chen, Shi, Liu, Guo, Xiao (b0110) 2018; 9 Paul, Gayen, Datta, Datta (b0860) 2016; 67 Zhang, You, Zhang, Zeng, Hu, Zhao, Chen (b1405) 2020; 6 Kobayashi (b0520) 2019; 60 Sanan-Mishra, Tripathi, Goswami, Shukla, Vasudevan, Goswami (b0980) 2018; 9 Huang, Fan, Rothschild, Hu, Li, Zhao (b0425) 2007; 8 100, 4, 445–455. https://doi.org/10.1139/cjps-2018-0327. Meharg, Hartley-Whitaker (b0740) 2002; 154 Zeng, Xu, Jiang, Zhang, Ma, Wu, Wang, Sun (b1370) 2018; 18 Luan, Zhao, Han, Sun, Yang, Liu, Shi, Fu, Lan, Agarwal (10.1016/j.gene.2022.146283_b0020) 2006; 25 Pegler (10.1016/j.gene.2022.146283_b0865) 2019; 8 Yue (10.1016/j.gene.2022.146283_b1355) 2017; 36 10.1016/j.gene.2022.146283_b1085 Wu (10.1016/j.gene.2022.146283_b1250) 2015; 119 Lundmark (10.1016/j.gene.2022.146283_b0685) 2010; 140 Aparicio-Puerta (10.1016/j.gene.2022.146283_b0070) 2019; 47 10.1016/j.gene.2022.146283_b0435 Yu (10.1016/j.gene.2022.146283_b1335) 2019; 285 Srivastava (10.1016/j.gene.2022.146283_b1070) 2011; 248 Leng (10.1016/j.gene.2022.146283_b0555) 2017; 17 Li (10.1016/j.gene.2022.146283_b0595) 2016; 252 Thody (10.1016/j.gene.2022.146283_b1140) 2018; 46 Shanker (10.1016/j.gene.2022.146283_b0995) 2009; 1 Millaleo (10.1016/j.gene.2022.146283_b0755) 2013; 64 Shi (10.1016/j.gene.2022.146283_b1010) 2018; 17 Zhang (10.1016/j.gene.2022.146283_b1375) 2015; 66 Song (10.1016/j.gene.2022.146283_b1060) 2019; 70 Wu (10.1016/j.gene.2022.146283_b1235) 2018; 19 Wang (10.1016/j.gene.2022.146283_b1220) 2019; 16 Zhao (10.1016/j.gene.2022.146283_b1450) 2015; 24 Fukao (10.1016/j.gene.2022.146283_b0320) 2019; 10 10.1016/j.gene.2022.146283_b0445 Lin (10.1016/j.gene.2022.146283_b0610) 2018; 217 Li (10.1016/j.gene.2022.146283_b0580) 2017; 26 Liu (10.1016/j.gene.2022.146283_b0640) 2015; 5 Park (10.1016/j.gene.2022.146283_b0820) 2005; 102 Parmar (10.1016/j.gene.2022.146283_b0830) 2020; 15 Zhao (10.1016/j.gene.2022.146283_b1445) 2017; 8 Zhou (10.1016/j.gene.2022.146283_b1475) 2020; 20 Kozomara (10.1016/j.gene.2022.146283_b0530) 2019; 47 Singh (10.1016/j.gene.2022.146283_b1045) 2020; 21 Silva (10.1016/j.gene.2022.146283_b1035) 2019; 14 Ai (10.1016/j.gene.2022.146283_b0035) 2016; 38 10.1016/j.gene.2022.146283_b9011 Garcia (10.1016/j.gene.2022.146283_b0335) 2019; 99 10.1016/j.gene.2022.146283_b1090 Numnark (10.1016/j.gene.2022.146283_b0795) 2012; 13 Suppl 7 (Suppl 7) Song (10.1016/j.gene.2022.146283_b1050) 2014; 9 10.1016/j.gene.2022.146283_b0695 Guo (10.1016/j.gene.2022.146283_b0375) 2018; 30 Zhang (10.1016/j.gene.2022.146283_b1410) 2018; 9 Qiu (10.1016/j.gene.2022.146283_b0910) 2018; 164 Gielen (10.1016/j.gene.2022.146283_b0340) 2016; 16 Reinhart (10.1016/j.gene.2022.146283_b0935) 2002; 16 Li (10.1016/j.gene.2022.146283_b0575) 2019; 1 Park (10.1016/j.gene.2022.146283_b0825) 2002; 12 Siddiqui (10.1016/j.gene.2022.146283_b1030) 2019; 111 Zhu (10.1016/j.gene.2022.146283_b1490) 2020; 117 Song (10.1016/j.gene.2022.146283_b1055) 2017; 18 Tang (10.1016/j.gene.2022.146283_b1115) 2012; 58 Lv (10.1016/j.gene.2022.146283_b0690) 2016; 7 Jha (10.1016/j.gene.2022.146283_b0460) 2004; 161 Liu (10.1016/j.gene.2022.146283_b0650) 2018; 37 Wang (10.1016/j.gene.2022.146283_b1190) 2009; 75 Yang (10.1016/j.gene.2022.146283_b1285) 2019; 9 Ahmed (10.1016/j.gene.2022.146283_b0030) 2020; 11 Iyer (10.1016/j.gene.2022.146283_b0450) 2012; 7 Valencia-Sanchez (10.1016/j.gene.2022.146283_b1170) 2006; 20 Chinnusamy (10.1016/j.gene.2022.146283_b0215) 2007 Wang (10.1016/j.gene.2022.146283_b1195) 2015; 22 Huang (10.1016/j.gene.2022.146283_b0420) 2018; 62 Patra (10.1016/j.gene.2022.146283_b0850) 2014; 5 Yang (10.1016/j.gene.2022.146283_b1295) 2020; 151 Jin (10.1016/j.gene.2022.146283_b0475) 2020; 10 Li (10.1016/j.gene.2022.146283_b0565) 2020 Tian (10.1016/j.gene.2022.146283_b1145) 2018; 18 Matthews (10.1016/j.gene.2022.146283_b0730) 2019; 165 Voinnet (10.1016/j.gene.2022.146283_b1175) 2009; 136 10.1016/j.gene.2022.146283_b1280 Fu (10.1016/j.gene.2022.146283_b0310) 2019; 19 Peng (10.1016/j.gene.2022.146283_b0880) 2018; 11 Zeng (10.1016/j.gene.2022.146283_b1370) 2018; 18 Jacobs (10.1016/j.gene.2022.146283_b0455) 2015; 15 Asefpour Vakilian (10.1016/j.gene.2022.146283_b0095) 2020; 10 Cakmak (10.1016/j.gene.2022.146283_b0190) 2000; 146 Loreti (10.1016/j.gene.2022.146283_b0665) 2020; 182 Esposito (10.1016/j.gene.2022.146283_b0270) 2020; 9 Wu (10.1016/j.gene.2022.146283_b1245) 2011; 12 Zhang (10.1016/j.gene.2022.146283_b1435) 2010; 38 Xie (10.1016/j.gene.2022.146283_b1255) 2017; 39 Li (10.1016/j.gene.2022.146283_b0560) 2016; 231 Gupta (10.1016/j.gene.2022.146283_b0390) 2017; 8 Mette (10.1016/j.gene.2022.146283_b0745) 2002; 130 López-Galiano (10.1016/j.gene.2022.146283_b0660) 2019; 8 Pegler (10.1016/j.gene.2022.146283_b0870) 2019; 8 Bonnet (10.1016/j.gene.2022.146283_b0165) 2010; 26 Singh (10.1016/j.gene.2022.146283_b1040) 2018; 248 Abla (10.1016/j.gene.2022.146283_b0005) 2019; 9 Gregory (10.1016/j.gene.2022.146283_b0360) 2008; 14 Mhuantong (10.1016/j.gene.2022.146283_b0750) 2009; 10 Sanan-Mishra (10.1016/j.gene.2022.146283_b0980) 2018; 9 Yang (10.1016/j.gene.2022.146283_b1300) 2019; 41 Liu (10.1016/j.gene.2022.146283_b0630) 2012; 24 10.1016/j.gene.2022.146283_b0535 Bologna (10.1016/j.gene.2022.146283_b0160) 2018; 69 Patel (10.1016/j.gene.2022.146283_b0845) 2019; 9 Jones-Rhoades (10.1016/j.gene.2022.146283_b0490) 2006; 57 Paul (10.1016/j.gene.2022.146283_b0860) 2016; 67 Yuce (10.1016/j.gene.2022.146283_b1360) 2019; 136 Zhu (10.1016/j.gene.2022.146283_b1495) 2020; 9 Grewal (10.1016/j.gene.2022.146283_b0365) 2018; 59 Yuan (10.1016/j.gene.2022.146283_b1340) 2016; 39 Lin (10.1016/j.gene.2022.146283_b0605) 2020; 15 Zhang (10.1016/j.gene.2022.146283_b1415) 2016; 91 Waheed (10.1016/j.gene.2022.146283_b1180) 2020; 11 Zhu (10.1016/j.gene.2022.146283_b1485) 2002; 53 Mackerness (10.1016/j.gene.2022.146283_b0715) 2000; 32 10.1016/j.gene.2022.146283_b1075 Dubey (10.1016/j.gene.2022.146283_b0265) 2020; 27 Zheng (10.1016/j.gene.2022.146283_b1460) 2013; 6 Dezulian (10.1016/j.gene.2022.146283_b0245) 2006; 22 10.1016/j.gene.2022.146283_b0545 Swarup (10.1016/j.gene.2022.146283_b1100) 2019; 2 10.1016/j.gene.2022.146283_b0305 Sanz-Carbonell (10.1016/j.gene.2022.146283_b0985) 2019; 19 Shin (10.1016/j.gene.2022.146283_b1020) 2018; 19 Sabzehzari (10.1016/j.gene.2022.146283_b0960) 2019; 682 Tiwari (10.1016/j.gene.2022.146283_b1155) 2020; 20 Axtell (10.1016/j.gene.2022.146283_b0100) 2005; 17 Marschner (10.1016/j.gene.2022.146283_b0725) 1995 Liu (10.1016/j.gene.2022.146283_b0645) 2019; 14 10.1016/j.gene.2022.146283_b0395 Liu (10.1016/j.gene.2022.146283_b0635) 2021; 22 Panda (10.1016/j.gene.2022.146283_b0805) 2005; 17 Sunitha (10.1016/j.gene.2022.146283_b1095) 2019; 9 Kehr (10.1016/j.gene.2022.146283_b0505) 2013; 4 10.1016/j.gene.2022.146283_b1120 10.1016/j.gene.2022.146283_b0710 Pandey (10.1016/j.gene.2022.146283_b0810) 2020; 11 Shriram (10.1016/j.gene.2022.146283_b1025) 2016; 7 Sharma (10.1016/j.gene.2022.146283_b1005) 2012; 2012 Yu (10.1016/j.gene.2022.146283_b1325) 2019; 87 Curaba (10.1016/j.gene.2022.146283_b0235) 2014; 65 Rogers (10.1016/j.gene.2022.146283_b0955) 2013; 25 Wang (10.1016/j.gene.2022.146283_b1205) 2020; 183 Yu (10.1016/j.gene.2022.146283_b1330) 2020; 61 Cimini (10.1016/j.gene.2022.146283_b0225) 2019; 10 Bailey-Serres (10.1016/j.gene.2022.146283_b0115) 2008; 59 Bai (10.1016/j.gene.2022.146283_b0110) 2018; 9 Carrió-Seguí (10.1016/j.gene.2022.146283_b0195) 2019; 10 Laubinger (10.1016/j.gene.2022.146283_b0540) 2008; 105 Kobayashi (10.1016/j.gene.2022.146283_b0520) 2019; 60 Lee (10.1016/j.gene.2022.146283_b0550) 2004; 23 Alejandro (10.1016/j.gene.2022.146283_b0040) 2020; 11 Wang (10.1016/j.gene.2022.146283_b1225) 2020; 184 Qiu (10.1016/j.gene.2022.146283_b0900) 2020; 21 Wang (10.1016/j.gene.2022.146283_b1200) 2019; 20 Xu (10.1016/j.gene.2022.146283_b1265) 2019; 5 Pan (10.1016/j.gene.2022.146283_b0800) 2018; 60 Ding (10.1016/j.gene.2022.146283_b0250) 2018; 177 10.1016/j.gene.2022.146283_b1130 R. Lorenzetti (10.1016/j.gene.2022.146283_b0915) 2016; 16 Das (10.1016/j.gene.2022.146283_b0240) 2018; 8 Gomes (10.1016/j.gene.2022.146283_b0350) 2017; 140 Arshad (10.1016/j.gene.2022.146283_b0080) 2017; 258 10.1016/j.gene.2022.146283_b0720 Sun (10.1016/j.gene.2022.146283_b1080) 2020; 40 Alscher (10.1016/j.gene.2022.146283_b0045) 2002; 53 Fujioka (10.1016/j.gene.2022.146283_b0315) 2007; 48 Parveen (10.1016/j.gene.2022.146283_b0835) 2019; 20 Love (10.1016/j.gene.2022.146283_b0670) 2015; 4 Muñoz-Mérida (10.1016/j.gene.2022.146283_b0770) 2012; 16 Paul (10.1016/j.gene.2022.146283_b0855) 2015; 6 Zhang (10.1016/j.gene.2022.146283_b1405) 2020; 6 Cui (10.1016/j.gene.2022.146283_b0230) 2015; 10 Bhat (10.1016/j.gene.2022.146283_b0155) 2020; 21 Szopiński (10.1016/j.gene.2022.146283_b1110) 2019; 10 Gong (10.1016/j.gene.2022.146283_b0355) 2019; 55 Wu (10.1016/j.gene.2022.146283_b1240) 2010; 38 Poirier (10.1016/j.gene.2022.146283_b0895) 2002; 1 Yi (10.1016/j.gene.2022.146283_b1305) 2015; 43 10.1016/j.gene.2022.146283_b0295 Ravichandran (10.1016/j.gene.2022.146283_b0930) 2019; 20 Zhang (10.1016/j.gene.2022.146283_b1390) 2016; 7 Yu (10.1016/j.gene.2022.146283_b1320) 2020; 11 Zhu (10.1016/j.gene.2022.146283_b1480) 2019; 20 Bartel (10.1016/j.gene.2022.146283_b0135) 2004; 116 10.1016/j.gene.2022.146283_b0055 Zhang (10.1016/j.gene.2022.146283_b1385) 2015; 230 Budak (10.1016/j.gene.2022.146283_b0175) 2015; 15 Farinati (10.1016/j.gene.2022.146283_b0285) 2020 Wang (10.1016/j.gene.2022.146283_b1215) 2014; 9 Zhang (10.1016/j.gene.2022.146283_b1430) 2016; 57 10.1016/j.gene.2022.146283_b0615 Zhang (10.1016/j.gene.2022.146283_b1420) 2013; 13 Zhang (10.1016/j.gene.2022.146283_b1425) 2020; 21 Shanker (10.1016/j.gene.2022.146283_b0990) 2005; 31 Shi (10.1016/j.gene.2022.146283_b1015) 2019; 19 Barbu (10.1016/j.gene.2022.146283_b0125) 2020; 8 Peñarrubia (10.1016/j.gene.2022.146283_b0875) 2015; 6 Anders (10.1016/j.gene.2022.146283_b0065) 2015; 31 Djami-Tchatchou (10.1016/j.gene.2022.146283_b0255) 2017; 8 Plotnikova (10.1016/j.gene.2022.146283_b0885) 2019; 31 Iki (10.1016/j.gene.2022.146283_b0440) 2010; 39 Kouhi (10.1016/j.gene.2022.146283_b0525) 2020; 15 Huang (10.1016/j.gene.2022.146283_b0425) 2007; 8 (10.1016/j.gene.2022.146283_b0790) 1988; Vol. 20 Luan (10.1016/j.gene.2022.146283_b0675) 2019; 179 Zhang (10.1016/j.gene.2022.146283_b1380) 2006; 46 Puig (10.1016/j.gene.2022.146283_b0890) 2014; 2014 Catalanotto (10.1016/j.gene.2022.146283_b0205) 2016; 17 Addo-Quaye (10.1016/j.gene.2022.146283_b0015) 2008; 18 Fahlgren (10.1016/j.gene.2022.146283_b0275) 2016; 32 10.1016/j.gene.2022.146283_b1395 10.1016/j.gene.2022.146283_b2001 Khraiwesh (10.1016/j.gene.2022.146283_b0515) 2012; 1819 10.1016/j.gene.2022.146283_b1275 Tiwari (10.1016/j.gene.2022.146283_b1160) 2014; 86 Wang (10.1016/j.ge |
| References_xml | – volume: 64 start-page: 343 year: 2013 end-page: 354 ident: b0755 article-title: Excess manganese differentially inhibits photosystem I versus II in publication-title: J Exp Bot. – volume: 18 start-page: 938 year: 2017 ident: b0585 article-title: Identification and characterization of publication-title: BMC Genomics. – volume: 8 start-page: 356 year: 2017 ident: b0085 article-title: An insight into microRNA156 role in salinity stress responses of alfalfa publication-title: Front. Plant Sci. – volume: 40 start-page: 183 year: 2018 ident: b0905 article-title: Wheat miRNA member TaMIR2275 involves plant nitrogen starvation adaptation via enhancement of the N acquisition-associated process publication-title: Acta Physiol. Plant. – volume: 140 start-page: 57 year: 2010 end-page: 68 ident: b0685 article-title: Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays publication-title: Physiol Plant. – volume: 39 start-page: 120 year: 2016 end-page: 135 ident: b1340 article-title: Inhibition of root meristem growth by cadmiumin volves nitric oxide-mediated repression of auxin accumulation and signalling in publication-title: Plant Cell Environ. – volume: 24 start-page: 143 year: 2015 end-page: 153 ident: b1450 article-title: Expression pattern analysis of microRNAs in root tissue of wheat ( publication-title: J. Plant Biochem. Biotechnol. – volume: 117 start-page: 6237 year: 2020 end-page: 6245 ident: b1490 article-title: Regulation of stomatal development by stomatal lineage miRNAs publication-title: Proc Natl Acad Sci U S A. – volume: 136 start-page: 669 year: 2009 end-page: 687 ident: b1175 article-title: Origin, biogenesis, and activity of plant microRNAs publication-title: Cell. – volume: 12 start-page: 107 year: 2011 ident: b1245 article-title: MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences publication-title: BMC Bioinformatics. – volume: 682 start-page: 13 year: 2019 end-page: 24 ident: b0960 article-title: Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants publication-title: Gene – volume: 38 start-page: D806 year: 2010 end-page: D813 ident: b1435 article-title: PMRD: plant microRNA database publication-title: Nucleic Acids Research. – volume: 10 start-page: 3041 year: 2020 ident: b0095 article-title: Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses publication-title: Sci Rep. – volume: 18 start-page: 758 year: 2008 end-page: 762 ident: b0015 article-title: Endogenous siRNA and miRNA targets identied by sequencing of the publication-title: Curr. Biol. – volume: 1 start-page: 375 year: 2009 end-page: 383 ident: b0995 article-title: Chromium interactions in plants: current status and future strategies publication-title: Metallomics. – volume: 2 year: 2019 ident: b1100 article-title: miRNAs in plant development publication-title: Annu Plant Rev. – volume: 23 start-page: 4051 year: 2004 end-page: 4060 ident: b0550 article-title: MicroRNA genes are transcribed by RNA polymerase II publication-title: EMBO J. – year: 2020 ident: b0285 article-title: microRNA regulation of fruit development publication-title: Plant microRNAs. Concepts and strategies in plant sciences – volume: 136 start-page: 479 year: 2019 end-page: 487 ident: b1360 article-title: Response of NAC transcription factor genes against chromium stress in sunflower ( publication-title: Plant Cell Tiss Organ Cult – volume: 10 start-page: 340 year: 2019 ident: b0320 article-title: Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects publication-title: Front Plant Sci. – reference: Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., Tomari, Y., 2010. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. – reference: Yan J., Li J., Zhou H., 2021. Target mimic and short tandem target mimic technologies for deciphering functions of miRNAs in plants. In: Tang G., Teotia S., Tang X., Singh D. (eds) RNA-based technologies for functional genomics in plants. Concepts and strategies in plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_3. – volume: 230 start-page: 1 year: 2015 end-page: 15 ident: b1385 article-title: MicroRNA-based biotechnology for plant improvement publication-title: J Cell Physiol – volume: 184 start-page: 194 year: 2020 end-page: 211 ident: b1225 article-title: The Apple microR171i-SCARECROW-LIKE PROTEINS 26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism publication-title: Plant Physiol. – volume: 19 start-page: 532 year: 2018 ident: b1020 article-title: Transcriptomic analyses of rice ( publication-title: BMC Genom. – volume: 7 start-page: 1192 year: 2016 ident: b0140 article-title: Regulating subcellular metal homeostasis: the key to crop improvement publication-title: Front. Plant Sci. – volume: 15 start-page: e0236829 year: 2020 ident: b0605 article-title: Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip ( publication-title: PLoS ONE – volume: 111 start-page: 1026 year: 2019 end-page: 1033 ident: b1030 article-title: The role of miRNA in somatic embryogenesis publication-title: Genomics. – reference: Bioinformatics. – volume: 4 start-page: 230 year: 2012 end-page: 239 ident: b0785 article-title: Origins and evolution of microRNA genes in plant species publication-title: Genome Biol Evol. – volume: 9 start-page: 34 year: 2020 ident: b0270 article-title: Applications and trends of machine learning in genomics and phenomics for next-generation breeding publication-title: Plants. – reference: heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. – volume: 11 start-page: 1400 year: 2018 end-page: 1417 ident: b0880 article-title: A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants publication-title: Mol Plant. – volume: 48 start-page: D1114 year: 2020 end-page: D1121 ident: b0385 article-title: PmiREN: a comprehensive encyclopedia of plant miRNAs publication-title: Nucleic Acids Res. – volume: 10 start-page: 366 year: 2009 ident: b0750 article-title: MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs publication-title: BMC Genomics. – volume: 69 start-page: 709 year: 2018 end-page: 719.e5 ident: b0160 article-title: Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway publication-title: Mol Cell. – volume: 27 start-page: 380 year: 2020 end-page: 390 ident: b0265 article-title: Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice ( publication-title: Environ Sci Pollut Res Int. – reference: 32805. https://doi.org/10.1038/srep32805. – volume: 10 start-page: 748 year: 2019 ident: b1110 article-title: Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the publication-title: Front. Plant Sci. – volume: 7 start-page: 817 year: 2016 ident: b1025 article-title: MicroRNAs as potential targets for abiotic stress tolerance in plants publication-title: Front Plant Sci. – volume: 20 start-page: 532 year: 2019 ident: b0370 article-title: miRkwood: a tool for the reliable identification of microRNAs in plant genomes publication-title: BMC Genomics. – reference: Yan, J., Zhao, C., Zhou, J., Yang, Y., Wang, P., Zhu, X., Tang, G., Bressan, R. A., Zhu, J.K., 2016. The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in – volume: 15 start-page: 275 year: 2014 ident: b0060 article-title: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data publication-title: BMC Bioinformatics. – volume: 55 start-page: 76 year: 2019 end-page: 82 ident: b0355 article-title: Identification of manganese-responsive microRNAs in publication-title: Czech J. Genet. Plant Breed. – volume: 161 start-page: 867 year: 2004 end-page: 872 ident: b0460 article-title: Carbohydrate metabolism in growing rice seedlings under arsenic toxicity publication-title: J Plant Physiol. – reference: is involved in abiotic stress responses in – volume: 8 start-page: 565 year: 2017 ident: b0970 article-title: MicroRNA and transcription factor: key players in plant regulatory network publication-title: Front Plant Sci. – volume: 21 start-page: 100213 year: 2020 ident: b1045 article-title: Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam publication-title: Plant Gene – volume: 24 start-page: 2168 year: 2012 end-page: 2183 ident: b0630 article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in publication-title: Plant Cell – volume: 53 start-page: 731 year: 2008 end-page: 738 ident: b0815 article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis publication-title: Plant J. – reference: 72, 20, 7067–7077. https://doi.org/10.1093/jxb/erab336. – volume: 43 start-page: D982 year: 2015 end-page: D989 ident: b1305 article-title: PNRD: a plant non-coding RNA database publication-title: Nucleic Acids Res. – volume: 175 start-page: 1175 year: 2017 end-page: 1185 ident: b1400 article-title: MiR408 regulates grain yield and photosynthesis via a phytocyanin protein publication-title: Plant Physiol. – volume: 25 start-page: 2383 year: 2013 end-page: 2399 ident: b0955 article-title: Biogenesis, turnover, and mode of action of plant microRNAs publication-title: Plant Cell – reference: Rice – volume: 6 start-page: 957 year: 2020 end-page: 969 ident: b1405 article-title: Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in publication-title: Nat Plants. – volume: 10 start-page: 303 year: 2019 ident: b0050 article-title: Identification and characterization of salt-responsive microRNAs in publication-title: Genes. – volume: 4 start-page: 1070 year: 2015 ident: b0670 article-title: RNA-Seq workflow: gene-level exploratory analysis and differential expression publication-title: F1000Res. – volume: 161 start-page: 1235 year: 2004 end-page: 1244 ident: b0600 article-title: Manganese accumulation in rice: implications for photosynthetic functioning publication-title: J. Plant Physiol. – reference: Remita, M.A., Lorda, E., Agharbaouib, Z., Leclercq M., Badawi, M.A., Sarhan, F., Dialloa, A.B., 2016. A novel comprehensive wheat miRNA database, including related bioinformatics software. Curr. Plant Biol. 7-8, 31–33. https://doi.org/10.1016/j.cpb.2016.10.003. – volume: 294 start-page: 379 year: 2019 end-page: 393 ident: b1470 article-title: MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells publication-title: Mol Genet Genomics. – volume: 10 start-page: 360 year: 2019 ident: b1210 article-title: Plant microRNAs: Biogenesis, homeostasis, and degradation publication-title: Front Plant Sci. – volume: 42 start-page: D74 year: 2014 end-page: D77 ident: b1105 article-title: miRNEST 2.0: a database of plant and animal microRNAs publication-title: Nucleic Acids Res. – volume: 285 start-page: 68 year: 2019 end-page: 78 ident: b1335 article-title: Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic publication-title: Plant Sc. – reference: Nucleic Acids Res. – volume: 6 start-page: 180735 year: 2019 ident: b0485 article-title: Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing publication-title: R. Soc. Open Sci. – volume: 130 start-page: 6 year: 2002 end-page: 9 ident: b0745 article-title: Short RNAs can identify new candidate transposable element families in publication-title: Plant Physiol. – volume: 6 start-page: 23890 year: 2016 ident: b1455 article-title: An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design publication-title: Sci Rep. – volume: 31 start-page: 2929 year: 2019 end-page: 2946 ident: b0885 article-title: MicroRNA dynamics and functions during publication-title: Plant Cell. – volume: 173 start-page: 677 year: 2007 end-page: 702 ident: b0170 article-title: Zinc in plants publication-title: New Phytol. – volume: 16 start-page: 235 year: 2016 end-page: 242 ident: b0915 article-title: PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes publication-title: Funct Integr Genomics. – reference: Stocks, M. B., Mohorianu, I., Beckers, M., Paicu, C., Moxon, S., Thody, J., Dalmay, T., Moulton, V., 2018. The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for analyzing miRNAs and sRNAs. – volume: 9 start-page: e91357 year: 2014 ident: b1215 article-title: MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice ( publication-title: PLoS ONE – volume: 19 start-page: 585 year: 2019 ident: b1365 article-title: Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings publication-title: BMC Plant Biol. – volume: 48 start-page: 1243 year: 2007 end-page: 1253 ident: b0315 article-title: Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in publication-title: Plant Cell Physiol. – reference: J. Agric. Food Chem. – volume: 18 start-page: 290 year: 2018 ident: b1145 article-title: MicroRNA 399 as a potential integrator of photo-response, phosphate homeostasis, and sucrose signaling under long day condition publication-title: BMC Plant Biol – volume: 17 start-page: 1658 year: 2005 end-page: 1673 ident: b0100 article-title: Antiquity of microRNAs and their targets in land plants publication-title: Plant Cell. – reference: L.). – volume: 22 start-page: 348 year: 2021 ident: b0635 article-title: TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs publication-title: BMC Genomics. – volume: 19 start-page: 214 year: 2019 ident: b1015 article-title: Overexpression of publication-title: BMC Plant Biol. – volume: 36 start-page: 1171 year: 2017 end-page: 1182 ident: b1355 article-title: Overexpression of miR529a confers enhanced resistance to oxidative stress in rice ( publication-title: Plant Cell Rep. – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: b0065 article-title: HTSeq-a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics. – volume: 7 start-page: 174 year: 2015 end-page: 187 ident: b1000 article-title: Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice publication-title: Metallomics. – volume: 8 start-page: 341 year: 2007 ident: b0425 article-title: MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans publication-title: BMC Bioinformatics. – volume: 14 start-page: e0219176 year: 2019 ident: b0645 article-title: Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing publication-title: PloS one. – reference: Chen, J., and Li, L. (2018). Multiple regression analysis reveals MicroRNA regulatory networks in – volume: 7 start-page: 1567 year: 2016 ident: b0690 article-title: High-throughput sequencing reveals H publication-title: Front. Plant Sci. – volume: 20 start-page: 740 year: 2019 ident: b1200 article-title: Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine publication-title: BMC Genomics. – volume: 12 start-page: 615114 year: 2021 ident: b0150 article-title: Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress publication-title: Front Plant Sci. – volume: 59 start-page: 313 year: 2008 end-page: 339 ident: b0115 article-title: Flooding stress, acclimations and genetic diversity publication-title: Annu Rev Plant Biol. – volume: 14 start-page: 854 year: 2008 end-page: 866 ident: b0360 article-title: A link between RNA metabolism and silencing affecting publication-title: Dev Cell. – volume: 25 start-page: 1 year: 2006 end-page: 21 ident: b0020 article-title: Molecular biology, biotechnology and genomics of flooding-associated low O publication-title: Crit. Rev. Plant Sci. – reference: He, X., Zheng, W., Cao, F., W, Wu, F., 2016. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. – volume: 17 start-page: 697 year: 2017 end-page: 710 ident: b0555 article-title: Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance publication-title: Funct Integr Genomics. – year: 1995 ident: b0725 article-title: Mineral nutrition of higher plants – volume: 62 start-page: 157 year: 2011 end-page: 184 ident: b1125 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu. Rev. Plant Biol. – reference: L.) using high-throughput sequencing and degradome analysis. – volume: 8 start-page: 272 year: 2017 ident: b1445 article-title: Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in publication-title: Front Plant Sci. – volume: 13 start-page: 33 year: 2013 ident: b1420 article-title: PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress publication-title: BMC Plant Biol. – volume: 17 start-page: 1712 year: 2016 ident: b0205 article-title: MicroRNA in control of gene expression: An overview of nuclear functions publication-title: Int J Mol Sci. – reference: 6, – volume: 54 start-page: 118 year: 2008 end-page: 127 ident: b0775 article-title: Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants ( publication-title: Soil Sci. Plant Nutr. – volume: 19 start-page: 570 year: 2019 ident: b0310 article-title: MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in publication-title: BMC Plant Biol. – reference: Ma, J., – volume: 20 start-page: 466 year: 2020 ident: b0465 article-title: Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation publication-title: BMC Plant Biol. – reference: Kuang, Z., Wang, Y., Li, L., Yang, X., 2019. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. – volume: 17 start-page: 272 year: 2015 end-page: 279 ident: b0975 article-title: Zinc accumulation and tolerance in publication-title: Int. J. Phytoremediation. – volume: 1819 start-page: 137 year: 2012 end-page: 148 ident: b0515 article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: Biochim Biophys Acta. – volume: 37 start-page: 1293 year: 2018 end-page: 1309 ident: b0650 article-title: TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation publication-title: Plant Cell Rep. – volume: 22 start-page: 16441 year: 2015 end-page: 16452 ident: b1195 article-title: A review of soil cadmium contamination in China including a health risk assessment publication-title: Environ Sci Pollut Res Int. – volume: 15 start-page: e0230958 year: 2020 ident: b0830 article-title: Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity publication-title: PloS one. – volume: 59 start-page: 651 year: 2008 end-page: 681 ident: b0765 article-title: Mechanisms of salinity tolerance publication-title: Annual Rev Plant Biol. – volume: 86 start-page: 1 year: 2014 end-page: 18 ident: b1160 article-title: Artificial microRNA mediated gene silencing in plants: progress and perspectives publication-title: Plant Mol Biol. – volume: 47 start-page: W530 year: 2019 end-page: W535 ident: b0070 article-title: sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression publication-title: Nucleic Acids Res. – reference: Liu, Q., Hu, H., Zhu, L., Li, R., Feng, Y., Zhang, L., Yang, Y., Liu, X., Zhang, H., 2015. Involvement of miR528 in the regulation of arsenite tolerance in rice ( – volume: 32 start-page: 450 year: 2016 end-page: 452 ident: b0840 article-title: miTRATA: a web-based tool for microRNA truncation and tailing analysis publication-title: Bioinformatics. – reference: Feng, X., Liu, W., dai, H., Qiu, Y., Zhang, G., Chen, Z.H., Wu, F., 2020. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. J. Exp Bot. 71, 19, 6057–6073. https://doi.org/10.1093/jxb/eraa290. – volume: 6 start-page: 32158 year: 2016 ident: b0590 article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds publication-title: Sci. Rep. – volume: 9 year: 2014 ident: b1050 article-title: The effect of silicon on photosynthesis and expression of its relevant genes in rice ( publication-title: PLoS ONE – volume: 20 start-page: 298 year: 2020 ident: b1155 article-title: Identification of small RNAs during cold acclimation in publication-title: BMC Plant Biol. – reference: Sci Rep. – reference: J Exp Bot. – volume: 6 start-page: 255 year: 2015 ident: b0875 article-title: Temporal aspects of copper homeostasis and its crosstalk with hormones publication-title: Front Plant Sci. – volume: 8 start-page: 6 year: 2017 ident: b0480 article-title: Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus ( publication-title: Front. Plant Sci. – reference: Bernal, M., Casero, D., Singh, V., Wilson, G.T., Grande, A., Yang, H., Dodani, S.C., Pellegrini, M., Huijser, P., Connolly, E.L., Merchant, S.S., Krämer, U., 2012. Transcriptome sequencing identifies SPL7-regulated Cu acquisition genes FRO4/FRO5 and the Cu dependence of Fe homeostasis in – volume: 182 start-page: 799 year: 2009 end-page: 816 ident: b0185 article-title: Copper homeostasis publication-title: New Phytol. – volume: 9 start-page: 2832 year: 2019 ident: b1290 article-title: The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in publication-title: Sci Rep. – volume: 195 start-page: 97 year: 2012 end-page: 112 ident: b1315 article-title: Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice ( publication-title: New Phytol. – volume: 579 start-page: 5923 year: 2005 end-page: 5931 ident: b0210 article-title: MicroRNA biogenesis and function in plants publication-title: FEBS Lett. – reference: Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., Feng, Y., Song, X., L,i P., Wang, B., 2017. Identification of salt tolerance-related microRNAs and their targets in maize ( – volume: 7 start-page: 7 year: 2016 end-page: 10 ident: b1390 article-title: MicroRNA, a new target for engineering new crop cultivars publication-title: Bioengineered. – volume: 33 start-page: 429 year: 2019 end-page: 439 ident: b0495 article-title: LncRNAs: Genetic and epigenetic effects in plants publication-title: Biotechnol Biotechnol Equip. – volume: 26 start-page: 1566 year: 2010 end-page: 1568 ident: b0165 article-title: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics publication-title: Bioinformatics. – volume: 165 start-page: 830 year: 2019 end-page: 842 ident: b0730 article-title: Alfalfa response to heat stress is modulated by microRNA156 publication-title: Physiol Plant. – volume: 105 start-page: 8795 year: 2008 end-page: 8800 ident: b0540 article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 48 start-page: D148 year: 2020 end-page: D154 ident: b0415 article-title: miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database publication-title: Nucleic Acids Res. – volume: 59 start-page: 2143 year: 2018 end-page: 2154 ident: b0365 article-title: Differentially expressed microRNAs link cellular physiology to phenotypic changes in rice under stress conditions publication-title: Plant Cell Physiol. – volume: 14 start-page: 1605 year: 2002 end-page: 1619 ident: b0655 article-title: Endogenous and silencing-associated small RNAs in plants publication-title: Plant Cell. – volume: 9 start-page: 182 year: 2019 ident: b0005 article-title: Identification of miRNAs and their response to cold stress in publication-title: Biomolecules. – reference: Agarwal, S., Mangrauthia, S.K., Sarla N., 2015. Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar × Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil. 396, 1/2, 137–150. https://www.jstor.org/stable/43872510. – volume: 11 start-page: 300 year: 2020 ident: b0040 article-title: Manganese in plants: from acquisition to subcellular allocation publication-title: Front. Plant Sci. – volume: 10 start-page: e0142753 year: 2015 ident: b0230 article-title: miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences publication-title: PloS One. – volume: 18 start-page: 212 year: 2017 ident: b1055 article-title: Response of microRNAs to cold treatment in the young spikes of common wheat publication-title: BMC Genomics. – reference: Dai, X., Zhuang, Z., and Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46 (W1), W49-W54. https://doi.org/10.1093/nar/gky316. – volume: 32 start-page: 2722 year: 2016 end-page: 2724 ident: b0680 article-title: Tools4miRs-one place to gather all the tools for miRNA analysis publication-title: Bioinformatics. – volume: 16 start-page: 1616 year: 2002 end-page: 1626 ident: b0935 article-title: MicroRNAs in plants publication-title: Genes Dev. – volume: 8 start-page: 124 year: 2019 ident: b0870 article-title: DRB1, DRB2 and DRB4 are required for appropriate regulation of the microRNA399/PHOSPHATE2 expression module in publication-title: Plants (Basel). – volume: 2 start-page: 16033 year: 2016 ident: b1440 article-title: Vascular-mediated signalling involved in early phosphate stress response in plants publication-title: Nat Plants. – volume: 9 start-page: 383 year: 2018 ident: b1410 article-title: Lateral root development in potato is mediated by Stu-mi164 regulation of NAC transcription factor publication-title: Front Plant Sci. – volume: 183 start-page: 1681 year: 2020 end-page: 1695 ident: b1205 article-title: The miR399- CsUBC24 module regulates reproductive development and male fertility in citrus publication-title: Plant Physiol. – volume: 21 start-page: 100210 year: 2020 ident: b0155 article-title: Genome-wide identification of drought-responsive miRNAs in grass pea ( publication-title: Plant Gene. – reference: PLoS Genet. – volume: 15 start-page: 523 year: 2015 end-page: 531 ident: b0175 article-title: Plant miRNAs: biogenesis, organization and origins publication-title: Funct. Integr. Genomic – volume: 16 start-page: 145 year: 2016 ident: b0340 article-title: Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7 publication-title: BMC Plant Biol. – volume: 137 start-page: 96 year: 2017 end-page: 109 ident: b0345 article-title: Insights into the miRNA-mediated response of maize leaf to arsenate stress publication-title: Environ Exp Bot. – volume: 20 start-page: 87 year: 2020 ident: b0400 article-title: Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels publication-title: BMC Plant Biol. – volume: 20 start-page: 537 year: 2019 end-page: 544 ident: b0835 article-title: Applications of machine learning in miRNA discovery and target prediction publication-title: Curr. Genom. – reference: 8, 864. https://doi.org/10.3389/fpls.2017.00864. – volume: 19 start-page: 100 year: 2019 ident: b0405 article-title: Identification and analysis of oxygen responsive microRNAs in the root of wild tomato ( publication-title: BMC Plant Biol. – volume: 21 start-page: 2795 year: 2020 ident: b0900 article-title: Genome-Wide identification and characterization of drought stress responsive microRNAs in Tibetan wild barley publication-title: Int. J. Mol. Sci. – volume: 164 start-page: 611 year: 2018 end-page: 617 ident: b0910 article-title: Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress publication-title: Ecotoxicol Environ Saf. – volume: 27 start-page: 1215 year: 2011 end-page: 1223 ident: b1135 article-title: SplamiR-prediction of spliced miRNAs in plants publication-title: Bioinformatics. – volume: 46 start-page: 8730 year: 2018 end-page: 8739 ident: b1140 article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules publication-title: Nucleic Acids Res. – volume: 6 year: 2019 ident: b1350 article-title: MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass publication-title: Hortic Res. – volume: 58 start-page: 426 year: 2017 end-page: 439 ident: b0105 article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley publication-title: Plant Cell Physiol. – volume: 321 start-page: 1490 year: 2008 end-page: 1492 ident: b0920 article-title: Degradation of microRNAs by a family of exoribonucleases in publication-title: Science. – reference: . – volume: 151 year: 2020 ident: b1295 article-title: Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum ( publication-title: Ind Crop Prod. – volume: 91 start-page: 651 year: 2016 end-page: 659 ident: b1415 article-title: The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses publication-title: Plant Mol Biol. – volume: 18 start-page: 52 year: 2018 ident: b1370 article-title: Identification of cold stress responsive microRNAs in two winter turnip rape ( publication-title: BMC Plant Biol. – volume: 10 start-page: 503 year: 2005 end-page: 509 ident: b0925 article-title: Sulfur metabolism: a versatile platform for launching defence operations publication-title: Trends Plant Sci. – reference: UCL8, a plantacyanin gene targeted by miR408, regulates fertility by controlling pollen tube germination and growth. – reference: Bioinformatics. 34, 19, 3382–3384. https://doi.org/10.1093/bioinformatics/bty338. – volume: 32 start-page: 157 year: 2016 end-page: 158 ident: b0275 article-title: P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design publication-title: Bioinformatics. – volume: 66 start-page: 1519 year: 2005 end-page: 1528 ident: b0950 article-title: Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity publication-title: Phytochem. – volume: 9 start-page: 168 year: 2018 ident: b1310 article-title: Classification of transcription boundary-associated RNAs (TBARs) in animals and plants publication-title: Front Genet. – volume: 232 start-page: 1289 year: 2010 end-page: 1308 ident: b0300 article-title: Identification and characterization of microRNAs and their target genes in tobacco ( publication-title: Planta. – volume: 70 start-page: 4775 year: 2019 end-page: 4792 ident: b1150 article-title: miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes publication-title: J Exp Bot. – volume: 1 start-page: e0024 year: 2002 ident: b0895 article-title: Phosphate transport and homeostasis in publication-title: The Arabidopsis Book – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: b0135 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – volume: 47 start-page: D155 year: 2019 end-page: D162 ident: b0530 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res. – volume: 9 start-page: 465 year: 2020 end-page: 475 ident: b1495 article-title: Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum publication-title: Crop J. – volume: 1 start-page: 6 year: 2019 ident: b0575 article-title: Current experimental strategies for intracellular target identification of microRNA publication-title: ExRNA. – volume: 140 start-page: 55 year: 2017 end-page: 64 ident: b0350 article-title: Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations publication-title: Ecotoxicol Environ Saf. – volume: 9 start-page: 16434 year: 2019 ident: b0845 article-title: Overexpression of native publication-title: Sci Rep. – volume: 31 start-page: 739 year: 2005 end-page: 753 ident: b0990 article-title: Chromium toxicity in plants publication-title: Environment international – volume: 6 start-page: 232 year: 2015 ident: b0855 article-title: miRNA regulation of nutrient homeostasis in plants publication-title: Front Plant Sci. – volume: 75 start-page: 1468 year: 2009 end-page: 1476 ident: b1190 article-title: The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings publication-title: Chemosphere. – volume: 11 start-page: 264 year: 2020 ident: b0030 article-title: Comparative analysis of miRNA expression profiles between heat-tolerant and heat-sensitive genotypes of flowering Chinese cabbage under heat stress using high-throughput sequencing publication-title: Genes. – volume: 4975146 year: 2017 ident: b0260 article-title: miR319, miR390, and miR393 are involved in Aluminum response in Flax ( publication-title: Bio Med Res Int. – volume: 8 start-page: 58 year: 2019 ident: b0865 article-title: Profiling the abiotic stress responsive microRNA landscape of publication-title: Plants. – volume: 19 start-page: 940 year: 2018 ident: b0430 article-title: Identification and characterisation of microRNAs and their target genes in phosphate-starved publication-title: BMC genomics – reference: Bioinformatics. 35, 14, 2521–2522. https://doi.org/10.1093/bioinformatics/bty972. – volume: 217 start-page: 1712 year: 2018 end-page: 1725 ident: b0610 article-title: Evolution of microRNA827 targeting in the plant kingdom publication-title: New Phytol. – reference: Bukhari, S. A., Shang, S., Zhang, M., Zheng, W., Zhang, G., Wang, T.Z., Shamsi I, H., Wu, F., 2015. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco ( – reference: 41, 15, e147. https://doi.org/10.1093/nar/gkt485. – volume: 85 start-page: 1 year: 2019 end-page: 13 ident: b1230 article-title: Degradation of fungal microRNAs triggered by short tandem target mimics is via the small-RNA-degrading nuclease publication-title: Appl. Environ. Microbiol. – reference: 100, 4, 445–455. https://doi.org/10.1139/cjps-2018-0327. – reference: Manavella, P.A., Yang, S.W., Palatnik, J., 2019. Keep calm and carry on: miRNA biogenesis under stress. Plant J. 99, 5, 832–843. https://doi.org/10.1111/tpj.14369. – volume: 17 start-page: 211 year: 2017 ident: b0380 article-title: Identification of drought-responsive miRNAs and physiological characterization of tea plant ( publication-title: BMC Plant Biol. – volume: 119 start-page: 1217 year: 2015 end-page: 1223 ident: b1250 article-title: Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars ( publication-title: Chemosphere – reference: 34, 9, 1574–1576. https://doi.org/10.1093/bioinformatics/btx797. – reference: Lee, R.C., Feinbaum, R. L., Ambros, V., 1993. The – volume: 179 start-page: 640 year: 2019 end-page: 655 ident: b0675 article-title: Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in publication-title: Plant Physiol – volume: 19 year: 2018 ident: b1235 article-title: Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley publication-title: BMC Genomics. – reference: Humphreys, D.T., Suter, C.M., 2013. miRspring: a compact standalone research tool for analyzing miRNA-seq data. – volume: 4 start-page: 145 year: 2013 ident: b0505 article-title: Systemic regulation of mineral homeostasis by micro RNAs publication-title: Front Plant Sci. – volume: 18 start-page: 645 year: 2018 end-page: 657 ident: b1505 article-title: MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress publication-title: Funct. Integr. Genom. – volume: 15 start-page: 78 year: 2005 end-page: 91 ident: b0010 article-title: Computational prediction of miRNAs in publication-title: Genome Res. – reference: Front. Plant Sci. – volume: 38 start-page: 92 year: 2016 end-page: 100 ident: b0035 article-title: Control of sulfate concentration by miR395-targeted APS genes in publication-title: Plant Divers. – volume: 8 start-page: 143 year: 2020 ident: b0125 article-title: MicroRNA involvement in signaling pathways during viral infection publication-title: Front. Cell Dev. Biol. – reference: mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 18, 8, 2051–2065. https://doi.org/10.1105/tpc.106.041673. – volume: 136 start-page: 642 year: 2009 end-page: 655 ident: b0200 article-title: Origins and mechanisms of miRNAs and siRNAs publication-title: Cell – reference: 63, 40, 8849–8861. https://doi.org/10.1021/acs.jafc.5b04191. – volume: 8 start-page: 156 year: 2017 ident: b0290 article-title: Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat ( publication-title: Genes. – volume: 20 start-page: 2391 year: 2019 ident: b1260 article-title: Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt and alkali stress tolerance in tobacco publication-title: Int. J. Mol. Sci. – volume: 53 start-page: 247 year: 2002 end-page: 273 ident: b1485 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev Plant Biol. – volume: 5 start-page: 14024 year: 2015 ident: b0640 article-title: Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish ( publication-title: Sci Rep. – volume: 248 start-page: 545 year: 2018 end-page: 558 ident: b1040 article-title: Plant small RNAs: advancement in the understanding of biogenesis and role in plant development publication-title: Planta. – reference: Zhang, F., Zhang, Y, C., Zhang, J. P., Yu, Y., Zhou, Y. F., Feng, Y. Z., Yang, Y. W., Lei, M. Q., He, H., Lian, J. P., Chen, Y. Q., 2018. Rice – volume: 21 start-page: 494 year: 2020 ident: b1425 article-title: Integrated small RNA and degradome sequencing provide insights into salt tolerance in sesame ( publication-title: BMC Genomics. – volume: 146 start-page: 185 year: 2000 end-page: 205 ident: b0190 article-title: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species publication-title: New Phytol. – volume: 7 start-page: 484 year: 2012 end-page: 491 ident: b0450 article-title: microRNAs responsive to ozone-induced oxidative stress in publication-title: Plant Signal Behav – volume: 154 start-page: 29 year: 2002 end-page: 43 ident: b0740 article-title: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species publication-title: New Phytol. – volume: 30 start-page: 796 year: 2018 end-page: 814 ident: b0375 article-title: Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling publication-title: Plant Cell. – volume: 53 start-page: 1331 year: 2002 end-page: 1341 ident: b0045 article-title: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants publication-title: J. Exp. Bot. – volume: 99 start-page: 621 year: 2019 end-page: 638 ident: b0335 article-title: The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in publication-title: Plant Mol Biol. – reference: Sun, Z., Shu, L., Zhang, W., Wang, Z., 2020. Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic – volume: 57 start-page: 1865 year: 2016 end-page: 1878 ident: b1430 article-title: The miR396b of publication-title: Plant Cell Physiol. – volume: 248 start-page: 805 year: 2011 end-page: 815 ident: b1070 article-title: Redox state and energetic equilibrium determine the magnitude of stress in upon exposure to arsenate publication-title: Protoplasma. – volume: 8 year: 2018 ident: b0240 article-title: Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-ta-siRNA crosstalk as regulator of seed germination publication-title: Sci Rep – volume: 39 start-page: 282 year: 2010 end-page: 291 ident: b0440 article-title: assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90 publication-title: Mol Cell. – reference: Mol Cell. – volume: 109 start-page: 12817 year: 2012 end-page: 12821 ident: b0945 article-title: Regulation of miRNA abundance by RNA binding protein TOUGH in publication-title: Proc. Natl. Acad. Sci. USA – year: 1994 ident: b0500 article-title: The Biological and Environmental Chemistry of Chromium – volume: 11 start-page: e1004391 year: 2015 ident: b0570 article-title: miRTex: A text mining system for miRNA-gene relation extraction publication-title: PLoS Comput Biol. – volume: 19 start-page: 78 year: 2019 ident: b0985 article-title: Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon publication-title: BMC Plant Biol. – volume: 14 start-page: e0217806 year: 2019 ident: b1035 article-title: Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress publication-title: PLoS ONE – reference: Cell, – reference: Teotia, S., Tang, G., 2017. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. – volume: 9 start-page: 769 year: 2019 end-page: 787 ident: b1095 article-title: The Role of UV-B light on small RNA activity during grapevine berry development. G3 (Bethesda publication-title: Md.) – volume: 32 start-page: 27 year: 2000 end-page: 39 ident: b0715 article-title: Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators? publication-title: Plant Growth Regul. – volume: 87 start-page: 389 year: 2019 end-page: 401 ident: b1325 article-title: Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley publication-title: Plant Growth Regul. – volume: 60 start-page: 1440 year: 2019 end-page: 1446 ident: b0520 article-title: Understanding the complexity of iron sensing and signaling cascades in plants publication-title: Plant Cell Physiol. – volume: 231 start-page: 303 year: 2016 end-page: 313 ident: b0560 article-title: MicroRNAs in control of plant development publication-title: J Cell Physiol. – volume: 6 start-page: 75 year: 2019 ident: b0780 article-title: Genome-wide identification of drought-responsive microRNAs in two sets of publication-title: Hortic Res. – reference: 39, 2, 292–299. https://doi.org/10.1016/j.molcel.2010.05.015. – volume: 252 start-page: 103 year: 2016 end-page: 117 ident: b0595 article-title: miRNA alterations are important mechanism in maize adaptations to low-phosphate environments publication-title: Plant Sci. – reference: . Peer J. 8, e9105. http://doi.org/10.7717/peerj.9105. – volume: 17 start-page: 95 year: 2005 end-page: 102 ident: b0805 article-title: Chromium stress in plants publication-title: Braz J Plant Physiol. – reference: 12, 11, e1006416. https://doi.org/10.1371/journal.pgen.1006416. – volume: 10 start-page: 989 year: 2019 ident: b0225 article-title: Redox balance-DDR-miRNA triangle: Relevance in genome stability and stress responses in plants publication-title: Front. Plant Sci. – reference: Jian, H., Yang, B., Zhang, A., Ma, J., Ding, Y., Chen, Z., Li, J., Xu, X., and Liu, L. (2018). Genome-wide identification of microRNAs in response to cadmium stress in oilseed rape (Brassica napus L.) using high-throughput sequencing. Int J Mol Sci. 19 (5), 1431. https://doi.org/10.3390/ijms19051431. – volume: 5 start-page: 84 year: 2019 end-page: 94 ident: b1265 article-title: Identification of vacuolar phosphate efflux transporters in land plants publication-title: Nature plants – volume: 17 start-page: 818 year: 2007 end-page: 823 ident: b0280 article-title: Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living publication-title: Curr Boil. – reference: 75, 5, 843–854. https://doi.org/10.1016/0092-8674(93)90529-y. – volume: 9 start-page: 499 year: 2018 ident: b0110 article-title: Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi Deprivation and salt stress via modulating stress-associated physiological processes publication-title: Front Plant Sci. – volume: 34 start-page: 931 year: 2016 end-page: 946 ident: b0330 article-title: Wheat microRNA member TaMIR444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress publication-title: Plant Mol Bio Rep. – volume: vol 19 start-page: 223 year: 2011 end-page: 236 ident: b1165 article-title: The role of plasma membrane nitrogen transporters in nitrogen acquisition and utilization publication-title: The Plant Plasma Membrane. Plant Cell Monographs – reference: Al Khateeb., W., Al-Qwasemeh, H., 2014. Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of – volume: 12 start-page: e0169212 year: 2017 ident: b0705 article-title: Transcriptome-wide discovery of PASRs (Promoter-Associated Small RNAs) and TASRs (Terminus-Associated Small RNAs) in publication-title: PloS one – volume: 20 start-page: 14 year: 2019 ident: b0325 article-title: Characterization of cadmium-responsive microRNAs and their target genes in maize ( publication-title: BMC Molecular Biol. – volume: 145 start-page: 195 year: 2019 end-page: 204 ident: b0090 article-title: Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs publication-title: Plant Physiol Biochem. – reference: Lin, Y., Zhu, Y., Cui, Y., Chen, R., Chen, Z., Li, G., Fan, M., Chen, J., Li, Y., Guo, X., Zheng, X., Chen, L., Wang, F., 2021. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9. – volume: 64 start-page: 1 year: 2011 end-page: 16 ident: b1065 article-title: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings publication-title: Plant Growth Regul. – volume: 12 start-page: e0183253 year: 2017 ident: b1500 article-title: Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage publication-title: PLoS One. – volume: 6 year: 2016 ident: b1345 article-title: Heterologous expression of a rice miR395 gene in publication-title: Sci Rep. – volume: 7 start-page: 23 year: 2016 ident: b0510 article-title: Ethylene and metal stress: small molecule, big impact publication-title: Front Plant Sci. – volume: 12 start-page: 1484 year: 2002 end-page: 1495 ident: b0825 article-title: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in publication-title: Curr Biol. – volume: 10 start-page: 324 year: 2019 ident: b0195 article-title: The altered expression of microRNA408 influences the Arabidopsis response to iron deficiency publication-title: Front. Plant Sci. – volume: 2014 start-page: 1 year: 2014 end-page: 9 ident: b0890 article-title: Function and regulation of the plant COPT family of high-affinity copper transport proteins publication-title: Adv. Bot. – volume: 40 start-page: 1 year: 2020 end-page: 12 ident: b1080 article-title: miR535 negatively regulates cold tolerance in rice publication-title: Mol Breeding. – volume: 57 start-page: 19 year: 2006 end-page: 53 ident: b0490 article-title: MicroRNAS and their regulatory roles in plants publication-title: Annu Rev Plant Biol. – reference: Ma, X., Liu, C., Gu, L., Mo, B., Cao, X., Chen, X., 2018. TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants. – volume: Vol. 20 year: 1988 ident: b0790 publication-title: Chromium in the natural and human environments – reference: Sunkar, R., Kapoor, A., Zhu, J.K., 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in – volume: 7 start-page: 225 year: 1979 end-page: 232 ident: b0075 article-title: Aeration in higher plants publication-title: Adv. Bot. Res. – volume: 10 start-page: 495 year: 2020 ident: b0475 article-title: miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3 publication-title: Biotech. – volume: 46 start-page: 10709 year: 2018 end-page: 10723 ident: b0760 article-title: Efficiency and precision of microRNA biogenesis modes in plants publication-title: Nucleic Acids Res. – reference: under drought stress. Int J Genomics. 2018, 9395261. https://doi.org/10.1155/2018/9395261. – volume: 39 start-page: 32 year: 2017 ident: b1255 article-title: Identification of microRNAs from Zn-treated publication-title: Acta Physiol Plant. – volume: 20 start-page: 515 year: 2006 end-page: 524 ident: b1170 article-title: Control of translation and mRNA degradation by miRNAs and siRNAs publication-title: Genes Dev. – volume: 26 start-page: 1181 year: 2017 end-page: 1187 ident: b0580 article-title: miR398 and miR395 are involved in response to SO publication-title: Ecotoxicology. – volume: 60 start-page: 323 year: 2018 end-page: 340 ident: b0800 article-title: Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants publication-title: J. Integr. Plant Biol. – reference: Methods Mol Biol. 1631, 337–348. https://doi.org/10.1007/978-1-4939-7136-7_22. – volume: 13 Suppl 7 (Suppl 7) start-page: S16 year: 2012 ident: b0795 article-title: C-mii: a tool for plant miRNA and target identification publication-title: BMC Genomics. – volume: 20 start-page: 1474 year: 2019 ident: b1185 article-title: Bioinformatic exploration of the targets of xylem sap miRNAs in maize under cadmium stress publication-title: Int. J. Mol. Sci. – volume: 61 start-page: 1880 year: 2020 end-page: 1890 ident: b1330 article-title: The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants publication-title: Plant Cell Physiol. – volume: 15 start-page: 1 year: 2015 end-page: 10 ident: b0455 article-title: Targeted genome modifications in soybean with CRISPR/Cas9 publication-title: BMC Biotechnol. – volume: 41 start-page: 1183 year: 2019 end-page: 1194 ident: b1300 article-title: Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply publication-title: Genes Genomics – volume: 6 start-page: 117 year: 2013 end-page: 130 ident: b1460 article-title: Genome-wide analysis of microRNAs in sacred lotus, publication-title: Trop Plant Biol. – volume: 5 start-page: 708 year: 2014 ident: b0850 article-title: plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants publication-title: Front Plant Sci. – volume: 11 start-page: e1213474 year: 2016 ident: b0620 article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants publication-title: Plant Signal Behav – volume: 11 start-page: 319 year: 2020 ident: b1180 article-title: The critical role of miRNAs in regulation of flowering time and flower development publication-title: Genes. – volume: 16 start-page: 362 year: 2019 end-page: 375 ident: b1220 article-title: MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress publication-title: RNA Biol. – volume: 62 start-page: 97 year: 2018 end-page: 108 ident: b0420 article-title: Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean publication-title: Biol Plant – volume: 11 start-page: 752 year: 2020 ident: b0810 article-title: Effect of arsenic stress on expression pattern of a rice specific miR156j at various developmental stages and their allied co-expression target networks publication-title: Front Plant Sci. – volume: 8 start-page: 374 year: 2017 ident: b0390 article-title: Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants publication-title: Front Plant Sci. – reference: Casati, P., 2013. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal Behav. 8(10), 10.4161/psb.26758. https://doi.org/10.4161/psb.26758. – volume: 12 start-page: 76 year: 2019 ident: b0470 publication-title: Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways – volume: 67 start-page: 5811 year: 2016 end-page: 5824 ident: b0860 article-title: Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots publication-title: J Exp Bot. – volume: 38 start-page: 465 year: 2010 end-page: 475 ident: b1240 article-title: DNA methylation mediated by a microRNA pathway publication-title: Mol Cell. – volume: 20 year: 2019 ident: b1480 article-title: Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress publication-title: BMC Genomics. – volume: 66 start-page: 1749 year: 2015 end-page: 1761 ident: b1375 article-title: MicroRNA: a new target for improving plant tolerance to abiotic stress publication-title: J Exp Bot. – reference: . Plant Cell. 24, 2, 738–761. https://doi.org/10.1105/tpc.111.090431. – volume: 258 start-page: 122 year: 2017 end-page: 136 ident: b0080 article-title: MicroRNA156 improves drought stress tolerance in alfalfa ( publication-title: Plant Sci. – reference: Ma, C., Burd, S., Lers, A., 2015. miR408 – start-page: 223 year: 2007 end-page: 260 ident: b0215 article-title: Small RNAs: big role in abiotic stress tolerance of plants publication-title: Advances in molecular breeding toward drought and salt tolerant crops – volume: 20 start-page: 488 year: 2019 ident: b0930 article-title: MicroRNA-guided regulation of heat stress response in wheat publication-title: BMC Genomics. – volume: 6 start-page: 188 year: 2015 ident: b0410 article-title: MicroRNA399 is involved in multiple nutrient starvation responses in rice publication-title: Front Plant Sci. – reference: Takahashi, H., 2019. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J Exp Bot. 70, 16, 4075–4087. https://doi.org/10.1093/jxb/erz132. – volume: 102 start-page: 3691 year: 2005 end-page: 3696 ident: b0820 article-title: Nuclear processing and export of microRNAs in publication-title: Proc. Natl. Acad. Sci. USA – reference: 84, 1, 169–187. https://doi.org/10.1111/tpj.12999. – volume: 46 start-page: 243 year: 2006 end-page: 259 ident: b1380 article-title: Conservation and divergence of plant microRNA genes publication-title: Plant J. – volume: 177 start-page: 1691 year: 2018 end-page: 1703 ident: b0250 article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice publication-title: Plant Physiol. – reference: ) roots. Environ. Toxicol. Chem. 34, 11, 2573–2582. https://doi.org/10.1002/etc.3097. – reference: Wang, Y., L,i J., 2019. Global identification and analysis of microRNAs involved in salt stress responses in two alfalfa ( – volume: 24 start-page: 415 year: 2012 end-page: 427 ident: b1270 article-title: Effective small RNA destruction by the expression of a short tandem target mimic in publication-title: Plant Cell. – volume: 8 start-page: 378 year: 2017 ident: b0255 article-title: Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection publication-title: Front Plant Sci. – volume: 9 start-page: 4510 year: 2019 ident: b1285 article-title: Identifying high confidence microRNAs in the developing seeds of publication-title: Sci Rep. – reference: Bao, H., Chen, H., Chen, M., Xu, H., Huo, X., Xu, Q., and Wang, Y. (2019). Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa. Funct Integr Genomics. 19 (6), 953-972. https://doi.org/10.1007/s10142-019-00692-1. – volume: 20 start-page: 283 year: 2020 ident: b0220 article-title: Ectopic expression of miRNA172 in tomato ( publication-title: BMC Plant Boil. – volume: 8 start-page: 201 year: 2019 ident: b0660 article-title: Expression of miR159 is altered in tomato plants undergoing drought stress publication-title: Plants (Basel, Switzerland) – volume: 8 start-page: 1598 year: 2017 ident: b1465 article-title: CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice publication-title: Front Plant Sci. – reference: L., a crop wild relative for tomato; comparative study. Physiol Mol Biol Plant. 20, 1, 31–39. https://doi.org/10.1007/s12298-013-0211-5. – volume: 11 start-page: 687 year: 2020 ident: b1320 article-title: Chilling and heat stress-induced physiological changes and microRNA-related mechanism in sweetpotato ( publication-title: Plant Sci. – volume: 17 start-page: 2369 year: 2018 end-page: 2378 ident: b1010 article-title: TaMIR1119, a miRNA family member of wheat ( publication-title: J Integr Agric. – volume: 22 start-page: 359 year: 2006 end-page: 360 ident: b0245 article-title: Identification of plant microRNA homologs publication-title: Bioinformatics. – volume: 58 start-page: 118 year: 2012 end-page: 125 ident: b1115 article-title: Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs publication-title: Methods (San Diego, Calif.) – volume: 10 start-page: 185 year: 2016 end-page: 205 ident: b0120 article-title: Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants publication-title: Plant Biotechnol Rep – year: 2020 ident: b0565 article-title: Plant microRNAs regulate innate immunity through diverse mechanisms publication-title: Plant microRNAs. Concepts and strategies in plant sciences – volume: 15 start-page: e0228850 year: 2020 ident: b0525 article-title: MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower publication-title: PLoS ONE – volume: 9 start-page: 602 year: 2018 ident: b0980 article-title: ARMOUR-A Rice miRNA: mRNA Interaction Resource publication-title: Front Plant Sci. – volume: 65 start-page: 1425 year: 2014 end-page: 1438 ident: b0235 article-title: miRNAs in the crosstalk between phytohormone signalling pathways publication-title: J Exp Bot. – volume: 20 start-page: 107 year: 2020 ident: b1475 article-title: Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress publication-title: BMC Plant Biol. – volume: 182 start-page: 287 year: 2020 end-page: 300 ident: b0665 article-title: ARGONAUTE1 and ARGONAUTE4 regulate gene expression and hypoxia tolerance publication-title: Plant Physiol. – volume: 16 start-page: 168 year: 2012 end-page: 177 ident: b0770 article-title: Semirna: searching for plant miRNAs using target sequences publication-title: OMICS. – reference: 60. https://doi.org/10.1186/s12284-018-0253-y. – reference: ‘Millennium’) lines. Can. J. Plant Sci. – volume: 2012 start-page: 1 year: 2012 end-page: 26 ident: b1005 article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions publication-title: J Bot. – reference: 11, – volume: 29 start-page: 2000 year: 2006 end-page: 2008 ident: b0130 article-title: Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress publication-title: Plant Cell Environ. – volume: 70 start-page: 489 year: 2019 end-page: 525 ident: b1060 article-title: MicroRNAs and their regulatory roles in plant-environment interactions publication-title: Annu Rev Plant Biol. – volume: 136 start-page: 2443 year: 2004 end-page: 2450 ident: b0965 article-title: Sulfur assimilatory metabolism. The long and smelling road publication-title: Plant Physiol. – volume: 7 start-page: 1567 year: 2016 ident: 10.1016/j.gene.2022.146283_b0690 article-title: High-throughput sequencing reveals H2O2 stress-associated microRNAs and a potential regulatory network in Brachypodium distachyon seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01567 – volume: 9 start-page: 16434 year: 2019 ident: 10.1016/j.gene.2022.146283_b0845 article-title: Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana publication-title: Sci Rep. doi: 10.1038/s41598-019-52858-3 – volume: 12 start-page: e0183253 issue: 8 year: 2017 ident: 10.1016/j.gene.2022.146283_b1500 article-title: Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage publication-title: PLoS One. doi: 10.1371/journal.pone.0183253 – volume: 145 start-page: 195 year: 2019 ident: 10.1016/j.gene.2022.146283_b0090 article-title: Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs publication-title: Plant Physiol Biochem. doi: 10.1016/j.plaphy.2019.10.042 – volume: 69 start-page: 709 issue: 4 year: 2018 ident: 10.1016/j.gene.2022.146283_b0160 article-title: Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway publication-title: Mol Cell. doi: 10.1016/j.molcel.2018.01.007 – volume: 17 start-page: 95 issue: 1 year: 2005 ident: 10.1016/j.gene.2022.146283_b0805 article-title: Chromium stress in plants publication-title: Braz J Plant Physiol. doi: 10.1590/S1677-04202005000100008 – volume: 11 start-page: 300 year: 2020 ident: 10.1016/j.gene.2022.146283_b0040 article-title: Manganese in plants: from acquisition to subcellular allocation publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00300 – volume: 182 start-page: 799 issue: 4 year: 2009 ident: 10.1016/j.gene.2022.146283_b0185 article-title: Copper homeostasis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02846.x – volume: 6 start-page: 180735 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b0485 article-title: Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.180735 – volume: 7 start-page: 1192 year: 2016 ident: 10.1016/j.gene.2022.146283_b0140 article-title: Regulating subcellular metal homeostasis: the key to crop improvement publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01192 – volume: 11 start-page: e1004391 issue: 9 year: 2015 ident: 10.1016/j.gene.2022.146283_b0570 article-title: miRTex: A text mining system for miRNA-gene relation extraction publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1004391 – ident: 10.1016/j.gene.2022.146283_b1275 doi: 10.1007/978-3-030-64994-4_3 – volume: 9 start-page: 4510 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1285 article-title: Identifying high confidence microRNAs in the developing seeds of Jatropha curcas publication-title: Sci Rep. doi: 10.1038/s41598-019-41189-y – volume: 11 start-page: 752 year: 2020 ident: 10.1016/j.gene.2022.146283_b0810 article-title: Effect of arsenic stress on expression pattern of a rice specific miR156j at various developmental stages and their allied co-expression target networks publication-title: Front Plant Sci. doi: 10.3389/fpls.2020.00752 – volume: 579 start-page: 5923 issue: 26 year: 2005 ident: 10.1016/j.gene.2022.146283_b0210 article-title: MicroRNA biogenesis and function in plants publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.07.071 – volume: 32 start-page: 157 issue: 1 year: 2016 ident: 10.1016/j.gene.2022.146283_b0275 article-title: P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv534 – volume: 24 start-page: 143 issue: 2 year: 2015 ident: 10.1016/j.gene.2022.146283_b1450 article-title: Expression pattern analysis of microRNAs in root tissue of wheat (Triticum aestivum L.) under normal nitrogen and low nitrogen conditions publication-title: J. Plant Biochem. Biotechnol. doi: 10.1007/s13562-013-0246-2 – volume: 136 start-page: 669 issue: 4 year: 2009 ident: 10.1016/j.gene.2022.146283_b1175 article-title: Origin, biogenesis, and activity of plant microRNAs publication-title: Cell. doi: 10.1016/j.cell.2009.01.046 – volume: 19 start-page: 940 issue: 1 year: 2018 ident: 10.1016/j.gene.2022.146283_b0430 article-title: Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis publication-title: BMC genomics doi: 10.1186/s12864-018-5258-9 – volume: 10 start-page: 303 issue: 4 year: 2019 ident: 10.1016/j.gene.2022.146283_b0050 article-title: Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing publication-title: Genes. doi: 10.3390/genes10040303 – volume: 60 start-page: 323 issue: 4 year: 2018 ident: 10.1016/j.gene.2022.146283_b0800 article-title: Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12634 – volume: 17 start-page: 2369 issue: 11 year: 2018 ident: 10.1016/j.gene.2022.146283_b1010 article-title: TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance publication-title: J Integr Agric. doi: 10.1016/S2095-3119(17)61879-3 – ident: 10.1016/j.gene.2022.146283_b1085 doi: 10.7717/peerj.9105 – volume: Vol. 20 year: 1988 ident: 10.1016/j.gene.2022.146283_b0790 – volume: 117 start-page: 6237 issue: 11 year: 2020 ident: 10.1016/j.gene.2022.146283_b1490 article-title: Regulation of stomatal development by stomatal lineage miRNAs publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1919722117 – volume: 16 start-page: 168 issue: 4 year: 2012 ident: 10.1016/j.gene.2022.146283_b0770 article-title: Semirna: searching for plant miRNAs using target sequences publication-title: OMICS. doi: 10.1089/omi.2011.0115 – volume: 8 start-page: 201 issue: 7 year: 2019 ident: 10.1016/j.gene.2022.146283_b0660 article-title: Expression of miR159 is altered in tomato plants undergoing drought stress publication-title: Plants (Basel, Switzerland) – ident: 10.1016/j.gene.2022.146283_b0025 doi: 10.1007/s11104-015-2561-y – volume: 6 start-page: 23890 year: 2016 ident: 10.1016/j.gene.2022.146283_b1455 article-title: An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design publication-title: Sci Rep. doi: 10.1038/srep23890 – volume: 179 start-page: 640 issue: 2 year: 2019 ident: 10.1016/j.gene.2022.146283_b0675 article-title: Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.18.01424 – ident: 10.1016/j.gene.2022.146283_b0180 doi: 10.1002/etc.3097 – volume: 7 start-page: 484 issue: 4 year: 2012 ident: 10.1016/j.gene.2022.146283_b0450 article-title: microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana publication-title: Plant Signal Behav doi: 10.4161/psb.19337 – ident: 10.1016/j.gene.2022.146283_b0445 doi: 10.1016/j.molcel.2010.05.015 – volume: 40 start-page: 1 issue: 14 year: 2020 ident: 10.1016/j.gene.2022.146283_b1080 article-title: miR535 negatively regulates cold tolerance in rice publication-title: Mol Breeding. – ident: 10.1016/j.gene.2022.146283_b0055 doi: 10.1007/s12298-013-0211-5 – ident: 10.1016/j.gene.2022.146283_b1280 doi: 10.1371/journal.pgen.1006416 – volume: 182 start-page: 287 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0665 article-title: ARGONAUTE1 and ARGONAUTE4 regulate gene expression and hypoxia tolerance publication-title: Plant Physiol. doi: 10.1104/pp.19.00741 – volume: 99 start-page: 621 issue: 6 year: 2019 ident: 10.1016/j.gene.2022.146283_b0335 article-title: The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in Arabidopsis publication-title: Plant Mol Biol. doi: 10.1007/s11103-019-00840-y – volume: 15 start-page: 1 issue: 16 year: 2015 ident: 10.1016/j.gene.2022.146283_b0455 article-title: Targeted genome modifications in soybean with CRISPR/Cas9 publication-title: BMC Biotechnol. – volume: 6 start-page: 255 year: 2015 ident: 10.1016/j.gene.2022.146283_b0875 article-title: Temporal aspects of copper homeostasis and its crosstalk with hormones publication-title: Front Plant Sci. doi: 10.3389/fpls.2015.00255 – volume: 14 start-page: 1605 issue: 7 year: 2002 ident: 10.1016/j.gene.2022.146283_b0655 article-title: Endogenous and silencing-associated small RNAs in plants publication-title: Plant Cell. doi: 10.1105/tpc.003210 – volume: 184 start-page: 194 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b1225 article-title: The Apple microR171i-SCARECROW-LIKE PROTEINS 26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism publication-title: Plant Physiol. doi: 10.1104/pp.20.00476 – volume: 105 start-page: 8795 issue: 25 year: 2008 ident: 10.1016/j.gene.2022.146283_b0540 article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802493105 – volume: 6 start-page: 75 year: 2019 ident: 10.1016/j.gene.2022.146283_b0780 article-title: Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies publication-title: Hortic Res. doi: 10.1038/s41438-019-0157-z – volume: 11 start-page: 1400 issue: 11 year: 2018 ident: 10.1016/j.gene.2022.146283_b0880 article-title: A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants publication-title: Mol Plant. doi: 10.1016/j.molp.2018.09.003 – volume: 66 start-page: 1749 issue: 7 year: 2015 ident: 10.1016/j.gene.2022.146283_b1375 article-title: MicroRNA: a new target for improving plant tolerance to abiotic stress publication-title: J Exp Bot. doi: 10.1093/jxb/erv013 – volume: 59 start-page: 651 issue: 1 year: 2008 ident: 10.1016/j.gene.2022.146283_b0765 article-title: Mechanisms of salinity tolerance publication-title: Annual Rev Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 102 start-page: 3691 issue: 10 year: 2005 ident: 10.1016/j.gene.2022.146283_b0820 article-title: Nuclear processing and export of microRNAs in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0405570102 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.gene.2022.146283_b0890 article-title: Function and regulation of the plant COPT family of high-affinity copper transport proteins publication-title: Adv. Bot. doi: 10.1155/2014/476917 – volume: 26 start-page: 1566 issue: 12 year: 2010 ident: 10.1016/j.gene.2022.146283_b0165 article-title: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq233 – volume: 21 start-page: 494 year: 2020 ident: 10.1016/j.gene.2022.146283_b1425 article-title: Integrated small RNA and degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.) publication-title: BMC Genomics. doi: 10.1186/s12864-020-06913-3 – ident: 10.1016/j.gene.2022.146283_b5001 doi: 10.3390/ijms19051431 – volume: 1819 start-page: 137 issue: 2 year: 2012 ident: 10.1016/j.gene.2022.146283_b0515 article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2011.05.001 – volume: 17 start-page: 211 year: 2017 ident: 10.1016/j.gene.2022.146283_b0380 article-title: Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress publication-title: BMC Plant Biol. doi: 10.1186/s12870-017-1172-6 – volume: 9 issue: 11 year: 2014 ident: 10.1016/j.gene.2022.146283_b1050 article-title: The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress publication-title: PLoS ONE doi: 10.1371/journal.pone.0113782 – volume: 62 start-page: 97 issue: 1 year: 2018 ident: 10.1016/j.gene.2022.146283_b0420 article-title: Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean publication-title: Biol Plant doi: 10.1007/s10535-017-0752-5 – volume: 20 start-page: 298 year: 2020 ident: 10.1016/j.gene.2022.146283_b1155 article-title: Identification of small RNAs during cold acclimation in Arabidopsis thaliana publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-02511-3 – volume: 11 start-page: 264 issue: 3 year: 2020 ident: 10.1016/j.gene.2022.146283_b0030 article-title: Comparative analysis of miRNA expression profiles between heat-tolerant and heat-sensitive genotypes of flowering Chinese cabbage under heat stress using high-throughput sequencing publication-title: Genes. doi: 10.3390/genes11030264 – volume: 8 start-page: 374 year: 2017 ident: 10.1016/j.gene.2022.146283_b0390 article-title: Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.00374 – volume: 161 start-page: 867 issue: 7 year: 2004 ident: 10.1016/j.gene.2022.146283_b0460 article-title: Carbohydrate metabolism in growing rice seedlings under arsenic toxicity publication-title: J Plant Physiol. doi: 10.1016/j.jplph.2004.01.004 – volume: 6 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1350 article-title: MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass publication-title: Hortic Res. doi: 10.1038/s41438-019-0130-x – volume: 70 start-page: 489 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1060 article-title: MicroRNAs and their regulatory roles in plant-environment interactions publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-050718-100334 – ident: 10.1016/j.gene.2022.146283_b0940 doi: 10.1016/j.cpb.2016.10.003 – volume: 18 start-page: 52 year: 2018 ident: 10.1016/j.gene.2022.146283_b1370 article-title: Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1242-4 – volume: 20 start-page: 537 issue: 8 year: 2019 ident: 10.1016/j.gene.2022.146283_b0835 article-title: Applications of machine learning in miRNA discovery and target prediction publication-title: Curr. Genom. doi: 10.2174/1389202921666200106111813 – volume: 140 start-page: 55 year: 2017 ident: 10.1016/j.gene.2022.146283_b0350 article-title: Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations publication-title: Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2017.01.042 – volume: 119 start-page: 1217 year: 2015 ident: 10.1016/j.gene.2022.146283_b1250 article-title: Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.09.099 – volume: 15 start-page: e0228850 issue: 2 year: 2020 ident: 10.1016/j.gene.2022.146283_b0525 article-title: MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower publication-title: PLoS ONE doi: 10.1371/journal.pone.0228850 – volume: 13 start-page: 33 year: 2013 ident: 10.1016/j.gene.2022.146283_b1420 article-title: PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-33 – volume: 31 start-page: 166 issue: 2 year: 2015 ident: 10.1016/j.gene.2022.146283_b0065 article-title: HTSeq-a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu638 – ident: 10.1016/j.gene.2022.146283_b2001 doi: 10.4161/psb.26758 – volume: 29 start-page: 2000 issue: 10 year: 2006 ident: 10.1016/j.gene.2022.146283_b0130 article-title: Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01576.x – volume: 43 start-page: D982 issue: Database issue year: 2015 ident: 10.1016/j.gene.2022.146283_b1305 article-title: PNRD: a plant non-coding RNA database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1162 – volume: 19 start-page: 532 year: 2018 ident: 10.1016/j.gene.2022.146283_b1020 article-title: Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies publication-title: BMC Genom. doi: 10.1186/s12864-018-4897-1 – volume: 19 issue: 1 year: 2018 ident: 10.1016/j.gene.2022.146283_b1235 article-title: Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley publication-title: BMC Genomics. doi: 10.1186/s12864-018-4953-x – ident: 10.1016/j.gene.2022.146283_b0295 doi: 10.1093/jxb/eraa290 – start-page: 223 year: 2007 ident: 10.1016/j.gene.2022.146283_b0215 article-title: Small RNAs: big role in abiotic stress tolerance of plants – volume: 53 start-page: 731 issue: 5 year: 2008 ident: 10.1016/j.gene.2022.146283_b0815 article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03363.x – volume: 12 start-page: 615114 year: 2021 ident: 10.1016/j.gene.2022.146283_b0150 article-title: Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress publication-title: Front Plant Sci. doi: 10.3389/fpls.2021.615114 – volume: 10 start-page: 495 year: 2020 ident: 10.1016/j.gene.2022.146283_b0475 article-title: miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3 publication-title: Biotech. – volume: 16 start-page: 145 issue: 1 year: 2016 ident: 10.1016/j.gene.2022.146283_b0340 article-title: Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7 publication-title: BMC Plant Biol. doi: 10.1186/s12870-016-0830-4 – volume: 18 start-page: 758 issue: 10 year: 2008 ident: 10.1016/j.gene.2022.146283_b0015 article-title: Endogenous siRNA and miRNA targets identied by sequencing of the Arabidopsis degradome publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.04.042 – volume: 258 start-page: 122 year: 2017 ident: 10.1016/j.gene.2022.146283_b0080 article-title: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.01.018 – volume: 6 start-page: 957 issue: 8 year: 2020 ident: 10.1016/j.gene.2022.146283_b1405 article-title: Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis publication-title: Nat Plants. doi: 10.1038/s41477-020-0726-z – year: 2020 ident: 10.1016/j.gene.2022.146283_b0285 article-title: microRNA regulation of fruit development doi: 10.1007/978-3-030-35772-6_5 – volume: 7 start-page: 817 year: 2016 ident: 10.1016/j.gene.2022.146283_b1025 article-title: MicroRNAs as potential targets for abiotic stress tolerance in plants publication-title: Front Plant Sci. doi: 10.3389/fpls.2016.00817 – ident: 10.1016/j.gene.2022.146283_b1090 doi: 10.1105/tpc.106.041673 – volume: 46 start-page: 243 year: 2006 ident: 10.1016/j.gene.2022.146283_b1380 article-title: Conservation and divergence of plant microRNA genes publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02697.x – volume: 23 start-page: 4051 issue: 20 year: 2004 ident: 10.1016/j.gene.2022.146283_b0550 article-title: MicroRNA genes are transcribed by RNA polymerase II publication-title: EMBO J. doi: 10.1038/sj.emboj.7600385 – volume: 64 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.gene.2022.146283_b1065 article-title: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings publication-title: Plant Growth Regul. doi: 10.1007/s10725-010-9526-1 – volume: 9 start-page: 2832 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1290 article-title: The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis publication-title: Sci Rep. doi: 10.1038/s41598-019-39397-7 – ident: 10.1016/j.gene.2022.146283_b5004 doi: 10.1155/2018/9395261 – ident: 10.1016/j.gene.2022.146283_b0435 doi: 10.1093/nar/gkt485 – volume: 5 start-page: 84 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1265 article-title: Identification of vacuolar phosphate efflux transporters in land plants publication-title: Nature plants doi: 10.1038/s41477-018-0334-3 – volume: 8 start-page: 378 year: 2017 ident: 10.1016/j.gene.2022.146283_b0255 article-title: Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.00378 – volume: 11 start-page: 319 issue: 3 year: 2020 ident: 10.1016/j.gene.2022.146283_b1180 article-title: The critical role of miRNAs in regulation of flowering time and flower development publication-title: Genes. doi: 10.3390/genes11030319 – volume: 4 start-page: 230 issue: 3 year: 2012 ident: 10.1016/j.gene.2022.146283_b0785 article-title: Origins and evolution of microRNA genes in plant species publication-title: Genome Biol Evol. doi: 10.1093/gbe/evs002 – volume: 1 start-page: e0024 year: 2002 ident: 10.1016/j.gene.2022.146283_b0895 article-title: Phosphate transport and homeostasis in Arabidopsis publication-title: The Arabidopsis Book doi: 10.1199/tab.0024 – volume: 12 start-page: e0169212 issue: 1 year: 2017 ident: 10.1016/j.gene.2022.146283_b0705 article-title: Transcriptome-wide discovery of PASRs (Promoter-Associated Small RNAs) and TASRs (Terminus-Associated Small RNAs) in Arabidopsis thaliana publication-title: PloS one doi: 10.1371/journal.pone.0169212 – volume: 165 start-page: 830 issue: 4 year: 2019 ident: 10.1016/j.gene.2022.146283_b0730 article-title: Alfalfa response to heat stress is modulated by microRNA156 publication-title: Physiol Plant. doi: 10.1111/ppl.12787 – volume: 19 start-page: 100 year: 2019 ident: 10.1016/j.gene.2022.146283_b0405 article-title: Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites) publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-1698-x – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.gene.2022.146283_b1005 article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions publication-title: J Bot. doi: 10.1155/2012/217037 – volume: 18 start-page: 938 year: 2017 ident: 10.1016/j.gene.2022.146283_b0585 article-title: Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing publication-title: BMC Genomics. doi: 10.1186/s12864-017-4347-5 – ident: 10.1016/j.gene.2022.146283_b9011 doi: 10.1093/nar/gky316 – volume: 53 start-page: 1331 issue: 372 year: 2002 ident: 10.1016/j.gene.2022.146283_b0045 article-title: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.372.1331 – volume: 20 start-page: 87 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0400 article-title: Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-2296-7 – ident: 10.1016/j.gene.2022.146283_b1395 doi: 10.1186/s12284-018-0253-y – volume: 11 start-page: 687 year: 2020 ident: 10.1016/j.gene.2022.146283_b1320 article-title: Chilling and heat stress-induced physiological changes and microRNA-related mechanism in sweetpotato (Ipomoea batatas L.). Front publication-title: Plant Sci. – volume: 67 start-page: 5811 issue: 19 year: 2016 ident: 10.1016/j.gene.2022.146283_b0860 article-title: Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots publication-title: J Exp Bot. doi: 10.1093/jxb/erw346 – volume: 16 start-page: 235 issue: 3 year: 2016 ident: 10.1016/j.gene.2022.146283_b0915 article-title: PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes publication-title: Funct Integr Genomics. doi: 10.1007/s10142-016-0480-5 – volume: 14 start-page: e0219176 issue: 7 year: 2019 ident: 10.1016/j.gene.2022.146283_b0645 article-title: Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing publication-title: PloS one. doi: 10.1371/journal.pone.0219176 – volume: 66 start-page: 1519 issue: 13 year: 2005 ident: 10.1016/j.gene.2022.146283_b0950 article-title: Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity publication-title: Phytochem. doi: 10.1016/j.phytochem.2005.05.003 – volume: 58 start-page: 426 issue: 3 year: 2017 ident: 10.1016/j.gene.2022.146283_b0105 article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley publication-title: Plant Cell Physiol. – volume: 130 start-page: 6 issue: 1 year: 2002 ident: 10.1016/j.gene.2022.146283_b0745 article-title: Short RNAs can identify new candidate transposable element families in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.007047 – volume: 21 start-page: 2795 issue: 8 year: 2020 ident: 10.1016/j.gene.2022.146283_b0900 article-title: Genome-Wide identification and characterization of drought stress responsive microRNAs in Tibetan wild barley publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082795 – volume: 10 start-page: 185 issue: 4 year: 2016 ident: 10.1016/j.gene.2022.146283_b0120 article-title: Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-016-0401-z – volume: 26 start-page: 1181 year: 2017 ident: 10.1016/j.gene.2022.146283_b0580 article-title: miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana publication-title: Ecotoxicology. doi: 10.1007/s10646-017-1843-y – volume: 39 start-page: 32 year: 2017 ident: 10.1016/j.gene.2022.146283_b1255 article-title: Identification of microRNAs from Zn-treated Solanum nigrum roots by small RNA sequencing publication-title: Acta Physiol Plant. doi: 10.1007/s11738-016-2337-x – volume: 8 start-page: 272 year: 2017 ident: 10.1016/j.gene.2022.146283_b1445 article-title: Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.00272 – volume: 136 start-page: 642 issue: 4 year: 2009 ident: 10.1016/j.gene.2022.146283_b0200 article-title: Origins and mechanisms of miRNAs and siRNAs publication-title: Cell doi: 10.1016/j.cell.2009.01.035 – volume: 1 start-page: 375 issue: 5 year: 2009 ident: 10.1016/j.gene.2022.146283_b0995 article-title: Chromium interactions in plants: current status and future strategies publication-title: Metallomics. doi: 10.1039/b904571f – ident: 10.1016/j.gene.2022.146283_b1075 doi: 10.1093/bioinformatics/bty338 – volume: 25 start-page: 2383 issue: 7 year: 2013 ident: 10.1016/j.gene.2022.146283_b0955 article-title: Biogenesis, turnover, and mode of action of plant microRNAs publication-title: Plant Cell doi: 10.1105/tpc.113.113159 – ident: 10.1016/j.gene.2022.146283_b0615 doi: 10.1093/jxb/erab336 – volume: 8 start-page: 356 year: 2017 ident: 10.1016/j.gene.2022.146283_b0085 article-title: An insight into microRNA156 role in salinity stress responses of alfalfa publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00356 – volume: 10 start-page: 324 year: 2019 ident: 10.1016/j.gene.2022.146283_b0195 article-title: The altered expression of microRNA408 influences the Arabidopsis response to iron deficiency publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00324 – ident: 10.1016/j.gene.2022.146283_b0145 doi: 10.1105/tpc.111.090431 – volume: 6 start-page: 188 year: 2015 ident: 10.1016/j.gene.2022.146283_b0410 article-title: MicroRNA399 is involved in multiple nutrient starvation responses in rice publication-title: Front Plant Sci. doi: 10.3389/fpls.2015.00188 – volume: 146 start-page: 185 issue: 2 year: 2000 ident: 10.1016/j.gene.2022.146283_b0190 article-title: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00630.x – volume: 12 start-page: 76 year: 2019 ident: 10.1016/j.gene.2022.146283_b0470 publication-title: Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways – volume: 59 start-page: 2143 year: 2018 ident: 10.1016/j.gene.2022.146283_b0365 article-title: Differentially expressed microRNAs link cellular physiology to phenotypic changes in rice under stress conditions publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy136 – volume: 6 start-page: 117 issue: 2–3 year: 2013 ident: 10.1016/j.gene.2022.146283_b1460 article-title: Genome-wide analysis of microRNAs in sacred lotus, Nelumbo nucifera (Gaertn) publication-title: Trop Plant Biol. doi: 10.1007/s12042-013-9127-z – volume: 8 start-page: 6 year: 2017 ident: 10.1016/j.gene.2022.146283_b0480 article-title: Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00006 – volume: 19 start-page: 214 year: 2019 ident: 10.1016/j.gene.2022.146283_b1015 article-title: Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum) publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-1823-x – volume: 40 start-page: 183 year: 2018 ident: 10.1016/j.gene.2022.146283_b0905 article-title: Wheat miRNA member TaMIR2275 involves plant nitrogen starvation adaptation via enhancement of the N acquisition-associated process publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2758-9 – volume: 15 start-page: e0230958 issue: 4 year: 2020 ident: 10.1016/j.gene.2022.146283_b0830 article-title: Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity publication-title: PloS one. doi: 10.1371/journal.pone.0230958 – volume: 16 start-page: 1616 issue: 13 year: 2002 ident: 10.1016/j.gene.2022.146283_b0935 article-title: MicroRNAs in plants publication-title: Genes Dev. doi: 10.1101/gad.1004402 – volume: 20 start-page: 740 year: 2019 ident: 10.1016/j.gene.2022.146283_b1200 article-title: Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine publication-title: BMC Genomics. doi: 10.1186/s12864-019-6111-5 – volume: 13 Suppl 7 (Suppl 7) start-page: S16 year: 2012 ident: 10.1016/j.gene.2022.146283_b0795 article-title: C-mii: a tool for plant miRNA and target identification publication-title: BMC Genomics. doi: 10.1186/1471-2164-13-S7-S16 – volume: 9 start-page: 499 year: 2018 ident: 10.1016/j.gene.2022.146283_b0110 article-title: Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi Deprivation and salt stress via modulating stress-associated physiological processes publication-title: Front Plant Sci. doi: 10.3389/fpls.2018.00499 – volume: 15 start-page: 523 issue: 5 year: 2015 ident: 10.1016/j.gene.2022.146283_b0175 article-title: Plant miRNAs: biogenesis, organization and origins publication-title: Funct. Integr. Genomic doi: 10.1007/s10142-015-0451-2 – volume: 14 start-page: 854 issue: 6 year: 2008 ident: 10.1016/j.gene.2022.146283_b0360 article-title: A link between RNA metabolism and silencing affecting Arabidopsis development publication-title: Dev Cell. doi: 10.1016/j.devcel.2008.04.005 – volume: 20 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1480 article-title: Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress publication-title: BMC Genomics. doi: 10.1186/s12864-018-5395-1 – volume: 9 start-page: 182 issue: 5 year: 2019 ident: 10.1016/j.gene.2022.146283_b0005 article-title: Identification of miRNAs and their response to cold stress in Astragalus membranaceus publication-title: Biomolecules. doi: 10.3390/biom9050182 – volume: 20 start-page: 532 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b0370 article-title: miRkwood: a tool for the reliable identification of microRNAs in plant genomes publication-title: BMC Genomics. doi: 10.1186/s12864-019-5913-9 – ident: 10.1016/j.gene.2022.146283_b0710 doi: 10.1093/bioinformatics/btx797 – volume: 9 start-page: e91357 issue: 3 year: 2014 ident: 10.1016/j.gene.2022.146283_b1215 article-title: MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.) publication-title: PLoS ONE doi: 10.1371/journal.pone.0091357 – volume: 38 start-page: D806 issue: Database issue year: 2010 ident: 10.1016/j.gene.2022.146283_b1435 article-title: PMRD: plant microRNA database publication-title: Nucleic Acids Research. doi: 10.1093/nar/gkp818 – ident: 10.1016/j.gene.2022.146283_b0535 doi: 10.1093/bioinformatics/bty972 – volume: 48 start-page: D1114 issue: D1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0385 article-title: PmiREN: a comprehensive encyclopedia of plant miRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz894 – ident: 10.1016/j.gene.2022.146283_b0395 doi: 10.1038/srep32805 – volume: 20 start-page: 515 issue: 5 year: 2006 ident: 10.1016/j.gene.2022.146283_b1170 article-title: Control of translation and mRNA degradation by miRNAs and siRNAs publication-title: Genes Dev. doi: 10.1101/gad.1399806 – volume: 177 start-page: 1691 issue: 4 year: 2018 ident: 10.1016/j.gene.2022.146283_b0250 article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice publication-title: Plant Physiol. doi: 10.1104/pp.18.00485 – volume: 16 start-page: 362 issue: 3 year: 2019 ident: 10.1016/j.gene.2022.146283_b1220 article-title: MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress publication-title: RNA Biol. doi: 10.1080/15476286.2019.1574163 – volume: 17 start-page: 1658 issue: 6 year: 2005 ident: 10.1016/j.gene.2022.146283_b0100 article-title: Antiquity of microRNAs and their targets in land plants publication-title: Plant Cell. doi: 10.1105/tpc.105.032185 – volume: 60 start-page: 1440 year: 2019 ident: 10.1016/j.gene.2022.146283_b0520 article-title: Understanding the complexity of iron sensing and signaling cascades in plants publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcz038 – volume: 37 start-page: 1293 issue: 9 year: 2018 ident: 10.1016/j.gene.2022.146283_b0650 article-title: TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation publication-title: Plant Cell Rep. doi: 10.1007/s00299-018-2313-6 – volume: 64 start-page: 343 issue: 1 year: 2013 ident: 10.1016/j.gene.2022.146283_b0755 article-title: Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana publication-title: J Exp Bot. doi: 10.1093/jxb/ers339 – volume: 12 start-page: 1484 issue: 17 year: 2002 ident: 10.1016/j.gene.2022.146283_b0825 article-title: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana publication-title: Curr Biol. doi: 10.1016/S0960-9822(02)01017-5 – volume: 32 start-page: 450 issue: 3 year: 2016 ident: 10.1016/j.gene.2022.146283_b0840 article-title: miTRATA: a web-based tool for microRNA truncation and tailing analysis publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv583 – volume: 57 start-page: 1865 issue: 9 year: 2016 ident: 10.1016/j.gene.2022.146283_b1430 article-title: The miR396b of Poncirus trifoliate functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene-polyamine homeostasis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw108 – volume: 161 start-page: 1235 issue: 11 year: 2004 ident: 10.1016/j.gene.2022.146283_b0600 article-title: Manganese accumulation in rice: implications for photosynthetic functioning publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.02.003 – volume: 42 start-page: D74 issue: Database issue year: 2014 ident: 10.1016/j.gene.2022.146283_b1105 article-title: miRNEST 2.0: a database of plant and animal microRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1156 – volume: 252 start-page: 103 year: 2016 ident: 10.1016/j.gene.2022.146283_b0595 article-title: miRNA alterations are important mechanism in maize adaptations to low-phosphate environments publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.07.009 – volume: 20 start-page: 488 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b0930 article-title: MicroRNA-guided regulation of heat stress response in wheat publication-title: BMC Genomics. doi: 10.1186/s12864-019-5799-6 – volume: 5 start-page: 14024 year: 2015 ident: 10.1016/j.gene.2022.146283_b0640 article-title: Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.) publication-title: Sci Rep. doi: 10.1038/srep14024 – volume: 32 start-page: 27 year: 2000 ident: 10.1016/j.gene.2022.146283_b0715 article-title: Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators? publication-title: Plant Growth Regul. doi: 10.1023/A:1006314001430 – volume: 53 start-page: 247 year: 2002 ident: 10.1016/j.gene.2022.146283_b1485 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 20 start-page: 2391 issue: 10 year: 2019 ident: 10.1016/j.gene.2022.146283_b1260 article-title: Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt and alkali stress tolerance in tobacco publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20102391 – volume: 10 start-page: 503 issue: 10 year: 2005 ident: 10.1016/j.gene.2022.146283_b0925 article-title: Sulfur metabolism: a versatile platform for launching defence operations publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.08.006 – volume: 1 start-page: 6 year: 2019 ident: 10.1016/j.gene.2022.146283_b0575 article-title: Current experimental strategies for intracellular target identification of microRNA publication-title: ExRNA. doi: 10.1186/s41544-018-0002-9 – volume: 8 start-page: 156 issue: 6 year: 2017 ident: 10.1016/j.gene.2022.146283_b0290 article-title: Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides) publication-title: Genes. doi: 10.3390/genes8060156 – ident: 10.1016/j.gene.2022.146283_b0700 doi: 10.1139/cjps-2018-0327 – volume: 9 start-page: 602 year: 2018 ident: 10.1016/j.gene.2022.146283_b0980 article-title: ARMOUR-A Rice miRNA: mRNA Interaction Resource publication-title: Front Plant Sci. doi: 10.3389/fpls.2018.00602 – volume: 38 start-page: 465 issue: 3 year: 2010 ident: 10.1016/j.gene.2022.146283_b1240 article-title: DNA methylation mediated by a microRNA pathway publication-title: Mol Cell. doi: 10.1016/j.molcel.2010.03.008 – volume: 30 start-page: 796 issue: 4 year: 2018 ident: 10.1016/j.gene.2022.146283_b0375 article-title: Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling publication-title: Plant Cell. doi: 10.1105/tpc.17.00842 – volume: 5 start-page: 708 year: 2014 ident: 10.1016/j.gene.2022.146283_b0850 article-title: plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants publication-title: Front Plant Sci. doi: 10.3389/fpls.2014.00708 – volume: 46 start-page: 10709 issue: 20 year: 2018 ident: 10.1016/j.gene.2022.146283_b0760 article-title: Efficiency and precision of microRNA biogenesis modes in plants publication-title: Nucleic Acids Res. – volume: 154 start-page: 29 issue: 1 year: 2002 ident: 10.1016/j.gene.2022.146283_b0740 article-title: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species publication-title: New Phytol. doi: 10.1046/j.1469-8137.2002.00363.x – volume: 6 year: 2016 ident: 10.1016/j.gene.2022.146283_b1345 article-title: Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis publication-title: Sci Rep. – volume: 8 start-page: 124 issue: 5 year: 2019 ident: 10.1016/j.gene.2022.146283_b0870 article-title: DRB1, DRB2 and DRB4 are required for appropriate regulation of the microRNA399/PHOSPHATE2 expression module in Arabidopsis thaliana publication-title: Plants (Basel). – ident: 10.1016/j.gene.2022.146283_b1130 doi: 10.1007/978-1-4939-7136-7_22 – volume: 46 start-page: 8730 issue: 17 year: 2018 ident: 10.1016/j.gene.2022.146283_b1140 article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules publication-title: Nucleic Acids Res. – volume: 12 start-page: 107 year: 2011 ident: 10.1016/j.gene.2022.146283_b1245 article-title: MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-12-107 – volume: 230 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.gene.2022.146283_b1385 article-title: MicroRNA-based biotechnology for plant improvement publication-title: J Cell Physiol doi: 10.1002/jcp.24685 – volume: 10 start-page: e0142753 issue: 11 year: 2015 ident: 10.1016/j.gene.2022.146283_b0230 article-title: miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences publication-title: PloS One. doi: 10.1371/journal.pone.0142753 – volume: 47 start-page: D155 issue: D1 year: 2019 ident: 10.1016/j.gene.2022.146283_b0530 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1141 – volume: 54 start-page: 118 year: 2008 ident: 10.1016/j.gene.2022.146283_b0775 article-title: Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (Brassica napus L.) publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2007.00214.x – volume: 9 start-page: 168 year: 2018 ident: 10.1016/j.gene.2022.146283_b1310 article-title: Classification of transcription boundary-associated RNAs (TBARs) in animals and plants publication-title: Front Genet. doi: 10.3389/fgene.2018.00168 – volume: 17 start-page: 1712 issue: 10 year: 2016 ident: 10.1016/j.gene.2022.146283_b0205 article-title: MicroRNA in control of gene expression: An overview of nuclear functions publication-title: Int J Mol Sci. doi: 10.3390/ijms17101712 – volume: 9 start-page: 769 issue: 3 year: 2019 ident: 10.1016/j.gene.2022.146283_b1095 article-title: The Role of UV-B light on small RNA activity during grapevine berry development. G3 (Bethesda publication-title: Md.) – volume: 19 start-page: 78 year: 2019 ident: 10.1016/j.gene.2022.146283_b0985 article-title: Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-1679-0 – volume: 8 start-page: 341 year: 2007 ident: 10.1016/j.gene.2022.146283_b0425 article-title: MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-8-341 – volume: 285 start-page: 68 year: 2019 ident: 10.1016/j.gene.2022.146283_b1335 article-title: Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana publication-title: Plant Sc. doi: 10.1016/j.plantsci.2019.05.003 – volume: 9 start-page: 383 year: 2018 ident: 10.1016/j.gene.2022.146283_b1410 article-title: Lateral root development in potato is mediated by Stu-mi164 regulation of NAC transcription factor publication-title: Front Plant Sci. doi: 10.3389/fpls.2018.00383 – volume: 7 start-page: 174 issue: 1 year: 2015 ident: 10.1016/j.gene.2022.146283_b1000 article-title: Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice publication-title: Metallomics. doi: 10.1039/C4MT00264D – volume: 21 start-page: 100210 year: 2020 ident: 10.1016/j.gene.2022.146283_b0155 article-title: Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L) publication-title: Plant Gene. doi: 10.1016/j.plgene.2019.100210 – volume: 33 start-page: 429 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b0495 article-title: LncRNAs: Genetic and epigenetic effects in plants publication-title: Biotechnol Biotechnol Equip. doi: 10.1080/13102818.2019.1581085 – volume: 39 start-page: 282 issue: 2 year: 2010 ident: 10.1016/j.gene.2022.146283_b0440 article-title: In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90 publication-title: Mol Cell. doi: 10.1016/j.molcel.2010.05.014 – ident: 10.1016/j.gene.2022.146283_b0625 doi: 10.1021/acs.jafc.5b04191 – volume: 2 start-page: 16033 year: 2016 ident: 10.1016/j.gene.2022.146283_b1440 article-title: Vascular-mediated signalling involved in early phosphate stress response in plants publication-title: Nat Plants. doi: 10.1038/nplants.2016.33 – volume: 7 start-page: 23 year: 2016 ident: 10.1016/j.gene.2022.146283_b0510 article-title: Ethylene and metal stress: small molecule, big impact publication-title: Front Plant Sci. doi: 10.3389/fpls.2016.00023 – volume: 32 start-page: 2722 issue: 17 year: 2016 ident: 10.1016/j.gene.2022.146283_b0680 article-title: Tools4miRs-one place to gather all the tools for miRNA analysis publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btw189 – volume: 6 start-page: 232 year: 2015 ident: 10.1016/j.gene.2022.146283_b0855 article-title: miRNA regulation of nutrient homeostasis in plants publication-title: Front Plant Sci. doi: 10.3389/fpls.2015.00232 – volume: 8 start-page: 565 year: 2017 ident: 10.1016/j.gene.2022.146283_b0970 article-title: MicroRNA and transcription factor: key players in plant regulatory network publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.00565 – volume: 9 start-page: 34 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0270 article-title: Applications and trends of machine learning in genomics and phenomics for next-generation breeding publication-title: Plants. doi: 10.3390/plants9010034 – volume: 20 start-page: 466 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0465 article-title: Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-02595-x – volume: 24 start-page: 2168 issue: 5 year: 2012 ident: 10.1016/j.gene.2022.146283_b0630 article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.096636 – volume: 17 start-page: 272 issue: 3 year: 2015 ident: 10.1016/j.gene.2022.146283_b0975 article-title: Zinc accumulation and tolerance in Solanum nigrum are plant growth dependent publication-title: Int. J. Phytoremediation. doi: 10.1080/15226514.2014.898018 – volume: 9 start-page: 465 issue: 2 year: 2020 ident: 10.1016/j.gene.2022.146283_b1495 article-title: Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum publication-title: Crop J. doi: 10.1016/j.cj.2020.07.005 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.gene.2022.146283_b0240 article-title: Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-ta-siRNA crosstalk as regulator of seed germination publication-title: Sci Rep – volume: 18 start-page: 212 year: 2017 ident: 10.1016/j.gene.2022.146283_b1055 article-title: Response of microRNAs to cold treatment in the young spikes of common wheat publication-title: BMC Genomics. doi: 10.1186/s12864-017-3556-2 – volume: 22 start-page: 16441 issue: 21 year: 2015 ident: 10.1016/j.gene.2022.146283_b1195 article-title: A review of soil cadmium contamination in China including a health risk assessment publication-title: Environ Sci Pollut Res Int. doi: 10.1007/s11356-015-5273-1 – volume: 21 start-page: 100213 year: 2020 ident: 10.1016/j.gene.2022.146283_b1045 article-title: Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam publication-title: Plant Gene doi: 10.1016/j.plgene.2019.100213 – volume: 8 start-page: 1598 year: 2017 ident: 10.1016/j.gene.2022.146283_b1465 article-title: CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.01598 – volume: vol 19 start-page: 223 year: 2011 ident: 10.1016/j.gene.2022.146283_b1165 article-title: The role of plasma membrane nitrogen transporters in nitrogen acquisition and utilization – volume: 321 start-page: 1490 issue: 5895 year: 2008 ident: 10.1016/j.gene.2022.146283_b0920 article-title: Degradation of microRNAs by a family of exoribonucleases in Arabidopsis publication-title: Science. doi: 10.1126/science.1163728 – volume: 164 start-page: 611 year: 2018 ident: 10.1016/j.gene.2022.146283_b0910 article-title: Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress publication-title: Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2018.08.077 – volume: 136 start-page: 479 year: 2019 ident: 10.1016/j.gene.2022.146283_b1360 article-title: Response of NAC transcription factor genes against chromium stress in sunflower (Helianthus annuus L.) publication-title: Plant Cell Tiss Organ Cult doi: 10.1007/s11240-018-01529-8 – volume: 4975146 year: 2017 ident: 10.1016/j.gene.2022.146283_b0260 article-title: miR319, miR390, and miR393 are involved in Aluminum response in Flax (Linum usitatissimum L.) publication-title: Bio Med Res Int. – volume: 20 start-page: 1474 issue: 6 year: 2019 ident: 10.1016/j.gene.2022.146283_b1185 article-title: Bioinformatic exploration of the targets of xylem sap miRNAs in maize under cadmium stress publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20061474 – ident: 10.1016/j.gene.2022.146283_b0305 doi: 10.3389/fpls.2017.00864 – volume: 86 start-page: 1 issue: 1–2 year: 2014 ident: 10.1016/j.gene.2022.146283_b1160 article-title: Artificial microRNA mediated gene silencing in plants: progress and perspectives publication-title: Plant Mol Biol. doi: 10.1007/s11103-014-0224-7 – volume: 59 start-page: 313 issue: 1 year: 2008 ident: 10.1016/j.gene.2022.146283_b0115 article-title: Flooding stress, acclimations and genetic diversity publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092752 – year: 1995 ident: 10.1016/j.gene.2022.146283_b0725 – volume: 217 start-page: 1712 issue: 4 year: 2018 ident: 10.1016/j.gene.2022.146283_b0610 article-title: Evolution of microRNA827 targeting in the plant kingdom publication-title: New Phytol. doi: 10.1111/nph.14938 – volume: 15 start-page: e0236829 issue: 7 year: 2020 ident: 10.1016/j.gene.2022.146283_b0605 article-title: Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0236829 – volume: 294 start-page: 379 issue: 2 year: 2019 ident: 10.1016/j.gene.2022.146283_b1470 article-title: MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells publication-title: Mol Genet Genomics. doi: 10.1007/s00438-018-1516-4 – volume: 17 start-page: 697 issue: 6 year: 2017 ident: 10.1016/j.gene.2022.146283_b0555 article-title: Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance publication-title: Funct Integr Genomics. doi: 10.1007/s10142-017-0565-9 – volume: 10 start-page: 340 year: 2019 ident: 10.1016/j.gene.2022.146283_b0320 article-title: Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects publication-title: Front Plant Sci. doi: 10.3389/fpls.2019.00340 – volume: 57 start-page: 19 issue: 1 year: 2006 ident: 10.1016/j.gene.2022.146283_b0490 article-title: MicroRNAS and their regulatory roles in plants publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105218 – volume: 20 start-page: 283 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0220 article-title: Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor publication-title: BMC Plant Boil. doi: 10.1186/s12870-020-02489-y – volume: 137 start-page: 96 year: 2017 ident: 10.1016/j.gene.2022.146283_b0345 article-title: Insights into the miRNA-mediated response of maize leaf to arsenate stress publication-title: Environ Exp Bot. doi: 10.1016/j.envexpbot.2017.01.015 – volume: 151 year: 2020 ident: 10.1016/j.gene.2022.146283_b1295 article-title: Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing publication-title: Ind Crop Prod. doi: 10.1016/j.indcrop.2020.112484 – volume: 6 start-page: 32158 year: 2016 ident: 10.1016/j.gene.2022.146283_b0590 article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds publication-title: Sci. Rep. doi: 10.1038/srep32158 – volume: 36 start-page: 1171 issue: 7 year: 2017 ident: 10.1016/j.gene.2022.146283_b1355 article-title: Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.) publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2146-8 – volume: 111 start-page: 1026 issue: 5 year: 2019 ident: 10.1016/j.gene.2022.146283_b1030 article-title: The role of miRNA in somatic embryogenesis publication-title: Genomics. doi: 10.1016/j.ygeno.2018.11.022 – volume: 10 start-page: 366 issue: 1 year: 2009 ident: 10.1016/j.gene.2022.146283_b0750 article-title: MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs publication-title: BMC Genomics. doi: 10.1186/1471-2164-10-366 – volume: 39 start-page: 120 issue: 1 year: 2016 ident: 10.1016/j.gene.2022.146283_b1340 article-title: Inhibition of root meristem growth by cadmiumin volves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/pce.12597 – volume: 48 start-page: 1243 issue: 9 year: 2007 ident: 10.1016/j.gene.2022.146283_b0315 article-title: Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm099 – volume: 20 start-page: 14 year: 2019 ident: 10.1016/j.gene.2022.146283_b0325 article-title: Characterization of cadmium-responsive microRNAs and their target genes in maize (Zea mays) roots publication-title: BMC Molecular Biol. doi: 10.1186/s12867-019-0131-1 – volume: 18 start-page: 645 issue: 6 year: 2018 ident: 10.1016/j.gene.2022.146283_b1505 article-title: MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-018-0619-7 – volume: 173 start-page: 677 issue: 4 year: 2007 ident: 10.1016/j.gene.2022.146283_b0170 article-title: Zinc in plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.01996.x – year: 1994 ident: 10.1016/j.gene.2022.146283_b0500 – volume: 17 start-page: 818 issue: 9 year: 2007 ident: 10.1016/j.gene.2022.146283_b0280 article-title: Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants publication-title: Curr Boil. doi: 10.1016/j.cub.2007.04.005 – year: 2020 ident: 10.1016/j.gene.2022.146283_b0565 article-title: Plant microRNAs regulate innate immunity through diverse mechanisms doi: 10.1007/978-3-030-35772-6_11 – volume: 55 start-page: 76 year: 2019 ident: 10.1016/j.gene.2022.146283_b0355 article-title: Identification of manganese-responsive microRNAs in Arabidopsis by small RNA sequencing publication-title: Czech J. Genet. Plant Breed. doi: 10.17221/57/2018-CJGPB – volume: 91 start-page: 651 issue: 6 year: 2016 ident: 10.1016/j.gene.2022.146283_b1415 article-title: The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses publication-title: Plant Mol Biol. doi: 10.1007/s11103-016-0488-1 – volume: 7 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.gene.2022.146283_b1390 article-title: MicroRNA, a new target for engineering new crop cultivars publication-title: Bioengineered. doi: 10.1080/21655979.2016.1141838 – volume: 38 start-page: 92 issue: 2 year: 2016 ident: 10.1016/j.gene.2022.146283_b0035 article-title: Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana publication-title: Plant Divers. doi: 10.1016/j.pld.2015.04.001 – volume: 48 start-page: D148 issue: D1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0415 article-title: miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database publication-title: Nucleic Acids Res. – volume: 136 start-page: 2443 year: 2004 ident: 10.1016/j.gene.2022.146283_b0965 article-title: Sulfur assimilatory metabolism. The long and smelling road publication-title: Plant Physiol. doi: 10.1104/pp.104.046755 – volume: 47 start-page: W530 issue: W1 year: 2019 ident: 10.1016/j.gene.2022.146283_b0070 article-title: sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz415 – volume: 109 start-page: 12817 issue: 31 year: 2012 ident: 10.1016/j.gene.2022.146283_b0945 article-title: Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1204915109 – volume: 682 start-page: 13 year: 2019 ident: 10.1016/j.gene.2022.146283_b0960 article-title: Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants publication-title: Gene doi: 10.1016/j.gene.2018.09.049 – volume: 8 start-page: 58 issue: 3 year: 2019 ident: 10.1016/j.gene.2022.146283_b0865 article-title: Profiling the abiotic stress responsive microRNA landscape of Arabidopsis thaliana publication-title: Plants. doi: 10.3390/plants8030058 – volume: 25 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.gene.2022.146283_b0020 article-title: Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680500365232 – volume: 70 start-page: 4775 issue: 18 year: 2019 ident: 10.1016/j.gene.2022.146283_b1150 article-title: miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes publication-title: J Exp Bot. doi: 10.1093/jxb/erz264 – volume: 87 start-page: 389 issue: 3 year: 2019 ident: 10.1016/j.gene.2022.146283_b1325 article-title: Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley publication-title: Plant Growth Regul. doi: 10.1007/s10725-019-00479-1 – volume: 4 start-page: 1070 year: 2015 ident: 10.1016/j.gene.2022.146283_b0670 article-title: RNA-Seq workflow: gene-level exploratory analysis and differential expression publication-title: F1000Res. doi: 10.12688/f1000research.7035.1 – volume: 15 start-page: 275 year: 2014 ident: 10.1016/j.gene.2022.146283_b0060 article-title: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-15-275 – ident: 10.1016/j.gene.2022.146283_b0720 doi: 10.1111/tpj.14369 – ident: 10.1016/j.gene.2022.146283_b1120 doi: 10.1093/jxb/erz132 – volume: 10 start-page: 748 year: 2019 ident: 10.1016/j.gene.2022.146283_b1110 article-title: Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00748 – volume: 231 start-page: 303 issue: 2 year: 2016 ident: 10.1016/j.gene.2022.146283_b0560 article-title: MicroRNAs in control of plant development publication-title: J Cell Physiol. doi: 10.1002/jcp.25125 – volume: 19 start-page: 570 year: 2019 ident: 10.1016/j.gene.2022.146283_b0310 article-title: MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2189-9 – volume: 22 start-page: 348 year: 2021 ident: 10.1016/j.gene.2022.146283_b0635 article-title: TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs publication-title: BMC Genomics. doi: 10.1186/s12864-021-07680-5 – volume: 10 start-page: 989 year: 2019 ident: 10.1016/j.gene.2022.146283_b0225 article-title: Redox balance-DDR-miRNA triangle: Relevance in genome stability and stress responses in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00989 – volume: 31 start-page: 2929 issue: 12 year: 2019 ident: 10.1016/j.gene.2022.146283_b0885 article-title: MicroRNA dynamics and functions during Arabidopsis embryogenesis publication-title: Plant Cell. doi: 10.1105/tpc.19.00395 – volume: 34 start-page: 931 issue: 5 year: 2016 ident: 10.1016/j.gene.2022.146283_b0330 article-title: Wheat microRNA member TaMIR444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress publication-title: Plant Mol Bio Rep. doi: 10.1007/s11105-016-0973-3 – volume: 7 start-page: 225 year: 1979 ident: 10.1016/j.gene.2022.146283_b0075 article-title: Aeration in higher plants publication-title: Adv. Bot. Res. doi: 10.1016/S0065-2296(08)60089-0 – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 10.1016/j.gene.2022.146283_b0135 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 85 start-page: 1 issue: 9 year: 2019 ident: 10.1016/j.gene.2022.146283_b1230 article-title: Degradation of fungal microRNAs triggered by short tandem target mimics is via the small-RNA-degrading nuclease publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03132-18 – ident: 10.1016/j.gene.2022.146283_b0545 doi: 10.1016/0092-8674(93)90529-Y – volume: 19 start-page: 585 issue: 1 year: 2019 ident: 10.1016/j.gene.2022.146283_b1365 article-title: Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2203-2 – volume: 195 start-page: 97 issue: 1 year: 2012 ident: 10.1016/j.gene.2022.146283_b1315 article-title: Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa) publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04154.x – volume: 8 start-page: 143 year: 2020 ident: 10.1016/j.gene.2022.146283_b0125 article-title: MicroRNA involvement in signaling pathways during viral infection publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00143 – volume: 27 start-page: 1215 issue: 9 year: 2011 ident: 10.1016/j.gene.2022.146283_b1135 article-title: SplamiR-prediction of spliced miRNAs in plants publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr132 – volume: 22 start-page: 359 issue: 3 year: 2006 ident: 10.1016/j.gene.2022.146283_b0245 article-title: Identification of plant microRNA homologs publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bti802 – volume: 10 start-page: 3041 year: 2020 ident: 10.1016/j.gene.2022.146283_b0095 article-title: Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses publication-title: Sci Rep. doi: 10.1038/s41598-020-59981-6 – volume: 248 start-page: 545 issue: 3 year: 2018 ident: 10.1016/j.gene.2022.146283_b1040 article-title: Plant small RNAs: advancement in the understanding of biogenesis and role in plant development publication-title: Planta. doi: 10.1007/s00425-018-2927-5 – volume: 183 start-page: 1681 year: 2020 ident: 10.1016/j.gene.2022.146283_b1205 article-title: The miR399- CsUBC24 module regulates reproductive development and male fertility in citrus publication-title: Plant Physiol. doi: 10.1104/pp.20.00129 – volume: 31 start-page: 739 issue: 5 year: 2005 ident: 10.1016/j.gene.2022.146283_b0990 article-title: Chromium toxicity in plants publication-title: Environment international doi: 10.1016/j.envint.2005.02.003 – volume: 65 start-page: 1425 issue: 6 year: 2014 ident: 10.1016/j.gene.2022.146283_b0235 article-title: miRNAs in the crosstalk between phytohormone signalling pathways publication-title: J Exp Bot. doi: 10.1093/jxb/eru002 – volume: 75 start-page: 1468 issue: 11 year: 2009 ident: 10.1016/j.gene.2022.146283_b1190 article-title: The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2009.02.033 – volume: 15 start-page: 78 issue: 1 year: 2005 ident: 10.1016/j.gene.2022.146283_b0010 article-title: Computational prediction of miRNAs in Arabidopsis thaliana publication-title: Genome Res. doi: 10.1101/gr.2908205 – volume: 175 start-page: 1175 issue: 3 year: 2017 ident: 10.1016/j.gene.2022.146283_b1400 article-title: MiR408 regulates grain yield and photosynthesis via a phytocyanin protein publication-title: Plant Physiol. doi: 10.1104/pp.17.01169 – volume: 58 start-page: 118 issue: 2 year: 2012 ident: 10.1016/j.gene.2022.146283_b1115 article-title: Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs publication-title: Methods (San Diego, Calif.) doi: 10.1016/j.ymeth.2012.10.006 – volume: 27 start-page: 380 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b0265 article-title: Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa) publication-title: Environ Sci Pollut Res Int. doi: 10.1007/s11356-019-06760-0 – volume: 24 start-page: 415 issue: 2 year: 2012 ident: 10.1016/j.gene.2022.146283_b1270 article-title: Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis publication-title: Plant Cell. doi: 10.1105/tpc.111.094144 – volume: 11 start-page: e1213474 issue: 8 year: 2016 ident: 10.1016/j.gene.2022.146283_b0620 article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants publication-title: Plant Signal Behav doi: 10.1080/15592324.2016.1213474 – volume: 248 start-page: 805 issue: 4 year: 2011 ident: 10.1016/j.gene.2022.146283_b1070 article-title: Redox state and energetic equilibrium determine the magnitude of stress in upon exposure to arsenate publication-title: Hydrilla verticillata Protoplasma. doi: 10.1007/s00709-010-0256-z – volume: 61 start-page: 1880 issue: 11 year: 2020 ident: 10.1016/j.gene.2022.146283_b1330 article-title: The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcaa079 – volume: 18 start-page: 290 issue: 1 year: 2018 ident: 10.1016/j.gene.2022.146283_b1145 article-title: MicroRNA 399 as a potential integrator of photo-response, phosphate homeostasis, and sucrose signaling under long day condition publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1460-9 – ident: 10.1016/j.gene.2022.146283_b0695 doi: 10.1111/tpj.12999 – volume: 14 start-page: e0217806 issue: 11 year: 2019 ident: 10.1016/j.gene.2022.146283_b1035 article-title: Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress publication-title: PLoS ONE doi: 10.1371/journal.pone.0217806 – volume: 2 issue: 3 year: 2019 ident: 10.1016/j.gene.2022.146283_b1100 article-title: miRNAs in plant development publication-title: Annu Plant Rev. doi: 10.1002/9781119312994.apr0649 – volume: 62 start-page: 157 issue: 1 year: 2011 ident: 10.1016/j.gene.2022.146283_b1125 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103921 – volume: 232 start-page: 1289 issue: 6 year: 2010 ident: 10.1016/j.gene.2022.146283_b0300 article-title: Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum) publication-title: Planta. doi: 10.1007/s00425-010-1255-1 – volume: 4 start-page: 145 year: 2013 ident: 10.1016/j.gene.2022.146283_b0505 article-title: Systemic regulation of mineral homeostasis by micro RNAs publication-title: Front Plant Sci. doi: 10.3389/fpls.2013.00145 – ident: 10.1016/j.gene.2022.146283_b5002 doi: 10.1007/s10142-019-00692-1 – volume: 140 start-page: 57 issue: 1 year: 2010 ident: 10.1016/j.gene.2022.146283_b0685 article-title: Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays publication-title: Physiol Plant. doi: 10.1111/j.1399-3054.2010.01384.x – volume: 10 start-page: 360 year: 2019 ident: 10.1016/j.gene.2022.146283_b1210 article-title: Plant microRNAs: Biogenesis, homeostasis, and degradation publication-title: Front Plant Sci. doi: 10.3389/fpls.2019.00360 – volume: 20 start-page: 107 issue: 1 year: 2020 ident: 10.1016/j.gene.2022.146283_b1475 article-title: Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-2313-x – volume: 41 start-page: 1183 issue: 10 year: 2019 ident: 10.1016/j.gene.2022.146283_b1300 article-title: Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply publication-title: Genes Genomics doi: 10.1007/s13258-019-00848-0 |
| SSID | ssj0000552 |
| Score | 2.5738971 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using... MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively... MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 146283 |
| SubjectTerms | Abiotic stress cold crops drought gene expression Gene Expression Regulation, Plant Gene Regulatory Networks heat stress heavy metals High-Throughput Nucleotide Sequencing High-throughput sequencing hypoxia MicoRNAs microRNA MicroRNAs - genetics nucleotides nutrient deficiencies oxidative stress plant growth Plant Physiological Phenomena Plant Proteins - genetics Plants - genetics prediction RNA, Plant - genetics salinity Sequence Analysis, RNA stress tolerance Stress, Physiological toxicity Transcription factors ultraviolet radiation |
| Title | Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants |
| URI | https://dx.doi.org/10.1016/j.gene.2022.146283 https://www.ncbi.nlm.nih.gov/pubmed/35143944 https://www.proquest.com/docview/2628301484 https://www.proquest.com/docview/2648840959 |
| Volume | 821 |
| WOSCitedRecordID | wos000781099600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0038 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000552 issn: 0378-1119 databaseCode: AIEXJ dateStart: 20210105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3_i9MwFMCDt1PQH0Tv_DK_HBHkUI6CbdMm_XHKDpUx5dhB_SkkbQo7XDu3nZz_ve8laTvEG-cP_lJCm3aln-zlveR9IeR1ycpQq5IHhch0wGIdB6JKkwCmEhVnsdG8tCnzJ3w6FXmeffXFFNe2nACva3F1lS3_K2o4B7AxdPYfcHcPhRPQBuhwBOxwvBH4M1ddHvfOW9fBBXrdnU1HdoV1MccWrgZ4F0eQeegQUPbuQ9Y5QM8bTObqg0k28KiVDS9obOlpnwGq1Wsxe3Vn2cML2FH2Ta0XPrG3X1cAkxS9-JIt8ROjfRl6geZlpYjCkyVKV9BKgr9KYLcYcIFfAbOQRpHv3c837R779Is8PZ9M5Gycz46XPwKsBIY75r4syh7Zj3iSiQHZH30a55_7-TVJ3N6Qfz8fCuW89v782evUjevMCatWzB6Q-94eoCPH8SG5ZeoDcjiqAeDiFz2m1kPXbn0ckDvv29a9rTSSh8T0yCkip01FO-T0jQP-ls5rCripw023cGN_j5s63LTDjdcc7kfk_HQ8-_Ax8OUzggK00E1g0qgA6fyuMkpnynAGyjYYA6Cg64wXYRqpKo0jJVhkeMlNyVIR6SSp4jhlJlFZ_JgM6qY2TzGwv9BclCLVSrEUg61BUVUp2OopEwWvhiRsv7IsfG55LHHyXbZOhBcSyUgkIx2ZITnp7lm6zCo7eyctPOl1Q6fzSRh4O-971ZKWIDhxN0zVprlcywgv43o629UH5jeGS-VD8sQNk-5dMQQGo8qf3eDu5-Ru_xd7QQab1aV5SW4XPzfz9eqI7PFcHPlh_hvu66Hi |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+role+of+microRNAs+%28miRNAs%29+in+the+recent+development+of+abiotic+stress+tolerance+of+plants&rft.jtitle=Gene&rft.au=Begum%2C+Yasmin&rft.date=2022-05-05&rft.issn=0378-1119&rft.volume=821+p.146283-&rft_id=info:doi/10.1016%2Fj.gene.2022.146283&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon |