Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants

[Display omitted] •miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using high-throughput sequencing plant stress-responsive conserved and novel miRNAs can be identified. MicroRNAs (miRNAs) are a distinct groups of single-str...

Full description

Saved in:
Bibliographic Details
Published in:Gene Vol. 821; p. 146283
Main Author: Begum, Yasmin
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 05.05.2022
Subjects:
ISSN:0378-1119, 1879-0038, 1879-0038
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using high-throughput sequencing plant stress-responsive conserved and novel miRNAs can be identified. MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
AbstractList [Display omitted] •miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using high-throughput sequencing plant stress-responsive conserved and novel miRNAs can be identified. MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
ArticleNumber 146283
Author Begum, Yasmin
Author_xml – sequence: 1
  givenname: Yasmin
  surname: Begum
  fullname: Begum, Yasmin
  email: yasmin_b8@yahoo.co.in
  organization: Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35143944$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9LHTEUxUNR6tP2C3RRstTFPPN_EnAjorYgLUi7DpnMHZvHzOSZ5Al--2Z8tosupHdz7-J3DpdzjtHBHGdA6BMla0qoOt-sH2CGNSOMralQTPN3aEV1axpCuD5AK8Jb3VBKzRE6znlD6kjJ3qMjLqngRogVgnt42I2uxPSMUxwBxwFPwad4_-0y49MpLPsMhxmXX4ATeJgL7uEJxridlrvyrguxBI9zSZAzLtUmudm_eG1HN5f8AR0Obszw8XWfoJ831z-uvjR332-_Xl3eNZ5rUxpQzGtNyACuMw5aobk0VBHZdqb1VDE3KM6cFgzavoVeKM06KQfOlQDpDD9Bp3vfbYqPO8jFTiF7GOsTEHfZMiW0FsTI_0FrnoQKLSr6-RXddRP0dpvC5NKz_ZNiBdgeqLnlnGD4i1Bil6rsxi5V2aUqu6-qivQ_Ih-KKyHOJbkwvi292EuhZvkUINnsA9TE-1AbKraP4S35b1C0rT4
CitedBy_id crossref_primary_10_2478_sg_2023_0018
crossref_primary_10_1007_s11738_022_03501_8
crossref_primary_10_1111_ppa_14054
crossref_primary_10_3389_fpls_2022_1019538
crossref_primary_10_3390_plants13020163
crossref_primary_10_1038_s41598_025_88689_8
crossref_primary_10_3390_horticulturae9091051
crossref_primary_10_1111_pce_15566
crossref_primary_10_1007_s13562_023_00833_5
crossref_primary_10_1007_s42398_025_00354_y
crossref_primary_10_3390_ijms26136385
crossref_primary_10_1007_s11816_024_00914_4
crossref_primary_10_1093_hr_uhad220
crossref_primary_10_3390_life12111811
crossref_primary_10_3390_plants12132558
crossref_primary_10_1016_j_indcrop_2025_121607
crossref_primary_10_3390_horticulturae11020141
crossref_primary_10_1016_j_ijbiomac_2025_144300
crossref_primary_10_1134_S1021443723603622
crossref_primary_10_3389_fpls_2025_1497064
crossref_primary_10_1007_s12042_025_09429_w
crossref_primary_10_3390_plants14121769
crossref_primary_10_1002_adma_202212272
crossref_primary_10_1007_s10142_023_01014_2
crossref_primary_10_1111_pbi_14326
crossref_primary_10_3390_life13091917
crossref_primary_10_1007_s00344_024_11283_1
crossref_primary_10_1093_plphys_kiaf003
crossref_primary_10_1038_s41598_023_27847_2
crossref_primary_10_3389_fpls_2022_952397
crossref_primary_10_3390_ijms232214484
crossref_primary_10_1016_j_ijbiomac_2025_147195
crossref_primary_10_1007_s11033_022_07871_7
crossref_primary_10_1007_s13562_025_00986_5
crossref_primary_10_1007_s00344_025_11674_y
crossref_primary_10_1016_j_plaphy_2025_110242
crossref_primary_10_1016_j_rhisph_2022_100572
crossref_primary_10_1007_s10142_023_01219_5
crossref_primary_10_3389_fpls_2022_919243
crossref_primary_10_1007_s13562_022_00821_1
crossref_primary_10_1007_s12298_025_01564_8
crossref_primary_10_1016_j_plaphy_2023_107857
crossref_primary_10_1080_13880209_2023_2208636
crossref_primary_10_3389_fmicb_2023_1210890
crossref_primary_10_1016_j_pmpp_2023_102047
crossref_primary_10_1080_15592324_2024_2361174
crossref_primary_10_1007_s00344_025_11737_0
crossref_primary_10_1016_j_plaphy_2024_108524
Cites_doi 10.3389/fpls.2016.01567
10.1038/s41598-019-52858-3
10.1371/journal.pone.0183253
10.1016/j.plaphy.2019.10.042
10.1016/j.molcel.2018.01.007
10.1590/S1677-04202005000100008
10.3389/fpls.2020.00300
10.1111/j.1469-8137.2009.02846.x
10.1098/rsos.180735
10.3389/fpls.2016.01192
10.1371/journal.pcbi.1004391
10.1007/978-3-030-64994-4_3
10.1038/s41598-019-41189-y
10.3389/fpls.2020.00752
10.1016/j.febslet.2005.07.071
10.1093/bioinformatics/btv534
10.1007/s13562-013-0246-2
10.1016/j.cell.2009.01.046
10.1186/s12864-018-5258-9
10.3390/genes10040303
10.1111/jipb.12634
10.1016/S2095-3119(17)61879-3
10.7717/peerj.9105
10.1073/pnas.1919722117
10.1089/omi.2011.0115
10.1007/s11104-015-2561-y
10.1038/srep23890
10.1104/pp.18.01424
10.1002/etc.3097
10.4161/psb.19337
10.1016/j.molcel.2010.05.015
10.1007/s12298-013-0211-5
10.1371/journal.pgen.1006416
10.1104/pp.19.00741
10.1007/s11103-019-00840-y
10.3389/fpls.2015.00255
10.1105/tpc.003210
10.1104/pp.20.00476
10.1073/pnas.0802493105
10.1038/s41438-019-0157-z
10.1016/j.molp.2018.09.003
10.1093/jxb/erv013
10.1146/annurev.arplant.59.032607.092911
10.1073/pnas.0405570102
10.1155/2014/476917
10.1093/bioinformatics/btq233
10.1186/s12864-020-06913-3
10.3390/ijms19051431
10.1016/j.bbagrm.2011.05.001
10.1186/s12870-017-1172-6
10.1371/journal.pone.0113782
10.1007/s10535-017-0752-5
10.1186/s12870-020-02511-3
10.3390/genes11030264
10.3389/fpls.2017.00374
10.1016/j.jplph.2004.01.004
10.1038/s41438-019-0130-x
10.1146/annurev-arplant-050718-100334
10.1016/j.cpb.2016.10.003
10.1186/s12870-018-1242-4
10.2174/1389202921666200106111813
10.1016/j.ecoenv.2017.01.042
10.1016/j.chemosphere.2014.09.099
10.1371/journal.pone.0228850
10.1186/1471-2229-13-33
10.1093/bioinformatics/btu638
10.4161/psb.26758
10.1111/j.1365-3040.2006.01576.x
10.1093/nar/gku1162
10.1186/s12864-018-4897-1
10.1186/s12864-018-4953-x
10.1093/jxb/eraa290
10.1111/j.1365-313X.2007.03363.x
10.3389/fpls.2021.615114
10.1186/s12870-016-0830-4
10.1016/j.cub.2008.04.042
10.1016/j.plantsci.2017.01.018
10.1038/s41477-020-0726-z
10.1007/978-3-030-35772-6_5
10.3389/fpls.2016.00817
10.1105/tpc.106.041673
10.1111/j.1365-313X.2006.02697.x
10.1038/sj.emboj.7600385
10.1007/s10725-010-9526-1
10.1038/s41598-019-39397-7
10.1155/2018/9395261
10.1093/nar/gkt485
10.1038/s41477-018-0334-3
10.3389/fpls.2017.00378
10.3390/genes11030319
10.1093/gbe/evs002
10.1199/tab.0024
10.1371/journal.pone.0169212
10.1111/ppl.12787
10.1186/s12870-019-1698-x
10.1155/2012/217037
10.1186/s12864-017-4347-5
10.1093/nar/gky316
10.1093/jexbot/53.372.1331
10.1186/s12870-020-2296-7
10.1186/s12284-018-0253-y
10.1093/jxb/erw346
10.1007/s10142-016-0480-5
10.1371/journal.pone.0219176
10.1016/j.phytochem.2005.05.003
10.1104/pp.007047
10.3390/ijms21082795
10.1007/s11816-016-0401-z
10.1007/s10646-017-1843-y
10.1007/s11738-016-2337-x
10.3389/fpls.2017.00272
10.1016/j.cell.2009.01.035
10.1039/b904571f
10.1093/bioinformatics/bty338
10.1105/tpc.113.113159
10.1093/jxb/erab336
10.3389/fpls.2017.00356
10.3389/fpls.2019.00324
10.1105/tpc.111.090431
10.3389/fpls.2015.00188
10.1046/j.1469-8137.2000.00630.x
10.1093/pcp/pcy136
10.1007/s12042-013-9127-z
10.3389/fpls.2017.00006
10.1186/s12870-019-1823-x
10.1007/s11738-018-2758-9
10.1371/journal.pone.0230958
10.1101/gad.1004402
10.1186/s12864-019-6111-5
10.1186/1471-2164-13-S7-S16
10.3389/fpls.2018.00499
10.1007/s10142-015-0451-2
10.1016/j.devcel.2008.04.005
10.1186/s12864-018-5395-1
10.3390/biom9050182
10.1186/s12864-019-5913-9
10.1093/bioinformatics/btx797
10.1371/journal.pone.0091357
10.1093/nar/gkp818
10.1093/bioinformatics/bty972
10.1093/nar/gkz894
10.1038/srep32805
10.1101/gad.1399806
10.1104/pp.18.00485
10.1080/15476286.2019.1574163
10.1105/tpc.105.032185
10.1093/pcp/pcz038
10.1007/s00299-018-2313-6
10.1093/jxb/ers339
10.1016/S0960-9822(02)01017-5
10.1093/bioinformatics/btv583
10.1093/pcp/pcw108
10.1016/j.jplph.2004.02.003
10.1093/nar/gkt1156
10.1016/j.plantsci.2016.07.009
10.1186/s12864-019-5799-6
10.1038/srep14024
10.1023/A:1006314001430
10.1146/annurev.arplant.53.091401.143329
10.3390/ijms20102391
10.1016/j.tplants.2005.08.006
10.1186/s41544-018-0002-9
10.3390/genes8060156
10.1139/cjps-2018-0327
10.3389/fpls.2018.00602
10.1016/j.molcel.2010.03.008
10.1105/tpc.17.00842
10.3389/fpls.2014.00708
10.1046/j.1469-8137.2002.00363.x
10.1007/978-1-4939-7136-7_22
10.1186/1471-2105-12-107
10.1002/jcp.24685
10.1371/journal.pone.0142753
10.1093/nar/gky1141
10.1111/j.1747-0765.2007.00214.x
10.3389/fgene.2018.00168
10.3390/ijms17101712
10.1186/s12870-019-1679-0
10.1186/1471-2105-8-341
10.1016/j.plantsci.2019.05.003
10.3389/fpls.2018.00383
10.1039/C4MT00264D
10.1016/j.plgene.2019.100210
10.1080/13102818.2019.1581085
10.1016/j.molcel.2010.05.014
10.1021/acs.jafc.5b04191
10.1038/nplants.2016.33
10.3389/fpls.2016.00023
10.1093/bioinformatics/btw189
10.3389/fpls.2015.00232
10.3389/fpls.2017.00565
10.3390/plants9010034
10.1186/s12870-020-02595-x
10.1105/tpc.112.096636
10.1080/15226514.2014.898018
10.1016/j.cj.2020.07.005
10.1186/s12864-017-3556-2
10.1007/s11356-015-5273-1
10.1016/j.plgene.2019.100213
10.3389/fpls.2017.01598
10.1126/science.1163728
10.1016/j.ecoenv.2018.08.077
10.1007/s11240-018-01529-8
10.3390/ijms20061474
10.3389/fpls.2017.00864
10.1007/s11103-014-0224-7
10.1146/annurev.arplant.59.032607.092752
10.1111/nph.14938
10.1371/journal.pone.0236829
10.1007/s00438-018-1516-4
10.1007/s10142-017-0565-9
10.3389/fpls.2019.00340
10.1146/annurev.arplant.57.032905.105218
10.1186/s12870-020-02489-y
10.1016/j.envexpbot.2017.01.015
10.1016/j.indcrop.2020.112484
10.1038/srep32158
10.1007/s00299-017-2146-8
10.1016/j.ygeno.2018.11.022
10.1186/1471-2164-10-366
10.1111/pce.12597
10.1093/pcp/pcm099
10.1186/s12867-019-0131-1
10.1007/s10142-018-0619-7
10.1111/j.1469-8137.2007.01996.x
10.1016/j.cub.2007.04.005
10.1007/978-3-030-35772-6_11
10.17221/57/2018-CJGPB
10.1007/s11103-016-0488-1
10.1080/21655979.2016.1141838
10.1016/j.pld.2015.04.001
10.1104/pp.104.046755
10.1093/nar/gkz415
10.1073/pnas.1204915109
10.1016/j.gene.2018.09.049
10.3390/plants8030058
10.1080/07352680500365232
10.1093/jxb/erz264
10.1007/s10725-019-00479-1
10.12688/f1000research.7035.1
10.1186/1471-2105-15-275
10.1111/tpj.14369
10.1093/jxb/erz132
10.3389/fpls.2019.00748
10.1002/jcp.25125
10.1186/s12870-019-2189-9
10.1186/s12864-021-07680-5
10.3389/fpls.2019.00989
10.1105/tpc.19.00395
10.1007/s11105-016-0973-3
10.1016/S0065-2296(08)60089-0
10.1016/S0092-8674(04)00045-5
10.1128/AEM.03132-18
10.1016/0092-8674(93)90529-Y
10.1186/s12870-019-2203-2
10.1111/j.1469-8137.2012.04154.x
10.3389/fcell.2020.00143
10.1093/bioinformatics/btr132
10.1093/bioinformatics/bti802
10.1038/s41598-020-59981-6
10.1007/s00425-018-2927-5
10.1104/pp.20.00129
10.1016/j.envint.2005.02.003
10.1093/jxb/eru002
10.1016/j.chemosphere.2009.02.033
10.1101/gr.2908205
10.1104/pp.17.01169
10.1016/j.ymeth.2012.10.006
10.1007/s11356-019-06760-0
10.1105/tpc.111.094144
10.1080/15592324.2016.1213474
10.1007/s00709-010-0256-z
10.1093/pcp/pcaa079
10.1186/s12870-018-1460-9
10.1111/tpj.12999
10.1371/journal.pone.0217806
10.1002/9781119312994.apr0649
10.1146/annurev-arplant-042110-103921
10.1007/s00425-010-1255-1
10.3389/fpls.2013.00145
10.1007/s10142-019-00692-1
10.1111/j.1399-3054.2010.01384.x
10.3389/fpls.2019.00360
10.1186/s12870-020-2313-x
10.1007/s13258-019-00848-0
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.gene.2022.146283
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1879-0038
ExternalDocumentID 35143944
10_1016_j_gene_2022_146283
S0378111922001020
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
WH7
ZA5
~G-
.55
.GJ
29H
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
R2-
SBG
SEW
VH1
WUQ
X7M
XOL
XPP
Y6R
ZGI
~HD
~KM
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-e62c8800feab9ae74835916057b97c162af632a842e7d7ed4682b55f3364e5a93
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781099600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-1119
1879-0038
IngestDate Thu Oct 02 11:46:55 EDT 2025
Wed Oct 01 13:26:40 EDT 2025
Mon Jul 21 06:08:16 EDT 2025
Sat Nov 29 07:20:15 EST 2025
Tue Nov 18 20:38:47 EST 2025
Fri Feb 23 02:41:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ABA
Transcription factors
TF
High-throughput sequencing
Abiotic stress
HTS
miRNA
AGO
MicoRNAs
DE miRNAs
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-e62c8800feab9ae74835916057b97c162af632a842e7d7ed4682b55f3364e5a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 35143944
PQID 2628301484
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2648840959
proquest_miscellaneous_2628301484
pubmed_primary_35143944
crossref_primary_10_1016_j_gene_2022_146283
crossref_citationtrail_10_1016_j_gene_2022_146283
elsevier_sciencedirect_doi_10_1016_j_gene_2022_146283
PublicationCentury 2000
PublicationDate 2022-05-05
PublicationDateYYYYMMDD 2022-05-05
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-05
  day: 05
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Gene
PublicationTitleAlternate Gene
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jin, Yarra, Zhou, Zhao, Cao (b0475) 2020; 10
Keunen, Schellingen, Vangronsveld, Cuypers (b0510) 2016; 7
Samardjieva, Gonçalves, Valentão, Andrade, Pissarra, Pereira, Tavares (b0975) 2015; 17
Lee, Kim, Han, Yeom, Lee, Baek, Kim (b0550) 2004; 23
Humphreys, D.T., Suter, C.M., 2013. miRspring: a compact standalone research tool for analyzing miRNA-seq data.
is involved in abiotic stress responses in
Pegler, Oultram, Grof, Eamens (b0870) 2019; 8
Parveen, Mustafa, Yadav, Kumar (b0835) 2019; 20
Patel, Yadav, Srivastava, Suprasanna, Ganapath (b0845) 2019; 9
Moro, Chorostecki, Arikit, Suarez, Höbartner, Rasia, Meyers, Palatnik (b0760) 2018; 46
Patra, Fasold, Langenberger, Steger, Grosse, Stadler (b0850) 2014; 5
Hou, Jiang, Zheng, Wu (b0405) 2019; 19
Ai, Liang, Zhang, Yu (b0035) 2016; 38
Banerjee, Roychoudhury, Krishnamoorthi (b0120) 2016; 10
Reinhart, Weinstein, Rhoades, Bartel, Bartel (b0935) 2002; 16
Li, Zhang (b0575) 2019; 1
Requejo, Tena (b0950) 2005; 66
Poirier, Bucher (b0895) 2002; 1
Song, Zhang, Zhang, Zhang, Li, Gao, Han, Chen, Wang, Li, Li (b1055) 2017; 18
Fahlgren, Hill, Carrington, Carbonell (b0275) 2016; 32
84, 1, 169–187. https://doi.org/10.1111/tpj.12999.
Pant, Buhtz, Kehr, Scheible (b0815) 2008; 53
Zhu, Zhang, Tang, Qu, Duan, Jiang (b1480) 2019; 20
Manavella, P.A., Yang, S.W., Palatnik, J., 2019. Keep calm and carry on: miRNA biogenesis under stress. Plant J. 99, 5, 832–843. https://doi.org/10.1111/tpj.14369.
Yu, Ma, Zuo, Wang, Meng (b1310) 2018; 9
Li, Zhang, Liu, Zhao, Wang, Zhang (b0595) 2016; 252
11
An, Lai, Sajjanhar, Lehman, Nelson (b0060) 2014; 15
Lin, Y., Zhu, Y., Cui, Y., Chen, R., Chen, Z., Li, G., Fan, M., Chen, J., Li, Y., Guo, X., Zheng, X., Chen, L., Wang, F., 2021. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9.
L.).
mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 18, 8, 2051–2065. https://doi.org/10.1105/tpc.106.041673.
Jiang, Zhou, Chen, Ye, Xia, Zhuang (b0470) 2019; 12
Waheed, Zeng (b1180) 2020; 11
Zhang, Yao, Zhang, Yang, Zhu, Tang, Calderón-Urrea, Si (b1410) 2018; 9
Bharath, Gahir, Raghavendra (b0150) 2021; 12
Arshad, Gruber, Wall, Hannoufa (b0085) 2017; 8
Bioinformatics.
Shanker, Cervantes, Loza-Tavera, Avudainayagam (b0990) 2005; 31
Shanker, Djanaguiraman, Venkateswarlu (b0995) 2009; 1
Zhang, Wang (b1385) 2015; 230
Zhang, Yu, Li, Zhang, Liu, Zhou, Wang, Ling, Su (b1435) 2010; 38
Llave, Kasschau, Rector, Carrington (b0655) 2002; 14
Love, Anders, Kim, Huber (b0670) 2015; 4
Yu, Wang (b1330) 2020; 61
Teotia, S., Tang, G., 2017. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach.
Zhou, Yu, Ottosen, Zhang, Wu, Zhao (b1475) 2020; 20
.
Alzahrani, Alaraidh, Khan, Migdadi, Alghamdi, Alsahli (b0050) 2019; 10
Lundmark, Korner, Nielsen (b0685) 2010; 140
Aparicio-Puerta, Lebrón, Rueda, Gómez-Martín, Giannoukakos, Jaspez, Medina, Zubkovic, Jurak, Fromm, Marchal, Oliver, Hackenberg (b0070) 2019; 47
6
Esposito, Carputo, Cardi, Tripodi (b0270) 2020; 9
Gong, Li, Li, Zhou, Xu (b0355) 2019; 55
Ramachandran, Chen (b0920) 2008; 321
Zeng, Zhang, Ding, Zhu (b1365) 2019; 19
Ding, Gong, Wang, Wang, Bao, Sun, Cai, Yi, Chen, Zhu (b0250) 2018; 177
Srivastava, Suprasanna, D'Souza (b1070) 2011; 248
Ma, Han, Shao, Meng, Zheng (b0705) 2017; 12
Zhang, Wang, Wang, Zhang, Liu (b1430) 2016; 57
Bhat, Mondal, Gaikwad, Kole, Chandel, Mohapatra (b0155) 2020; 21
Wang, Fang, Wu, Qing, Li, Xie, Deng, Guo (b1205) 2020; 183
Niu, Li, Jiang, Yan, Li, Geng, Xie, Yan, Shen, Chen, Dong, Ma, Guan (b0780) 2019; 6
Takahashi, Kopriva, Giordano, Saito, Hell (b1125) 2011; 62
Armstrong (b0075) 1979; 7
Feng, X., Liu, W., dai, H., Qiu, Y., Zhang, G., Chen, Z.H., Wu, F., 2020. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. J. Exp Bot. 71, 19, 6057–6073. https://doi.org/10.1093/jxb/eraa290.
Parmar, Gharat, Tagirasa, Chandra, Behera, Dash, Shaw, Amato (b0830) 2020; 15
Puig (b0890) 2014; 2014
Tirumalai, Swetha, Nair, Pandit, Shivaprasad (b1150) 2019; 70
Nucleic Acids Res.
Matthews, Arshad, Hannoufa (b0730) 2019; 165
Kuang, Z., Wang, Y., Li, L., Yang, X., 2019. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants.
Siddiqui, Abbas, Ansari, Khan (b1030) 2019; 111
Silva, Rosa-Santos, França, Kottapalli, Kottapalli, Zingaretti, Singh (b1035) 2019; 14
Singh, Gautam, Singh, Sarkar Das, Verma, Mishra, Mukherjee, Sarkar (b1040) 2018; 248
Carthew, Sontheimer (b0200) 2009; 136
Qiu, He, Zhang, Guo, Wang (b0910) 2018; 164
Shi, Jiang, Wen, Wu (b1015) 2019; 19
Cui, Zhai, Ma, Li (b0230) 2015; 10
Front. Plant Sci.
Katz, Salem (b0500) 1994
Garcia, Mansilla, Ocampos, Pagani, Welchen, Gonzalez (b0335) 2019; 99
Ghosh, Singh, Shaw, Azahar, Adhikari, Ghosh, Basu, Roy, Saha, Sherpa, Hossain (b0345) 2017; 137
Zhang, F., Zhang, Y, C., Zhang, J. P., Yu, Y., Zhou, Y. F., Feng, Y. Z., Yang, Y. W., Lei, M. Q., He, H., Lian, J. P., Chen, Y. Q., 2018. Rice
Dmitriev, Kudryavtseva, Bolsheva, Zyablitsin, Rozhmina, Kishlyan, Krasnov, Speranskaya, Krinitsina, Sadritdinova, Snezhkina, Fedorova, Yurkevich, Muravenko, Belenikin, Melnikova (b0260) 2017; 4975146
Liu, Q., Hu, H., Zhu, L., Li, R., Feng, Y., Zhang, L., Yang, Y., Liu, X., Zhang, H., 2015. Involvement of miR528 in the regulation of arsenite tolerance in rice
Hou, Du, Gao, Liu, Sun, Lu, Kang, Xie, Ma, Wang (b0400) 2020; 20
Zhou, Deng, Cheng, Zhong, Tian, Tang, Tang, Zheng, Zhang, Qi, Zhang (b1465) 2017; 8
roots. Environ. Toxicol. Chem. 34, 11, 2573–2582. https://doi.org/10.1002/etc.3097.
Peng, Qiao, Liu, Teotia, Zhang, Zhao, Wang, Zhao, Shi, Zhang, Le, Rogers, Gunasekara, Duan, Gu, Tian, Nie, Qi, Meng, Huang, Chen, Wang, Tang, Tang, Lan, Chen, Wei, Zhao, Tang (b0880) 2018; 11
Ren, Xie, Dou, Zhang, Zhang, Yu (b0945) 2012; 109
Sabzehzari, Naghavi (b0960) 2019; 682
Pan, Huang, Guo, Kuang, Zhang, Xie, Ma, Gao, Lerdau, Chu, Li (b0800) 2018; 60
Bologna, Iselin, Abriata, Sarazin, Pumplin, Jay, Grentzinger, Dal Peraro, Voinnet (b0160) 2018; 69
Casati, P., 2013. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal Behav. 8(10), 10.4161/psb.26758. https://doi.org/10.4161/psb.26758.
60. https://doi.org/10.1186/s12284-018-0253-y.
Catalanotto, Cogoni, Zardo (b0205) 2016; 17
Yuan, Zhao, Li, Hu, Yuan, Zhou, Xia, Noorai, Saski, Li, Luo (b1350) 2019; 6
Wang, Cheng, Chen, Zhang, Zhang, Jiang, Tan (b1185) 2019; 20
Frazier, Xie, Freistaedter, Burklew, Zhang (b0300) 2010; 232
Jha, Nayyar, Jha, Khurshid, Zhou, Mantri, Siddique (b0465) 2020; 20
Das, Yadav, Singh, Gautam, Sarkar, Nandi, Karmakar, Majee, Sanan-Mishra (b0240) 2018; 8
Hu, Wang, Deng, Li, Zhang, Zhang, Chu (b0410) 2015; 6
Liu, Zhang, Sun, Hao, Liu, Zhang, Tang, Li, Li, Shi, Xie, Song, Wang, Li, Wu (b0645) 2019; 14
Bonnet, He, Billiau, Van de Peer (b0165) 2010; 26
Huen, Bally, Smith (b0430) 2018; 19
Bernal, M., Casero, D., Singh, V., Wilson, G.T., Grande, A., Yang, H., Dodani, S.C., Pellegrini, M., Huijser, P., Connolly, E.L., Merchant, S.S., Krämer, U., 2012. Transcriptome sequencing identifies SPL7-regulated Cu acquisition genes FRO4/FRO5 and the Cu dependence of Fe homeostasis in
Tang, Yan, Gu, Qiao, Fan, Mao, Tang (b1115) 2012; 58
Jacobs, LaFayette, Schmitz, Parrott (b0455) 2015; 15
Swarup, Denyer (b1100) 2019; 2
Bailey-Serres, Voesenek (b0115) 2008; 59
Zhu, Li, Cong, Lu (b1495) 2020; 9
R. Lorenzetti, A. de Antonio, Paschoal, Domingues (b0915) 2016; 16
Wang, Wang, Yang, Xie, Cheng, Qin, Tang, Huang (b1230) 2019; 85
Agarwal, Grover (b0020) 2006; 25
Pandey, Gedda, Verma (b0810) 2020; 11
Fang, Spector (b0280) 2007; 17
Zhao, Wang, Zhou, Wang, Zhang, Wang, Pan, Xu (b1445) 2017; 8
Tian, Liu, Ren, Ku, Wu, Li, Wang, Zhou, Song, Zhang, Dou, Liu, Tang, Chen (b1145) 2018; 18
Gomes, Hauser-Davis, Suzuki, Vitória (b0350) 2017; 140
López-Galiano, García-Robles, González-Hernández, Camañes, Vicedo, Real, Rausell (b0660) 2019; 8
Bukhari, S. A., Shang, S., Zhang, M., Zheng, W., Zhang, G., Wang, T.Z., Shamsi I, H., Wu, F., 2015. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco
Yang, Wang, Teotia, Wang, Shi, Sun, Gu, Zhang, Tang (b1290) 2019; 9
Takahashi, H., 2019. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J Exp Bot. 70, 16, 4075–4087. https://doi.org/10.1093/jxb/erz132.
Plotnikova, Kellner, Schon, Mosiolek, Nodine (b0885) 2019; 31
Thody, Folkes, Medina-Calzada, Xu, Dalmay, Moulton (b1140) 2018; 46
J Exp Bot.
Xie, Zhang, Zhao, Wang, Gao, Xu (b1255) 2017; 39
Zhang, Smith, Harberd, Jiang (b1415) 2016; 91
8, 864. https://doi.org/10.3389/fpls.2017.00864.
Agarwal, S., Mangrauthia, S.K., Sarla N., 2015. Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar × Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil. 396, 1/2, 137–150. https://www.jstor.org/stable/43872510.
Huang, Lin, Li, Huang, Shrestha, Hong, Tang, Chen, Jin, Yu, Xu, Li, Cai, Zhou, Chen, Pei, Hu, Su, Cui, Wang, Xie, Ding, Luo, Chou, Chang, Chen, Cheng, Wan, Hsu, Lee, Wei, Huang (b0415) 2020; 48
Li, Ross, Arighi, Peng, Wu, Vijay-Shanker, Rzhetsky (b0570) 2015; 11
Chen, J., and Li, L. (2018). Multiple regression analysis reveals MicroRNA regulatory networks in
Liu, Huang, Tseng, Lai, Lin, Lin, Chen, Chiou (b0630) 2012; 24
under drought stress. Int J Genomics. 2018, 9395261. https://doi.org/10.1155/2018/9395261.
‘Millennium’) lines. Can. J. Plant Sci.
Rogers, Chen (b0955) 2013; 25
Shin, Jeong, Lim, Kim, Park, Kim, Shin (b1020) 2018; 19
Bai, Wang, Chen, Shi, Liu, Guo, Xiao (b0110) 2018; 9
Paul, Gayen, Datta, Datta (b0860) 2016; 67
Zhang, You, Zhang, Zeng, Hu, Zhao, Chen (b1405) 2020; 6
Kobayashi (b0520) 2019; 60
Sanan-Mishra, Tripathi, Goswami, Shukla, Vasudevan, Goswami (b0980) 2018; 9
Huang, Fan, Rothschild, Hu, Li, Zhao (b0425) 2007; 8
100, 4, 445–455. https://doi.org/10.1139/cjps-2018-0327.
Meharg, Hartley-Whitaker (b0740) 2002; 154
Zeng, Xu, Jiang, Zhang, Ma, Wu, Wang, Sun (b1370) 2018; 18
Luan, Zhao, Han, Sun, Yang, Liu, Shi, Fu, Lan,
Agarwal (10.1016/j.gene.2022.146283_b0020) 2006; 25
Pegler (10.1016/j.gene.2022.146283_b0865) 2019; 8
Yue (10.1016/j.gene.2022.146283_b1355) 2017; 36
10.1016/j.gene.2022.146283_b1085
Wu (10.1016/j.gene.2022.146283_b1250) 2015; 119
Lundmark (10.1016/j.gene.2022.146283_b0685) 2010; 140
Aparicio-Puerta (10.1016/j.gene.2022.146283_b0070) 2019; 47
10.1016/j.gene.2022.146283_b0435
Yu (10.1016/j.gene.2022.146283_b1335) 2019; 285
Srivastava (10.1016/j.gene.2022.146283_b1070) 2011; 248
Leng (10.1016/j.gene.2022.146283_b0555) 2017; 17
Li (10.1016/j.gene.2022.146283_b0595) 2016; 252
Thody (10.1016/j.gene.2022.146283_b1140) 2018; 46
Shanker (10.1016/j.gene.2022.146283_b0995) 2009; 1
Millaleo (10.1016/j.gene.2022.146283_b0755) 2013; 64
Shi (10.1016/j.gene.2022.146283_b1010) 2018; 17
Zhang (10.1016/j.gene.2022.146283_b1375) 2015; 66
Song (10.1016/j.gene.2022.146283_b1060) 2019; 70
Wu (10.1016/j.gene.2022.146283_b1235) 2018; 19
Wang (10.1016/j.gene.2022.146283_b1220) 2019; 16
Zhao (10.1016/j.gene.2022.146283_b1450) 2015; 24
Fukao (10.1016/j.gene.2022.146283_b0320) 2019; 10
10.1016/j.gene.2022.146283_b0445
Lin (10.1016/j.gene.2022.146283_b0610) 2018; 217
Li (10.1016/j.gene.2022.146283_b0580) 2017; 26
Liu (10.1016/j.gene.2022.146283_b0640) 2015; 5
Park (10.1016/j.gene.2022.146283_b0820) 2005; 102
Parmar (10.1016/j.gene.2022.146283_b0830) 2020; 15
Zhao (10.1016/j.gene.2022.146283_b1445) 2017; 8
Zhou (10.1016/j.gene.2022.146283_b1475) 2020; 20
Kozomara (10.1016/j.gene.2022.146283_b0530) 2019; 47
Singh (10.1016/j.gene.2022.146283_b1045) 2020; 21
Silva (10.1016/j.gene.2022.146283_b1035) 2019; 14
Ai (10.1016/j.gene.2022.146283_b0035) 2016; 38
10.1016/j.gene.2022.146283_b9011
Garcia (10.1016/j.gene.2022.146283_b0335) 2019; 99
10.1016/j.gene.2022.146283_b1090
Numnark (10.1016/j.gene.2022.146283_b0795) 2012; 13 Suppl 7 (Suppl 7)
Song (10.1016/j.gene.2022.146283_b1050) 2014; 9
10.1016/j.gene.2022.146283_b0695
Guo (10.1016/j.gene.2022.146283_b0375) 2018; 30
Zhang (10.1016/j.gene.2022.146283_b1410) 2018; 9
Qiu (10.1016/j.gene.2022.146283_b0910) 2018; 164
Gielen (10.1016/j.gene.2022.146283_b0340) 2016; 16
Reinhart (10.1016/j.gene.2022.146283_b0935) 2002; 16
Li (10.1016/j.gene.2022.146283_b0575) 2019; 1
Park (10.1016/j.gene.2022.146283_b0825) 2002; 12
Siddiqui (10.1016/j.gene.2022.146283_b1030) 2019; 111
Zhu (10.1016/j.gene.2022.146283_b1490) 2020; 117
Song (10.1016/j.gene.2022.146283_b1055) 2017; 18
Tang (10.1016/j.gene.2022.146283_b1115) 2012; 58
Lv (10.1016/j.gene.2022.146283_b0690) 2016; 7
Jha (10.1016/j.gene.2022.146283_b0460) 2004; 161
Liu (10.1016/j.gene.2022.146283_b0650) 2018; 37
Wang (10.1016/j.gene.2022.146283_b1190) 2009; 75
Yang (10.1016/j.gene.2022.146283_b1285) 2019; 9
Ahmed (10.1016/j.gene.2022.146283_b0030) 2020; 11
Iyer (10.1016/j.gene.2022.146283_b0450) 2012; 7
Valencia-Sanchez (10.1016/j.gene.2022.146283_b1170) 2006; 20
Chinnusamy (10.1016/j.gene.2022.146283_b0215) 2007
Wang (10.1016/j.gene.2022.146283_b1195) 2015; 22
Huang (10.1016/j.gene.2022.146283_b0420) 2018; 62
Patra (10.1016/j.gene.2022.146283_b0850) 2014; 5
Yang (10.1016/j.gene.2022.146283_b1295) 2020; 151
Jin (10.1016/j.gene.2022.146283_b0475) 2020; 10
Li (10.1016/j.gene.2022.146283_b0565) 2020
Tian (10.1016/j.gene.2022.146283_b1145) 2018; 18
Matthews (10.1016/j.gene.2022.146283_b0730) 2019; 165
Voinnet (10.1016/j.gene.2022.146283_b1175) 2009; 136
10.1016/j.gene.2022.146283_b1280
Fu (10.1016/j.gene.2022.146283_b0310) 2019; 19
Peng (10.1016/j.gene.2022.146283_b0880) 2018; 11
Zeng (10.1016/j.gene.2022.146283_b1370) 2018; 18
Jacobs (10.1016/j.gene.2022.146283_b0455) 2015; 15
Asefpour Vakilian (10.1016/j.gene.2022.146283_b0095) 2020; 10
Cakmak (10.1016/j.gene.2022.146283_b0190) 2000; 146
Loreti (10.1016/j.gene.2022.146283_b0665) 2020; 182
Esposito (10.1016/j.gene.2022.146283_b0270) 2020; 9
Wu (10.1016/j.gene.2022.146283_b1245) 2011; 12
Zhang (10.1016/j.gene.2022.146283_b1435) 2010; 38
Xie (10.1016/j.gene.2022.146283_b1255) 2017; 39
Li (10.1016/j.gene.2022.146283_b0560) 2016; 231
Gupta (10.1016/j.gene.2022.146283_b0390) 2017; 8
Mette (10.1016/j.gene.2022.146283_b0745) 2002; 130
López-Galiano (10.1016/j.gene.2022.146283_b0660) 2019; 8
Pegler (10.1016/j.gene.2022.146283_b0870) 2019; 8
Bonnet (10.1016/j.gene.2022.146283_b0165) 2010; 26
Singh (10.1016/j.gene.2022.146283_b1040) 2018; 248
Abla (10.1016/j.gene.2022.146283_b0005) 2019; 9
Gregory (10.1016/j.gene.2022.146283_b0360) 2008; 14
Mhuantong (10.1016/j.gene.2022.146283_b0750) 2009; 10
Sanan-Mishra (10.1016/j.gene.2022.146283_b0980) 2018; 9
Yang (10.1016/j.gene.2022.146283_b1300) 2019; 41
Liu (10.1016/j.gene.2022.146283_b0630) 2012; 24
10.1016/j.gene.2022.146283_b0535
Bologna (10.1016/j.gene.2022.146283_b0160) 2018; 69
Patel (10.1016/j.gene.2022.146283_b0845) 2019; 9
Jones-Rhoades (10.1016/j.gene.2022.146283_b0490) 2006; 57
Paul (10.1016/j.gene.2022.146283_b0860) 2016; 67
Yuce (10.1016/j.gene.2022.146283_b1360) 2019; 136
Zhu (10.1016/j.gene.2022.146283_b1495) 2020; 9
Grewal (10.1016/j.gene.2022.146283_b0365) 2018; 59
Yuan (10.1016/j.gene.2022.146283_b1340) 2016; 39
Lin (10.1016/j.gene.2022.146283_b0605) 2020; 15
Zhang (10.1016/j.gene.2022.146283_b1415) 2016; 91
Waheed (10.1016/j.gene.2022.146283_b1180) 2020; 11
Zhu (10.1016/j.gene.2022.146283_b1485) 2002; 53
Mackerness (10.1016/j.gene.2022.146283_b0715) 2000; 32
10.1016/j.gene.2022.146283_b1075
Dubey (10.1016/j.gene.2022.146283_b0265) 2020; 27
Zheng (10.1016/j.gene.2022.146283_b1460) 2013; 6
Dezulian (10.1016/j.gene.2022.146283_b0245) 2006; 22
10.1016/j.gene.2022.146283_b0545
Swarup (10.1016/j.gene.2022.146283_b1100) 2019; 2
10.1016/j.gene.2022.146283_b0305
Sanz-Carbonell (10.1016/j.gene.2022.146283_b0985) 2019; 19
Shin (10.1016/j.gene.2022.146283_b1020) 2018; 19
Sabzehzari (10.1016/j.gene.2022.146283_b0960) 2019; 682
Tiwari (10.1016/j.gene.2022.146283_b1155) 2020; 20
Axtell (10.1016/j.gene.2022.146283_b0100) 2005; 17
Marschner (10.1016/j.gene.2022.146283_b0725) 1995
Liu (10.1016/j.gene.2022.146283_b0645) 2019; 14
10.1016/j.gene.2022.146283_b0395
Liu (10.1016/j.gene.2022.146283_b0635) 2021; 22
Panda (10.1016/j.gene.2022.146283_b0805) 2005; 17
Sunitha (10.1016/j.gene.2022.146283_b1095) 2019; 9
Kehr (10.1016/j.gene.2022.146283_b0505) 2013; 4
10.1016/j.gene.2022.146283_b1120
10.1016/j.gene.2022.146283_b0710
Pandey (10.1016/j.gene.2022.146283_b0810) 2020; 11
Shriram (10.1016/j.gene.2022.146283_b1025) 2016; 7
Sharma (10.1016/j.gene.2022.146283_b1005) 2012; 2012
Yu (10.1016/j.gene.2022.146283_b1325) 2019; 87
Curaba (10.1016/j.gene.2022.146283_b0235) 2014; 65
Rogers (10.1016/j.gene.2022.146283_b0955) 2013; 25
Wang (10.1016/j.gene.2022.146283_b1205) 2020; 183
Yu (10.1016/j.gene.2022.146283_b1330) 2020; 61
Cimini (10.1016/j.gene.2022.146283_b0225) 2019; 10
Bailey-Serres (10.1016/j.gene.2022.146283_b0115) 2008; 59
Bai (10.1016/j.gene.2022.146283_b0110) 2018; 9
Carrió-Seguí (10.1016/j.gene.2022.146283_b0195) 2019; 10
Laubinger (10.1016/j.gene.2022.146283_b0540) 2008; 105
Kobayashi (10.1016/j.gene.2022.146283_b0520) 2019; 60
Lee (10.1016/j.gene.2022.146283_b0550) 2004; 23
Alejandro (10.1016/j.gene.2022.146283_b0040) 2020; 11
Wang (10.1016/j.gene.2022.146283_b1225) 2020; 184
Qiu (10.1016/j.gene.2022.146283_b0900) 2020; 21
Wang (10.1016/j.gene.2022.146283_b1200) 2019; 20
Xu (10.1016/j.gene.2022.146283_b1265) 2019; 5
Pan (10.1016/j.gene.2022.146283_b0800) 2018; 60
Ding (10.1016/j.gene.2022.146283_b0250) 2018; 177
10.1016/j.gene.2022.146283_b1130
R. Lorenzetti (10.1016/j.gene.2022.146283_b0915) 2016; 16
Das (10.1016/j.gene.2022.146283_b0240) 2018; 8
Gomes (10.1016/j.gene.2022.146283_b0350) 2017; 140
Arshad (10.1016/j.gene.2022.146283_b0080) 2017; 258
10.1016/j.gene.2022.146283_b0720
Sun (10.1016/j.gene.2022.146283_b1080) 2020; 40
Alscher (10.1016/j.gene.2022.146283_b0045) 2002; 53
Fujioka (10.1016/j.gene.2022.146283_b0315) 2007; 48
Parveen (10.1016/j.gene.2022.146283_b0835) 2019; 20
Love (10.1016/j.gene.2022.146283_b0670) 2015; 4
Muñoz-Mérida (10.1016/j.gene.2022.146283_b0770) 2012; 16
Paul (10.1016/j.gene.2022.146283_b0855) 2015; 6
Zhang (10.1016/j.gene.2022.146283_b1405) 2020; 6
Cui (10.1016/j.gene.2022.146283_b0230) 2015; 10
Bhat (10.1016/j.gene.2022.146283_b0155) 2020; 21
Szopiński (10.1016/j.gene.2022.146283_b1110) 2019; 10
Gong (10.1016/j.gene.2022.146283_b0355) 2019; 55
Wu (10.1016/j.gene.2022.146283_b1240) 2010; 38
Poirier (10.1016/j.gene.2022.146283_b0895) 2002; 1
Yi (10.1016/j.gene.2022.146283_b1305) 2015; 43
10.1016/j.gene.2022.146283_b0295
Ravichandran (10.1016/j.gene.2022.146283_b0930) 2019; 20
Zhang (10.1016/j.gene.2022.146283_b1390) 2016; 7
Yu (10.1016/j.gene.2022.146283_b1320) 2020; 11
Zhu (10.1016/j.gene.2022.146283_b1480) 2019; 20
Bartel (10.1016/j.gene.2022.146283_b0135) 2004; 116
10.1016/j.gene.2022.146283_b0055
Zhang (10.1016/j.gene.2022.146283_b1385) 2015; 230
Budak (10.1016/j.gene.2022.146283_b0175) 2015; 15
Farinati (10.1016/j.gene.2022.146283_b0285) 2020
Wang (10.1016/j.gene.2022.146283_b1215) 2014; 9
Zhang (10.1016/j.gene.2022.146283_b1430) 2016; 57
10.1016/j.gene.2022.146283_b0615
Zhang (10.1016/j.gene.2022.146283_b1420) 2013; 13
Zhang (10.1016/j.gene.2022.146283_b1425) 2020; 21
Shanker (10.1016/j.gene.2022.146283_b0990) 2005; 31
Shi (10.1016/j.gene.2022.146283_b1015) 2019; 19
Barbu (10.1016/j.gene.2022.146283_b0125) 2020; 8
Peñarrubia (10.1016/j.gene.2022.146283_b0875) 2015; 6
Anders (10.1016/j.gene.2022.146283_b0065) 2015; 31
Djami-Tchatchou (10.1016/j.gene.2022.146283_b0255) 2017; 8
Plotnikova (10.1016/j.gene.2022.146283_b0885) 2019; 31
Iki (10.1016/j.gene.2022.146283_b0440) 2010; 39
Kouhi (10.1016/j.gene.2022.146283_b0525) 2020; 15
Huang (10.1016/j.gene.2022.146283_b0425) 2007; 8
(10.1016/j.gene.2022.146283_b0790) 1988; Vol. 20
Luan (10.1016/j.gene.2022.146283_b0675) 2019; 179
Zhang (10.1016/j.gene.2022.146283_b1380) 2006; 46
Puig (10.1016/j.gene.2022.146283_b0890) 2014; 2014
Catalanotto (10.1016/j.gene.2022.146283_b0205) 2016; 17
Addo-Quaye (10.1016/j.gene.2022.146283_b0015) 2008; 18
Fahlgren (10.1016/j.gene.2022.146283_b0275) 2016; 32
10.1016/j.gene.2022.146283_b1395
10.1016/j.gene.2022.146283_b2001
Khraiwesh (10.1016/j.gene.2022.146283_b0515) 2012; 1819
10.1016/j.gene.2022.146283_b1275
Tiwari (10.1016/j.gene.2022.146283_b1160) 2014; 86
Wang (10.1016/j.ge
References_xml – volume: 64
  start-page: 343
  year: 2013
  end-page: 354
  ident: b0755
  article-title: Excess manganese differentially inhibits photosystem I versus II in
  publication-title: J Exp Bot.
– volume: 18
  start-page: 938
  year: 2017
  ident: b0585
  article-title: Identification and characterization of
  publication-title: BMC Genomics.
– volume: 8
  start-page: 356
  year: 2017
  ident: b0085
  article-title: An insight into microRNA156 role in salinity stress responses of alfalfa
  publication-title: Front. Plant Sci.
– volume: 40
  start-page: 183
  year: 2018
  ident: b0905
  article-title: Wheat miRNA member TaMIR2275 involves plant nitrogen starvation adaptation via enhancement of the N acquisition-associated process
  publication-title: Acta Physiol. Plant.
– volume: 140
  start-page: 57
  year: 2010
  end-page: 68
  ident: b0685
  article-title: Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays
  publication-title: Physiol Plant.
– volume: 39
  start-page: 120
  year: 2016
  end-page: 135
  ident: b1340
  article-title: Inhibition of root meristem growth by cadmiumin volves nitric oxide-mediated repression of auxin accumulation and signalling in
  publication-title: Plant Cell Environ.
– volume: 24
  start-page: 143
  year: 2015
  end-page: 153
  ident: b1450
  article-title: Expression pattern analysis of microRNAs in root tissue of wheat (
  publication-title: J. Plant Biochem. Biotechnol.
– volume: 117
  start-page: 6237
  year: 2020
  end-page: 6245
  ident: b1490
  article-title: Regulation of stomatal development by stomatal lineage miRNAs
  publication-title: Proc Natl Acad Sci U S A.
– volume: 136
  start-page: 669
  year: 2009
  end-page: 687
  ident: b1175
  article-title: Origin, biogenesis, and activity of plant microRNAs
  publication-title: Cell.
– volume: 12
  start-page: 107
  year: 2011
  ident: b1245
  article-title: MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences
  publication-title: BMC Bioinformatics.
– volume: 682
  start-page: 13
  year: 2019
  end-page: 24
  ident: b0960
  article-title: Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants
  publication-title: Gene
– volume: 38
  start-page: D806
  year: 2010
  end-page: D813
  ident: b1435
  article-title: PMRD: plant microRNA database
  publication-title: Nucleic Acids Research.
– volume: 10
  start-page: 3041
  year: 2020
  ident: b0095
  article-title: Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses
  publication-title: Sci Rep.
– volume: 18
  start-page: 758
  year: 2008
  end-page: 762
  ident: b0015
  article-title: Endogenous siRNA and miRNA targets identied by sequencing of the
  publication-title: Curr. Biol.
– volume: 1
  start-page: 375
  year: 2009
  end-page: 383
  ident: b0995
  article-title: Chromium interactions in plants: current status and future strategies
  publication-title: Metallomics.
– volume: 2
  year: 2019
  ident: b1100
  article-title: miRNAs in plant development
  publication-title: Annu Plant Rev.
– volume: 23
  start-page: 4051
  year: 2004
  end-page: 4060
  ident: b0550
  article-title: MicroRNA genes are transcribed by RNA polymerase II
  publication-title: EMBO J.
– year: 2020
  ident: b0285
  article-title: microRNA regulation of fruit development
  publication-title: Plant microRNAs. Concepts and strategies in plant sciences
– volume: 136
  start-page: 479
  year: 2019
  end-page: 487
  ident: b1360
  article-title: Response of NAC transcription factor genes against chromium stress in sunflower (
  publication-title: Plant Cell Tiss Organ Cult
– volume: 10
  start-page: 340
  year: 2019
  ident: b0320
  article-title: Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects
  publication-title: Front Plant Sci.
– reference: Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., Tomari, Y., 2010. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.
– reference: Yan J., Li J., Zhou H., 2021. Target mimic and short tandem target mimic technologies for deciphering functions of miRNAs in plants. In: Tang G., Teotia S., Tang X., Singh D. (eds) RNA-based technologies for functional genomics in plants. Concepts and strategies in plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_3.
– volume: 230
  start-page: 1
  year: 2015
  end-page: 15
  ident: b1385
  article-title: MicroRNA-based biotechnology for plant improvement
  publication-title: J Cell Physiol
– volume: 184
  start-page: 194
  year: 2020
  end-page: 211
  ident: b1225
  article-title: The Apple microR171i-SCARECROW-LIKE PROTEINS 26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism
  publication-title: Plant Physiol.
– volume: 19
  start-page: 532
  year: 2018
  ident: b1020
  article-title: Transcriptomic analyses of rice (
  publication-title: BMC Genom.
– volume: 7
  start-page: 1192
  year: 2016
  ident: b0140
  article-title: Regulating subcellular metal homeostasis: the key to crop improvement
  publication-title: Front. Plant Sci.
– volume: 15
  start-page: e0236829
  year: 2020
  ident: b0605
  article-title: Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (
  publication-title: PLoS ONE
– volume: 111
  start-page: 1026
  year: 2019
  end-page: 1033
  ident: b1030
  article-title: The role of miRNA in somatic embryogenesis
  publication-title: Genomics.
– reference: Bioinformatics.
– volume: 4
  start-page: 230
  year: 2012
  end-page: 239
  ident: b0785
  article-title: Origins and evolution of microRNA genes in plant species
  publication-title: Genome Biol Evol.
– volume: 9
  start-page: 34
  year: 2020
  ident: b0270
  article-title: Applications and trends of machine learning in genomics and phenomics for next-generation breeding
  publication-title: Plants.
– reference: heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.
– volume: 11
  start-page: 1400
  year: 2018
  end-page: 1417
  ident: b0880
  article-title: A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants
  publication-title: Mol Plant.
– volume: 48
  start-page: D1114
  year: 2020
  end-page: D1121
  ident: b0385
  article-title: PmiREN: a comprehensive encyclopedia of plant miRNAs
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 366
  year: 2009
  ident: b0750
  article-title: MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs
  publication-title: BMC Genomics.
– volume: 69
  start-page: 709
  year: 2018
  end-page: 719.e5
  ident: b0160
  article-title: Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway
  publication-title: Mol Cell.
– volume: 27
  start-page: 380
  year: 2020
  end-page: 390
  ident: b0265
  article-title: Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (
  publication-title: Environ Sci Pollut Res Int.
– reference: 32805. https://doi.org/10.1038/srep32805.
– volume: 10
  start-page: 748
  year: 2019
  ident: b1110
  article-title: Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 817
  year: 2016
  ident: b1025
  article-title: MicroRNAs as potential targets for abiotic stress tolerance in plants
  publication-title: Front Plant Sci.
– volume: 20
  start-page: 532
  year: 2019
  ident: b0370
  article-title: miRkwood: a tool for the reliable identification of microRNAs in plant genomes
  publication-title: BMC Genomics.
– reference: Yan, J., Zhao, C., Zhou, J., Yang, Y., Wang, P., Zhu, X., Tang, G., Bressan, R. A., Zhu, J.K., 2016. The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in
– volume: 15
  start-page: 275
  year: 2014
  ident: b0060
  article-title: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data
  publication-title: BMC Bioinformatics.
– volume: 55
  start-page: 76
  year: 2019
  end-page: 82
  ident: b0355
  article-title: Identification of manganese-responsive microRNAs in
  publication-title: Czech J. Genet. Plant Breed.
– volume: 161
  start-page: 867
  year: 2004
  end-page: 872
  ident: b0460
  article-title: Carbohydrate metabolism in growing rice seedlings under arsenic toxicity
  publication-title: J Plant Physiol.
– reference: is involved in abiotic stress responses in
– volume: 8
  start-page: 565
  year: 2017
  ident: b0970
  article-title: MicroRNA and transcription factor: key players in plant regulatory network
  publication-title: Front Plant Sci.
– volume: 21
  start-page: 100213
  year: 2020
  ident: b1045
  article-title: Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam
  publication-title: Plant Gene
– volume: 24
  start-page: 2168
  year: 2012
  end-page: 2183
  ident: b0630
  article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in
  publication-title: Plant Cell
– volume: 53
  start-page: 731
  year: 2008
  end-page: 738
  ident: b0815
  article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis
  publication-title: Plant J.
– reference: 72, 20, 7067–7077. https://doi.org/10.1093/jxb/erab336.
– volume: 43
  start-page: D982
  year: 2015
  end-page: D989
  ident: b1305
  article-title: PNRD: a plant non-coding RNA database
  publication-title: Nucleic Acids Res.
– volume: 175
  start-page: 1175
  year: 2017
  end-page: 1185
  ident: b1400
  article-title: MiR408 regulates grain yield and photosynthesis via a phytocyanin protein
  publication-title: Plant Physiol.
– volume: 25
  start-page: 2383
  year: 2013
  end-page: 2399
  ident: b0955
  article-title: Biogenesis, turnover, and mode of action of plant microRNAs
  publication-title: Plant Cell
– reference: Rice
– volume: 6
  start-page: 957
  year: 2020
  end-page: 969
  ident: b1405
  article-title: Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in
  publication-title: Nat Plants.
– volume: 10
  start-page: 303
  year: 2019
  ident: b0050
  article-title: Identification and characterization of salt-responsive microRNAs in
  publication-title: Genes.
– volume: 4
  start-page: 1070
  year: 2015
  ident: b0670
  article-title: RNA-Seq workflow: gene-level exploratory analysis and differential expression
  publication-title: F1000Res.
– volume: 161
  start-page: 1235
  year: 2004
  end-page: 1244
  ident: b0600
  article-title: Manganese accumulation in rice: implications for photosynthetic functioning
  publication-title: J. Plant Physiol.
– reference: Remita, M.A., Lorda, E., Agharbaouib, Z., Leclercq M., Badawi, M.A., Sarhan, F., Dialloa, A.B., 2016. A novel comprehensive wheat miRNA database, including related bioinformatics software. Curr. Plant Biol. 7-8, 31–33. https://doi.org/10.1016/j.cpb.2016.10.003.
– volume: 294
  start-page: 379
  year: 2019
  end-page: 393
  ident: b1470
  article-title: MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells
  publication-title: Mol Genet Genomics.
– volume: 10
  start-page: 360
  year: 2019
  ident: b1210
  article-title: Plant microRNAs: Biogenesis, homeostasis, and degradation
  publication-title: Front Plant Sci.
– volume: 42
  start-page: D74
  year: 2014
  end-page: D77
  ident: b1105
  article-title: miRNEST 2.0: a database of plant and animal microRNAs
  publication-title: Nucleic Acids Res.
– volume: 285
  start-page: 68
  year: 2019
  end-page: 78
  ident: b1335
  article-title: Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic
  publication-title: Plant Sc.
– reference: Nucleic Acids Res.
– volume: 6
  start-page: 180735
  year: 2019
  ident: b0485
  article-title: Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing
  publication-title: R. Soc. Open Sci.
– volume: 130
  start-page: 6
  year: 2002
  end-page: 9
  ident: b0745
  article-title: Short RNAs can identify new candidate transposable element families in
  publication-title: Plant Physiol.
– volume: 6
  start-page: 23890
  year: 2016
  ident: b1455
  article-title: An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design
  publication-title: Sci Rep.
– volume: 31
  start-page: 2929
  year: 2019
  end-page: 2946
  ident: b0885
  article-title: MicroRNA dynamics and functions during
  publication-title: Plant Cell.
– volume: 173
  start-page: 677
  year: 2007
  end-page: 702
  ident: b0170
  article-title: Zinc in plants
  publication-title: New Phytol.
– volume: 16
  start-page: 235
  year: 2016
  end-page: 242
  ident: b0915
  article-title: PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes
  publication-title: Funct Integr Genomics.
– reference: Stocks, M. B., Mohorianu, I., Beckers, M., Paicu, C., Moxon, S., Thody, J., Dalmay, T., Moulton, V., 2018. The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for analyzing miRNAs and sRNAs.
– volume: 9
  start-page: e91357
  year: 2014
  ident: b1215
  article-title: MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (
  publication-title: PLoS ONE
– volume: 19
  start-page: 585
  year: 2019
  ident: b1365
  article-title: Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings
  publication-title: BMC Plant Biol.
– volume: 48
  start-page: 1243
  year: 2007
  end-page: 1253
  ident: b0315
  article-title: Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in
  publication-title: Plant Cell Physiol.
– reference: J. Agric. Food Chem.
– volume: 18
  start-page: 290
  year: 2018
  ident: b1145
  article-title: MicroRNA 399 as a potential integrator of photo-response, phosphate homeostasis, and sucrose signaling under long day condition
  publication-title: BMC Plant Biol
– volume: 17
  start-page: 1658
  year: 2005
  end-page: 1673
  ident: b0100
  article-title: Antiquity of microRNAs and their targets in land plants
  publication-title: Plant Cell.
– reference: L.).
– volume: 22
  start-page: 348
  year: 2021
  ident: b0635
  article-title: TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs
  publication-title: BMC Genomics.
– volume: 19
  start-page: 214
  year: 2019
  ident: b1015
  article-title: Overexpression of
  publication-title: BMC Plant Biol.
– volume: 36
  start-page: 1171
  year: 2017
  end-page: 1182
  ident: b1355
  article-title: Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (
  publication-title: Plant Cell Rep.
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: b0065
  article-title: HTSeq-a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics.
– volume: 7
  start-page: 174
  year: 2015
  end-page: 187
  ident: b1000
  article-title: Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice
  publication-title: Metallomics.
– volume: 8
  start-page: 341
  year: 2007
  ident: b0425
  article-title: MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans
  publication-title: BMC Bioinformatics.
– volume: 14
  start-page: e0219176
  year: 2019
  ident: b0645
  article-title: Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing
  publication-title: PloS one.
– reference: Chen, J., and Li, L. (2018). Multiple regression analysis reveals MicroRNA regulatory networks in
– volume: 7
  start-page: 1567
  year: 2016
  ident: b0690
  article-title: High-throughput sequencing reveals H
  publication-title: Front. Plant Sci.
– volume: 20
  start-page: 740
  year: 2019
  ident: b1200
  article-title: Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine
  publication-title: BMC Genomics.
– volume: 12
  start-page: 615114
  year: 2021
  ident: b0150
  article-title: Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress
  publication-title: Front Plant Sci.
– volume: 59
  start-page: 313
  year: 2008
  end-page: 339
  ident: b0115
  article-title: Flooding stress, acclimations and genetic diversity
  publication-title: Annu Rev Plant Biol.
– volume: 14
  start-page: 854
  year: 2008
  end-page: 866
  ident: b0360
  article-title: A link between RNA metabolism and silencing affecting
  publication-title: Dev Cell.
– volume: 25
  start-page: 1
  year: 2006
  end-page: 21
  ident: b0020
  article-title: Molecular biology, biotechnology and genomics of flooding-associated low O
  publication-title: Crit. Rev. Plant Sci.
– reference: He, X., Zheng, W., Cao, F., W, Wu, F., 2016. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress.
– volume: 17
  start-page: 697
  year: 2017
  end-page: 710
  ident: b0555
  article-title: Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance
  publication-title: Funct Integr Genomics.
– year: 1995
  ident: b0725
  article-title: Mineral nutrition of higher plants
– volume: 62
  start-page: 157
  year: 2011
  end-page: 184
  ident: b1125
  article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes
  publication-title: Annu. Rev. Plant Biol.
– reference: L.) using high-throughput sequencing and degradome analysis.
– volume: 8
  start-page: 272
  year: 2017
  ident: b1445
  article-title: Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in
  publication-title: Front Plant Sci.
– volume: 13
  start-page: 33
  year: 2013
  ident: b1420
  article-title: PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress
  publication-title: BMC Plant Biol.
– volume: 17
  start-page: 1712
  year: 2016
  ident: b0205
  article-title: MicroRNA in control of gene expression: An overview of nuclear functions
  publication-title: Int J Mol Sci.
– reference: 6,
– volume: 54
  start-page: 118
  year: 2008
  end-page: 127
  ident: b0775
  article-title: Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (
  publication-title: Soil Sci. Plant Nutr.
– volume: 19
  start-page: 570
  year: 2019
  ident: b0310
  article-title: MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in
  publication-title: BMC Plant Biol.
– reference: Ma, J.,
– volume: 20
  start-page: 466
  year: 2020
  ident: b0465
  article-title: Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation
  publication-title: BMC Plant Biol.
– reference: Kuang, Z., Wang, Y., Li, L., Yang, X., 2019. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants.
– volume: 17
  start-page: 272
  year: 2015
  end-page: 279
  ident: b0975
  article-title: Zinc accumulation and tolerance in
  publication-title: Int. J. Phytoremediation.
– volume: 1819
  start-page: 137
  year: 2012
  end-page: 148
  ident: b0515
  article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: Biochim Biophys Acta.
– volume: 37
  start-page: 1293
  year: 2018
  end-page: 1309
  ident: b0650
  article-title: TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation
  publication-title: Plant Cell Rep.
– volume: 22
  start-page: 16441
  year: 2015
  end-page: 16452
  ident: b1195
  article-title: A review of soil cadmium contamination in China including a health risk assessment
  publication-title: Environ Sci Pollut Res Int.
– volume: 15
  start-page: e0230958
  year: 2020
  ident: b0830
  article-title: Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity
  publication-title: PloS one.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: b0765
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Rev Plant Biol.
– volume: 86
  start-page: 1
  year: 2014
  end-page: 18
  ident: b1160
  article-title: Artificial microRNA mediated gene silencing in plants: progress and perspectives
  publication-title: Plant Mol Biol.
– volume: 47
  start-page: W530
  year: 2019
  end-page: W535
  ident: b0070
  article-title: sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression
  publication-title: Nucleic Acids Res.
– reference: Liu, Q., Hu, H., Zhu, L., Li, R., Feng, Y., Zhang, L., Yang, Y., Liu, X., Zhang, H., 2015. Involvement of miR528 in the regulation of arsenite tolerance in rice (
– volume: 32
  start-page: 450
  year: 2016
  end-page: 452
  ident: b0840
  article-title: miTRATA: a web-based tool for microRNA truncation and tailing analysis
  publication-title: Bioinformatics.
– reference: Feng, X., Liu, W., dai, H., Qiu, Y., Zhang, G., Chen, Z.H., Wu, F., 2020. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. J. Exp Bot. 71, 19, 6057–6073. https://doi.org/10.1093/jxb/eraa290.
– volume: 6
  start-page: 32158
  year: 2016
  ident: b0590
  article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds
  publication-title: Sci. Rep.
– volume: 9
  year: 2014
  ident: b1050
  article-title: The effect of silicon on photosynthesis and expression of its relevant genes in rice (
  publication-title: PLoS ONE
– volume: 20
  start-page: 298
  year: 2020
  ident: b1155
  article-title: Identification of small RNAs during cold acclimation in
  publication-title: BMC Plant Biol.
– reference: Sci Rep.
– reference: J Exp Bot.
– volume: 6
  start-page: 255
  year: 2015
  ident: b0875
  article-title: Temporal aspects of copper homeostasis and its crosstalk with hormones
  publication-title: Front Plant Sci.
– volume: 8
  start-page: 6
  year: 2017
  ident: b0480
  article-title: Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (
  publication-title: Front. Plant Sci.
– reference: Bernal, M., Casero, D., Singh, V., Wilson, G.T., Grande, A., Yang, H., Dodani, S.C., Pellegrini, M., Huijser, P., Connolly, E.L., Merchant, S.S., Krämer, U., 2012. Transcriptome sequencing identifies SPL7-regulated Cu acquisition genes FRO4/FRO5 and the Cu dependence of Fe homeostasis in
– volume: 182
  start-page: 799
  year: 2009
  end-page: 816
  ident: b0185
  article-title: Copper homeostasis
  publication-title: New Phytol.
– volume: 9
  start-page: 2832
  year: 2019
  ident: b1290
  article-title: The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in
  publication-title: Sci Rep.
– volume: 195
  start-page: 97
  year: 2012
  end-page: 112
  ident: b1315
  article-title: Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (
  publication-title: New Phytol.
– volume: 579
  start-page: 5923
  year: 2005
  end-page: 5931
  ident: b0210
  article-title: MicroRNA biogenesis and function in plants
  publication-title: FEBS Lett.
– reference: Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., Feng, Y., Song, X., L,i P., Wang, B., 2017. Identification of salt tolerance-related microRNAs and their targets in maize (
– volume: 7
  start-page: 7
  year: 2016
  end-page: 10
  ident: b1390
  article-title: MicroRNA, a new target for engineering new crop cultivars
  publication-title: Bioengineered.
– volume: 33
  start-page: 429
  year: 2019
  end-page: 439
  ident: b0495
  article-title: LncRNAs: Genetic and epigenetic effects in plants
  publication-title: Biotechnol Biotechnol Equip.
– volume: 26
  start-page: 1566
  year: 2010
  end-page: 1568
  ident: b0165
  article-title: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics
  publication-title: Bioinformatics.
– volume: 165
  start-page: 830
  year: 2019
  end-page: 842
  ident: b0730
  article-title: Alfalfa response to heat stress is modulated by microRNA156
  publication-title: Physiol Plant.
– volume: 105
  start-page: 8795
  year: 2008
  end-page: 8800
  ident: b0540
  article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 48
  start-page: D148
  year: 2020
  end-page: D154
  ident: b0415
  article-title: miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database
  publication-title: Nucleic Acids Res.
– volume: 59
  start-page: 2143
  year: 2018
  end-page: 2154
  ident: b0365
  article-title: Differentially expressed microRNAs link cellular physiology to phenotypic changes in rice under stress conditions
  publication-title: Plant Cell Physiol.
– volume: 14
  start-page: 1605
  year: 2002
  end-page: 1619
  ident: b0655
  article-title: Endogenous and silencing-associated small RNAs in plants
  publication-title: Plant Cell.
– volume: 9
  start-page: 182
  year: 2019
  ident: b0005
  article-title: Identification of miRNAs and their response to cold stress in
  publication-title: Biomolecules.
– reference: Agarwal, S., Mangrauthia, S.K., Sarla N., 2015. Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar × Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil. 396, 1/2, 137–150. https://www.jstor.org/stable/43872510.
– volume: 11
  start-page: 300
  year: 2020
  ident: b0040
  article-title: Manganese in plants: from acquisition to subcellular allocation
  publication-title: Front. Plant Sci.
– volume: 10
  start-page: e0142753
  year: 2015
  ident: b0230
  article-title: miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences
  publication-title: PloS One.
– volume: 18
  start-page: 212
  year: 2017
  ident: b1055
  article-title: Response of microRNAs to cold treatment in the young spikes of common wheat
  publication-title: BMC Genomics.
– reference: Dai, X., Zhuang, Z., and Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46 (W1), W49-W54. https://doi.org/10.1093/nar/gky316.
– volume: 32
  start-page: 2722
  year: 2016
  end-page: 2724
  ident: b0680
  article-title: Tools4miRs-one place to gather all the tools for miRNA analysis
  publication-title: Bioinformatics.
– volume: 16
  start-page: 1616
  year: 2002
  end-page: 1626
  ident: b0935
  article-title: MicroRNAs in plants
  publication-title: Genes Dev.
– volume: 8
  start-page: 124
  year: 2019
  ident: b0870
  article-title: DRB1, DRB2 and DRB4 are required for appropriate regulation of the microRNA399/PHOSPHATE2 expression module in
  publication-title: Plants (Basel).
– volume: 2
  start-page: 16033
  year: 2016
  ident: b1440
  article-title: Vascular-mediated signalling involved in early phosphate stress response in plants
  publication-title: Nat Plants.
– volume: 9
  start-page: 383
  year: 2018
  ident: b1410
  article-title: Lateral root development in potato is mediated by Stu-mi164 regulation of NAC transcription factor
  publication-title: Front Plant Sci.
– volume: 183
  start-page: 1681
  year: 2020
  end-page: 1695
  ident: b1205
  article-title: The miR399- CsUBC24 module regulates reproductive development and male fertility in citrus
  publication-title: Plant Physiol.
– volume: 21
  start-page: 100210
  year: 2020
  ident: b0155
  article-title: Genome-wide identification of drought-responsive miRNAs in grass pea (
  publication-title: Plant Gene.
– reference: PLoS Genet.
– volume: 15
  start-page: 523
  year: 2015
  end-page: 531
  ident: b0175
  article-title: Plant miRNAs: biogenesis, organization and origins
  publication-title: Funct. Integr. Genomic
– volume: 16
  start-page: 145
  year: 2016
  ident: b0340
  article-title: Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7
  publication-title: BMC Plant Biol.
– volume: 137
  start-page: 96
  year: 2017
  end-page: 109
  ident: b0345
  article-title: Insights into the miRNA-mediated response of maize leaf to arsenate stress
  publication-title: Environ Exp Bot.
– volume: 20
  start-page: 87
  year: 2020
  ident: b0400
  article-title: Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels
  publication-title: BMC Plant Biol.
– volume: 20
  start-page: 537
  year: 2019
  end-page: 544
  ident: b0835
  article-title: Applications of machine learning in miRNA discovery and target prediction
  publication-title: Curr. Genom.
– reference: 8, 864. https://doi.org/10.3389/fpls.2017.00864.
– volume: 19
  start-page: 100
  year: 2019
  ident: b0405
  article-title: Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (
  publication-title: BMC Plant Biol.
– volume: 21
  start-page: 2795
  year: 2020
  ident: b0900
  article-title: Genome-Wide identification and characterization of drought stress responsive microRNAs in Tibetan wild barley
  publication-title: Int. J. Mol. Sci.
– volume: 164
  start-page: 611
  year: 2018
  end-page: 617
  ident: b0910
  article-title: Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress
  publication-title: Ecotoxicol Environ Saf.
– volume: 27
  start-page: 1215
  year: 2011
  end-page: 1223
  ident: b1135
  article-title: SplamiR-prediction of spliced miRNAs in plants
  publication-title: Bioinformatics.
– volume: 46
  start-page: 8730
  year: 2018
  end-page: 8739
  ident: b1140
  article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules
  publication-title: Nucleic Acids Res.
– volume: 6
  year: 2019
  ident: b1350
  article-title: MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass
  publication-title: Hortic Res.
– volume: 58
  start-page: 426
  year: 2017
  end-page: 439
  ident: b0105
  article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley
  publication-title: Plant Cell Physiol.
– volume: 321
  start-page: 1490
  year: 2008
  end-page: 1492
  ident: b0920
  article-title: Degradation of microRNAs by a family of exoribonucleases in
  publication-title: Science.
– reference: .
– volume: 151
  year: 2020
  ident: b1295
  article-title: Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (
  publication-title: Ind Crop Prod.
– volume: 91
  start-page: 651
  year: 2016
  end-page: 659
  ident: b1415
  article-title: The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses
  publication-title: Plant Mol Biol.
– volume: 18
  start-page: 52
  year: 2018
  ident: b1370
  article-title: Identification of cold stress responsive microRNAs in two winter turnip rape (
  publication-title: BMC Plant Biol.
– volume: 10
  start-page: 503
  year: 2005
  end-page: 509
  ident: b0925
  article-title: Sulfur metabolism: a versatile platform for launching defence operations
  publication-title: Trends Plant Sci.
– reference: UCL8, a plantacyanin gene targeted by miR408, regulates fertility by controlling pollen tube germination and growth.
– reference: Bioinformatics. 34, 19, 3382–3384. https://doi.org/10.1093/bioinformatics/bty338.
– volume: 32
  start-page: 157
  year: 2016
  end-page: 158
  ident: b0275
  article-title: P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design
  publication-title: Bioinformatics.
– volume: 66
  start-page: 1519
  year: 2005
  end-page: 1528
  ident: b0950
  article-title: Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity
  publication-title: Phytochem.
– volume: 9
  start-page: 168
  year: 2018
  ident: b1310
  article-title: Classification of transcription boundary-associated RNAs (TBARs) in animals and plants
  publication-title: Front Genet.
– volume: 232
  start-page: 1289
  year: 2010
  end-page: 1308
  ident: b0300
  article-title: Identification and characterization of microRNAs and their target genes in tobacco (
  publication-title: Planta.
– volume: 70
  start-page: 4775
  year: 2019
  end-page: 4792
  ident: b1150
  article-title: miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes
  publication-title: J Exp Bot.
– volume: 1
  start-page: e0024
  year: 2002
  ident: b0895
  article-title: Phosphate transport and homeostasis in
  publication-title: The Arabidopsis Book
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  ident: b0135
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– volume: 47
  start-page: D155
  year: 2019
  end-page: D162
  ident: b0530
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 465
  year: 2020
  end-page: 475
  ident: b1495
  article-title: Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum
  publication-title: Crop J.
– volume: 1
  start-page: 6
  year: 2019
  ident: b0575
  article-title: Current experimental strategies for intracellular target identification of microRNA
  publication-title: ExRNA.
– volume: 140
  start-page: 55
  year: 2017
  end-page: 64
  ident: b0350
  article-title: Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations
  publication-title: Ecotoxicol Environ Saf.
– volume: 9
  start-page: 16434
  year: 2019
  ident: b0845
  article-title: Overexpression of native
  publication-title: Sci Rep.
– volume: 31
  start-page: 739
  year: 2005
  end-page: 753
  ident: b0990
  article-title: Chromium toxicity in plants
  publication-title: Environment international
– volume: 6
  start-page: 232
  year: 2015
  ident: b0855
  article-title: miRNA regulation of nutrient homeostasis in plants
  publication-title: Front Plant Sci.
– volume: 75
  start-page: 1468
  year: 2009
  end-page: 1476
  ident: b1190
  article-title: The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings
  publication-title: Chemosphere.
– volume: 11
  start-page: 264
  year: 2020
  ident: b0030
  article-title: Comparative analysis of miRNA expression profiles between heat-tolerant and heat-sensitive genotypes of flowering Chinese cabbage under heat stress using high-throughput sequencing
  publication-title: Genes.
– volume: 4975146
  year: 2017
  ident: b0260
  article-title: miR319, miR390, and miR393 are involved in Aluminum response in Flax (
  publication-title: Bio Med Res Int.
– volume: 8
  start-page: 58
  year: 2019
  ident: b0865
  article-title: Profiling the abiotic stress responsive microRNA landscape of
  publication-title: Plants.
– volume: 19
  start-page: 940
  year: 2018
  ident: b0430
  article-title: Identification and characterisation of microRNAs and their target genes in phosphate-starved
  publication-title: BMC genomics
– reference: Bioinformatics. 35, 14, 2521–2522. https://doi.org/10.1093/bioinformatics/bty972.
– volume: 217
  start-page: 1712
  year: 2018
  end-page: 1725
  ident: b0610
  article-title: Evolution of microRNA827 targeting in the plant kingdom
  publication-title: New Phytol.
– reference: Bukhari, S. A., Shang, S., Zhang, M., Zheng, W., Zhang, G., Wang, T.Z., Shamsi I, H., Wu, F., 2015. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco (
– reference: 41, 15, e147. https://doi.org/10.1093/nar/gkt485.
– volume: 85
  start-page: 1
  year: 2019
  end-page: 13
  ident: b1230
  article-title: Degradation of fungal microRNAs triggered by short tandem target mimics is via the small-RNA-degrading nuclease
  publication-title: Appl. Environ. Microbiol.
– reference: 100, 4, 445–455. https://doi.org/10.1139/cjps-2018-0327.
– reference: Manavella, P.A., Yang, S.W., Palatnik, J., 2019. Keep calm and carry on: miRNA biogenesis under stress. Plant J. 99, 5, 832–843. https://doi.org/10.1111/tpj.14369.
– volume: 17
  start-page: 211
  year: 2017
  ident: b0380
  article-title: Identification of drought-responsive miRNAs and physiological characterization of tea plant (
  publication-title: BMC Plant Biol.
– volume: 119
  start-page: 1217
  year: 2015
  end-page: 1223
  ident: b1250
  article-title: Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (
  publication-title: Chemosphere
– reference: 34, 9, 1574–1576. https://doi.org/10.1093/bioinformatics/btx797.
– reference: Lee, R.C., Feinbaum, R. L., Ambros, V., 1993. The
– volume: 179
  start-page: 640
  year: 2019
  end-page: 655
  ident: b0675
  article-title: Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in
  publication-title: Plant Physiol
– volume: 19
  year: 2018
  ident: b1235
  article-title: Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley
  publication-title: BMC Genomics.
– reference: Humphreys, D.T., Suter, C.M., 2013. miRspring: a compact standalone research tool for analyzing miRNA-seq data.
– volume: 4
  start-page: 145
  year: 2013
  ident: b0505
  article-title: Systemic regulation of mineral homeostasis by micro RNAs
  publication-title: Front Plant Sci.
– volume: 18
  start-page: 645
  year: 2018
  end-page: 657
  ident: b1505
  article-title: MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress
  publication-title: Funct. Integr. Genom.
– volume: 15
  start-page: 78
  year: 2005
  end-page: 91
  ident: b0010
  article-title: Computational prediction of miRNAs in
  publication-title: Genome Res.
– reference: Front. Plant Sci.
– volume: 38
  start-page: 92
  year: 2016
  end-page: 100
  ident: b0035
  article-title: Control of sulfate concentration by miR395-targeted APS genes in
  publication-title: Plant Divers.
– volume: 8
  start-page: 143
  year: 2020
  ident: b0125
  article-title: MicroRNA involvement in signaling pathways during viral infection
  publication-title: Front. Cell Dev. Biol.
– reference: mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 18, 8, 2051–2065. https://doi.org/10.1105/tpc.106.041673.
– volume: 136
  start-page: 642
  year: 2009
  end-page: 655
  ident: b0200
  article-title: Origins and mechanisms of miRNAs and siRNAs
  publication-title: Cell
– reference: 63, 40, 8849–8861. https://doi.org/10.1021/acs.jafc.5b04191.
– volume: 8
  start-page: 156
  year: 2017
  ident: b0290
  article-title: Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (
  publication-title: Genes.
– volume: 20
  start-page: 2391
  year: 2019
  ident: b1260
  article-title: Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt and alkali stress tolerance in tobacco
  publication-title: Int. J. Mol. Sci.
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  ident: b1485
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu Rev Plant Biol.
– volume: 5
  start-page: 14024
  year: 2015
  ident: b0640
  article-title: Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (
  publication-title: Sci Rep.
– volume: 248
  start-page: 545
  year: 2018
  end-page: 558
  ident: b1040
  article-title: Plant small RNAs: advancement in the understanding of biogenesis and role in plant development
  publication-title: Planta.
– reference: Zhang, F., Zhang, Y, C., Zhang, J. P., Yu, Y., Zhou, Y. F., Feng, Y. Z., Yang, Y. W., Lei, M. Q., He, H., Lian, J. P., Chen, Y. Q., 2018. Rice
– volume: 21
  start-page: 494
  year: 2020
  ident: b1425
  article-title: Integrated small RNA and degradome sequencing provide insights into salt tolerance in sesame (
  publication-title: BMC Genomics.
– volume: 146
  start-page: 185
  year: 2000
  end-page: 205
  ident: b0190
  article-title: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species
  publication-title: New Phytol.
– volume: 7
  start-page: 484
  year: 2012
  end-page: 491
  ident: b0450
  article-title: microRNAs responsive to ozone-induced oxidative stress in
  publication-title: Plant Signal Behav
– volume: 154
  start-page: 29
  year: 2002
  end-page: 43
  ident: b0740
  article-title: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species
  publication-title: New Phytol.
– volume: 30
  start-page: 796
  year: 2018
  end-page: 814
  ident: b0375
  article-title: Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling
  publication-title: Plant Cell.
– volume: 53
  start-page: 1331
  year: 2002
  end-page: 1341
  ident: b0045
  article-title: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants
  publication-title: J. Exp. Bot.
– volume: 99
  start-page: 621
  year: 2019
  end-page: 638
  ident: b0335
  article-title: The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in
  publication-title: Plant Mol Biol.
– reference: Sun, Z., Shu, L., Zhang, W., Wang, Z., 2020. Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic
– volume: 57
  start-page: 1865
  year: 2016
  end-page: 1878
  ident: b1430
  article-title: The miR396b of
  publication-title: Plant Cell Physiol.
– volume: 248
  start-page: 805
  year: 2011
  end-page: 815
  ident: b1070
  article-title: Redox state and energetic equilibrium determine the magnitude of stress in upon exposure to arsenate
  publication-title: Protoplasma.
– volume: 8
  year: 2018
  ident: b0240
  article-title: Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-ta-siRNA crosstalk as regulator of seed germination
  publication-title: Sci Rep
– volume: 39
  start-page: 282
  year: 2010
  end-page: 291
  ident: b0440
  article-title: assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90
  publication-title: Mol Cell.
– reference: Mol Cell.
– volume: 109
  start-page: 12817
  year: 2012
  end-page: 12821
  ident: b0945
  article-title: Regulation of miRNA abundance by RNA binding protein TOUGH in
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 1994
  ident: b0500
  article-title: The Biological and Environmental Chemistry of Chromium
– volume: 11
  start-page: e1004391
  year: 2015
  ident: b0570
  article-title: miRTex: A text mining system for miRNA-gene relation extraction
  publication-title: PLoS Comput Biol.
– volume: 19
  start-page: 78
  year: 2019
  ident: b0985
  article-title: Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon
  publication-title: BMC Plant Biol.
– volume: 14
  start-page: e0217806
  year: 2019
  ident: b1035
  article-title: Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress
  publication-title: PLoS ONE
– reference: Cell,
– reference: Teotia, S., Tang, G., 2017. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach.
– volume: 9
  start-page: 769
  year: 2019
  end-page: 787
  ident: b1095
  article-title: The Role of UV-B light on small RNA activity during grapevine berry development. G3 (Bethesda
  publication-title: Md.)
– volume: 32
  start-page: 27
  year: 2000
  end-page: 39
  ident: b0715
  article-title: Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators?
  publication-title: Plant Growth Regul.
– volume: 87
  start-page: 389
  year: 2019
  end-page: 401
  ident: b1325
  article-title: Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley
  publication-title: Plant Growth Regul.
– volume: 60
  start-page: 1440
  year: 2019
  end-page: 1446
  ident: b0520
  article-title: Understanding the complexity of iron sensing and signaling cascades in plants
  publication-title: Plant Cell Physiol.
– volume: 231
  start-page: 303
  year: 2016
  end-page: 313
  ident: b0560
  article-title: MicroRNAs in control of plant development
  publication-title: J Cell Physiol.
– volume: 6
  start-page: 75
  year: 2019
  ident: b0780
  article-title: Genome-wide identification of drought-responsive microRNAs in two sets of
  publication-title: Hortic Res.
– reference: 39, 2, 292–299. https://doi.org/10.1016/j.molcel.2010.05.015.
– volume: 252
  start-page: 103
  year: 2016
  end-page: 117
  ident: b0595
  article-title: miRNA alterations are important mechanism in maize adaptations to low-phosphate environments
  publication-title: Plant Sci.
– reference: . Peer J. 8, e9105. http://doi.org/10.7717/peerj.9105.
– volume: 17
  start-page: 95
  year: 2005
  end-page: 102
  ident: b0805
  article-title: Chromium stress in plants
  publication-title: Braz J Plant Physiol.
– reference: 12, 11, e1006416. https://doi.org/10.1371/journal.pgen.1006416.
– volume: 10
  start-page: 989
  year: 2019
  ident: b0225
  article-title: Redox balance-DDR-miRNA triangle: Relevance in genome stability and stress responses in plants
  publication-title: Front. Plant Sci.
– reference: Jian, H., Yang, B., Zhang, A., Ma, J., Ding, Y., Chen, Z., Li, J., Xu, X., and Liu, L. (2018). Genome-wide identification of microRNAs in response to cadmium stress in oilseed rape (Brassica napus L.) using high-throughput sequencing. Int J Mol Sci. 19 (5), 1431. https://doi.org/10.3390/ijms19051431.
– volume: 5
  start-page: 84
  year: 2019
  end-page: 94
  ident: b1265
  article-title: Identification of vacuolar phosphate efflux transporters in land plants
  publication-title: Nature plants
– volume: 17
  start-page: 818
  year: 2007
  end-page: 823
  ident: b0280
  article-title: Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living
  publication-title: Curr Boil.
– reference: 75, 5, 843–854. https://doi.org/10.1016/0092-8674(93)90529-y.
– volume: 9
  start-page: 499
  year: 2018
  ident: b0110
  article-title: Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi Deprivation and salt stress via modulating stress-associated physiological processes
  publication-title: Front Plant Sci.
– volume: 34
  start-page: 931
  year: 2016
  end-page: 946
  ident: b0330
  article-title: Wheat microRNA member TaMIR444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress
  publication-title: Plant Mol Bio Rep.
– volume: vol 19
  start-page: 223
  year: 2011
  end-page: 236
  ident: b1165
  article-title: The role of plasma membrane nitrogen transporters in nitrogen acquisition and utilization
  publication-title: The Plant Plasma Membrane. Plant Cell Monographs
– reference: Al Khateeb., W., Al-Qwasemeh, H., 2014. Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of
– volume: 12
  start-page: e0169212
  year: 2017
  ident: b0705
  article-title: Transcriptome-wide discovery of PASRs (Promoter-Associated Small RNAs) and TASRs (Terminus-Associated Small RNAs) in
  publication-title: PloS one
– volume: 20
  start-page: 14
  year: 2019
  ident: b0325
  article-title: Characterization of cadmium-responsive microRNAs and their target genes in maize (
  publication-title: BMC Molecular Biol.
– volume: 145
  start-page: 195
  year: 2019
  end-page: 204
  ident: b0090
  article-title: Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs
  publication-title: Plant Physiol Biochem.
– reference: Lin, Y., Zhu, Y., Cui, Y., Chen, R., Chen, Z., Li, G., Fan, M., Chen, J., Li, Y., Guo, X., Zheng, X., Chen, L., Wang, F., 2021. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9.
– volume: 64
  start-page: 1
  year: 2011
  end-page: 16
  ident: b1065
  article-title: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings
  publication-title: Plant Growth Regul.
– volume: 12
  start-page: e0183253
  year: 2017
  ident: b1500
  article-title: Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage
  publication-title: PLoS One.
– volume: 6
  year: 2016
  ident: b1345
  article-title: Heterologous expression of a rice miR395 gene in
  publication-title: Sci Rep.
– volume: 7
  start-page: 23
  year: 2016
  ident: b0510
  article-title: Ethylene and metal stress: small molecule, big impact
  publication-title: Front Plant Sci.
– volume: 12
  start-page: 1484
  year: 2002
  end-page: 1495
  ident: b0825
  article-title: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in
  publication-title: Curr Biol.
– volume: 10
  start-page: 324
  year: 2019
  ident: b0195
  article-title: The altered expression of microRNA408 influences the Arabidopsis response to iron deficiency
  publication-title: Front. Plant Sci.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0890
  article-title: Function and regulation of the plant COPT family of high-affinity copper transport proteins
  publication-title: Adv. Bot.
– volume: 40
  start-page: 1
  year: 2020
  end-page: 12
  ident: b1080
  article-title: miR535 negatively regulates cold tolerance in rice
  publication-title: Mol Breeding.
– volume: 57
  start-page: 19
  year: 2006
  end-page: 53
  ident: b0490
  article-title: MicroRNAS and their regulatory roles in plants
  publication-title: Annu Rev Plant Biol.
– reference: Ma, X., Liu, C., Gu, L., Mo, B., Cao, X., Chen, X., 2018. TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants.
– volume: Vol. 20
  year: 1988
  ident: b0790
  publication-title: Chromium in the natural and human environments
– reference: Sunkar, R., Kapoor, A., Zhu, J.K., 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in
– volume: 7
  start-page: 225
  year: 1979
  end-page: 232
  ident: b0075
  article-title: Aeration in higher plants
  publication-title: Adv. Bot. Res.
– volume: 10
  start-page: 495
  year: 2020
  ident: b0475
  article-title: miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3
  publication-title: Biotech.
– volume: 46
  start-page: 10709
  year: 2018
  end-page: 10723
  ident: b0760
  article-title: Efficiency and precision of microRNA biogenesis modes in plants
  publication-title: Nucleic Acids Res.
– reference: under drought stress. Int J Genomics. 2018, 9395261. https://doi.org/10.1155/2018/9395261.
– volume: 39
  start-page: 32
  year: 2017
  ident: b1255
  article-title: Identification of microRNAs from Zn-treated
  publication-title: Acta Physiol Plant.
– volume: 20
  start-page: 515
  year: 2006
  end-page: 524
  ident: b1170
  article-title: Control of translation and mRNA degradation by miRNAs and siRNAs
  publication-title: Genes Dev.
– volume: 26
  start-page: 1181
  year: 2017
  end-page: 1187
  ident: b0580
  article-title: miR398 and miR395 are involved in response to SO
  publication-title: Ecotoxicology.
– volume: 60
  start-page: 323
  year: 2018
  end-page: 340
  ident: b0800
  article-title: Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants
  publication-title: J. Integr. Plant Biol.
– reference: Methods Mol Biol. 1631, 337–348. https://doi.org/10.1007/978-1-4939-7136-7_22.
– volume: 13 Suppl 7 (Suppl 7)
  start-page: S16
  year: 2012
  ident: b0795
  article-title: C-mii: a tool for plant miRNA and target identification
  publication-title: BMC Genomics.
– volume: 20
  start-page: 1474
  year: 2019
  ident: b1185
  article-title: Bioinformatic exploration of the targets of xylem sap miRNAs in maize under cadmium stress
  publication-title: Int. J. Mol. Sci.
– volume: 61
  start-page: 1880
  year: 2020
  end-page: 1890
  ident: b1330
  article-title: The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants
  publication-title: Plant Cell Physiol.
– volume: 15
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0455
  article-title: Targeted genome modifications in soybean with CRISPR/Cas9
  publication-title: BMC Biotechnol.
– volume: 41
  start-page: 1183
  year: 2019
  end-page: 1194
  ident: b1300
  article-title: Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply
  publication-title: Genes Genomics
– volume: 6
  start-page: 117
  year: 2013
  end-page: 130
  ident: b1460
  article-title: Genome-wide analysis of microRNAs in sacred lotus,
  publication-title: Trop Plant Biol.
– volume: 5
  start-page: 708
  year: 2014
  ident: b0850
  article-title: plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants
  publication-title: Front Plant Sci.
– volume: 11
  start-page: e1213474
  year: 2016
  ident: b0620
  article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants
  publication-title: Plant Signal Behav
– volume: 11
  start-page: 319
  year: 2020
  ident: b1180
  article-title: The critical role of miRNAs in regulation of flowering time and flower development
  publication-title: Genes.
– volume: 16
  start-page: 362
  year: 2019
  end-page: 375
  ident: b1220
  article-title: MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress
  publication-title: RNA Biol.
– volume: 62
  start-page: 97
  year: 2018
  end-page: 108
  ident: b0420
  article-title: Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean
  publication-title: Biol Plant
– volume: 11
  start-page: 752
  year: 2020
  ident: b0810
  article-title: Effect of arsenic stress on expression pattern of a rice specific miR156j at various developmental stages and their allied co-expression target networks
  publication-title: Front Plant Sci.
– volume: 8
  start-page: 374
  year: 2017
  ident: b0390
  article-title: Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants
  publication-title: Front Plant Sci.
– reference: Casati, P., 2013. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal Behav. 8(10), 10.4161/psb.26758. https://doi.org/10.4161/psb.26758.
– volume: 12
  start-page: 76
  year: 2019
  ident: b0470
  publication-title: Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways
– volume: 67
  start-page: 5811
  year: 2016
  end-page: 5824
  ident: b0860
  article-title: Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots
  publication-title: J Exp Bot.
– volume: 38
  start-page: 465
  year: 2010
  end-page: 475
  ident: b1240
  article-title: DNA methylation mediated by a microRNA pathway
  publication-title: Mol Cell.
– volume: 20
  year: 2019
  ident: b1480
  article-title: Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress
  publication-title: BMC Genomics.
– volume: 66
  start-page: 1749
  year: 2015
  end-page: 1761
  ident: b1375
  article-title: MicroRNA: a new target for improving plant tolerance to abiotic stress
  publication-title: J Exp Bot.
– reference: . Plant Cell. 24, 2, 738–761. https://doi.org/10.1105/tpc.111.090431.
– volume: 258
  start-page: 122
  year: 2017
  end-page: 136
  ident: b0080
  article-title: MicroRNA156 improves drought stress tolerance in alfalfa (
  publication-title: Plant Sci.
– reference: Ma, C., Burd, S., Lers, A., 2015. miR408
– start-page: 223
  year: 2007
  end-page: 260
  ident: b0215
  article-title: Small RNAs: big role in abiotic stress tolerance of plants
  publication-title: Advances in molecular breeding toward drought and salt tolerant crops
– volume: 20
  start-page: 488
  year: 2019
  ident: b0930
  article-title: MicroRNA-guided regulation of heat stress response in wheat
  publication-title: BMC Genomics.
– volume: 6
  start-page: 188
  year: 2015
  ident: b0410
  article-title: MicroRNA399 is involved in multiple nutrient starvation responses in rice
  publication-title: Front Plant Sci.
– reference: Takahashi, H., 2019. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J Exp Bot. 70, 16, 4075–4087. https://doi.org/10.1093/jxb/erz132.
– volume: 102
  start-page: 3691
  year: 2005
  end-page: 3696
  ident: b0820
  article-title: Nuclear processing and export of microRNAs in
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: 84, 1, 169–187. https://doi.org/10.1111/tpj.12999.
– volume: 46
  start-page: 243
  year: 2006
  end-page: 259
  ident: b1380
  article-title: Conservation and divergence of plant microRNA genes
  publication-title: Plant J.
– volume: 177
  start-page: 1691
  year: 2018
  end-page: 1703
  ident: b0250
  article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice
  publication-title: Plant Physiol.
– reference: ) roots. Environ. Toxicol. Chem. 34, 11, 2573–2582. https://doi.org/10.1002/etc.3097.
– reference: Wang, Y., L,i J., 2019. Global identification and analysis of microRNAs involved in salt stress responses in two alfalfa (
– volume: 24
  start-page: 415
  year: 2012
  end-page: 427
  ident: b1270
  article-title: Effective small RNA destruction by the expression of a short tandem target mimic in
  publication-title: Plant Cell.
– volume: 8
  start-page: 378
  year: 2017
  ident: b0255
  article-title: Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection
  publication-title: Front Plant Sci.
– volume: 9
  start-page: 4510
  year: 2019
  ident: b1285
  article-title: Identifying high confidence microRNAs in the developing seeds of
  publication-title: Sci Rep.
– reference: Bao, H., Chen, H., Chen, M., Xu, H., Huo, X., Xu, Q., and Wang, Y. (2019). Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa. Funct Integr Genomics. 19 (6), 953-972. https://doi.org/10.1007/s10142-019-00692-1.
– volume: 20
  start-page: 283
  year: 2020
  ident: b0220
  article-title: Ectopic expression of miRNA172 in tomato (
  publication-title: BMC Plant Boil.
– volume: 8
  start-page: 201
  year: 2019
  ident: b0660
  article-title: Expression of miR159 is altered in tomato plants undergoing drought stress
  publication-title: Plants (Basel, Switzerland)
– volume: 8
  start-page: 1598
  year: 2017
  ident: b1465
  article-title: CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice
  publication-title: Front Plant Sci.
– reference: L., a crop wild relative for tomato; comparative study. Physiol Mol Biol Plant. 20, 1, 31–39. https://doi.org/10.1007/s12298-013-0211-5.
– volume: 11
  start-page: 687
  year: 2020
  ident: b1320
  article-title: Chilling and heat stress-induced physiological changes and microRNA-related mechanism in sweetpotato (
  publication-title: Plant Sci.
– volume: 17
  start-page: 2369
  year: 2018
  end-page: 2378
  ident: b1010
  article-title: TaMIR1119, a miRNA family member of wheat (
  publication-title: J Integr Agric.
– volume: 22
  start-page: 359
  year: 2006
  end-page: 360
  ident: b0245
  article-title: Identification of plant microRNA homologs
  publication-title: Bioinformatics.
– volume: 58
  start-page: 118
  year: 2012
  end-page: 125
  ident: b1115
  article-title: Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs
  publication-title: Methods (San Diego, Calif.)
– volume: 10
  start-page: 185
  year: 2016
  end-page: 205
  ident: b0120
  article-title: Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants
  publication-title: Plant Biotechnol Rep
– year: 2020
  ident: b0565
  article-title: Plant microRNAs regulate innate immunity through diverse mechanisms
  publication-title: Plant microRNAs. Concepts and strategies in plant sciences
– volume: 15
  start-page: e0228850
  year: 2020
  ident: b0525
  article-title: MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower
  publication-title: PLoS ONE
– volume: 9
  start-page: 602
  year: 2018
  ident: b0980
  article-title: ARMOUR-A Rice miRNA: mRNA Interaction Resource
  publication-title: Front Plant Sci.
– volume: 65
  start-page: 1425
  year: 2014
  end-page: 1438
  ident: b0235
  article-title: miRNAs in the crosstalk between phytohormone signalling pathways
  publication-title: J Exp Bot.
– volume: 20
  start-page: 107
  year: 2020
  ident: b1475
  article-title: Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress
  publication-title: BMC Plant Biol.
– volume: 182
  start-page: 287
  year: 2020
  end-page: 300
  ident: b0665
  article-title: ARGONAUTE1 and ARGONAUTE4 regulate gene expression and hypoxia tolerance
  publication-title: Plant Physiol.
– volume: 16
  start-page: 168
  year: 2012
  end-page: 177
  ident: b0770
  article-title: Semirna: searching for plant miRNAs using target sequences
  publication-title: OMICS.
– reference: 60. https://doi.org/10.1186/s12284-018-0253-y.
– reference: ‘Millennium’) lines. Can. J. Plant Sci.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 26
  ident: b1005
  article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions
  publication-title: J Bot.
– reference: 11,
– volume: 29
  start-page: 2000
  year: 2006
  end-page: 2008
  ident: b0130
  article-title: Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress
  publication-title: Plant Cell Environ.
– volume: 70
  start-page: 489
  year: 2019
  end-page: 525
  ident: b1060
  article-title: MicroRNAs and their regulatory roles in plant-environment interactions
  publication-title: Annu Rev Plant Biol.
– volume: 136
  start-page: 2443
  year: 2004
  end-page: 2450
  ident: b0965
  article-title: Sulfur assimilatory metabolism. The long and smelling road
  publication-title: Plant Physiol.
– volume: 7
  start-page: 1567
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0690
  article-title: High-throughput sequencing reveals H2O2 stress-associated microRNAs and a potential regulatory network in Brachypodium distachyon seedlings
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01567
– volume: 9
  start-page: 16434
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0845
  article-title: Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-52858-3
– volume: 12
  start-page: e0183253
  issue: 8
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1500
  article-title: Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0183253
– volume: 145
  start-page: 195
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0090
  article-title: Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs
  publication-title: Plant Physiol Biochem.
  doi: 10.1016/j.plaphy.2019.10.042
– volume: 69
  start-page: 709
  issue: 4
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0160
  article-title: Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2018.01.007
– volume: 17
  start-page: 95
  issue: 1
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0805
  article-title: Chromium stress in plants
  publication-title: Braz J Plant Physiol.
  doi: 10.1590/S1677-04202005000100008
– volume: 11
  start-page: 300
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0040
  article-title: Manganese in plants: from acquisition to subcellular allocation
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00300
– volume: 182
  start-page: 799
  issue: 4
  year: 2009
  ident: 10.1016/j.gene.2022.146283_b0185
  article-title: Copper homeostasis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02846.x
– volume: 6
  start-page: 180735
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0485
  article-title: Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.180735
– volume: 7
  start-page: 1192
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0140
  article-title: Regulating subcellular metal homeostasis: the key to crop improvement
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01192
– volume: 11
  start-page: e1004391
  issue: 9
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0570
  article-title: miRTex: A text mining system for miRNA-gene relation extraction
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1004391
– ident: 10.1016/j.gene.2022.146283_b1275
  doi: 10.1007/978-3-030-64994-4_3
– volume: 9
  start-page: 4510
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1285
  article-title: Identifying high confidence microRNAs in the developing seeds of Jatropha curcas
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-41189-y
– volume: 11
  start-page: 752
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0810
  article-title: Effect of arsenic stress on expression pattern of a rice specific miR156j at various developmental stages and their allied co-expression target networks
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2020.00752
– volume: 579
  start-page: 5923
  issue: 26
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0210
  article-title: MicroRNA biogenesis and function in plants
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.07.071
– volume: 32
  start-page: 157
  issue: 1
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0275
  article-title: P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv534
– volume: 24
  start-page: 143
  issue: 2
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1450
  article-title: Expression pattern analysis of microRNAs in root tissue of wheat (Triticum aestivum L.) under normal nitrogen and low nitrogen conditions
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-013-0246-2
– volume: 136
  start-page: 669
  issue: 4
  year: 2009
  ident: 10.1016/j.gene.2022.146283_b1175
  article-title: Origin, biogenesis, and activity of plant microRNAs
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.01.046
– volume: 19
  start-page: 940
  issue: 1
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0430
  article-title: Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis
  publication-title: BMC genomics
  doi: 10.1186/s12864-018-5258-9
– volume: 10
  start-page: 303
  issue: 4
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0050
  article-title: Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing
  publication-title: Genes.
  doi: 10.3390/genes10040303
– volume: 60
  start-page: 323
  issue: 4
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0800
  article-title: Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12634
– volume: 17
  start-page: 2369
  issue: 11
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1010
  article-title: TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance
  publication-title: J Integr Agric.
  doi: 10.1016/S2095-3119(17)61879-3
– ident: 10.1016/j.gene.2022.146283_b1085
  doi: 10.7717/peerj.9105
– volume: Vol. 20
  year: 1988
  ident: 10.1016/j.gene.2022.146283_b0790
– volume: 117
  start-page: 6237
  issue: 11
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1490
  article-title: Regulation of stomatal development by stomatal lineage miRNAs
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1919722117
– volume: 16
  start-page: 168
  issue: 4
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0770
  article-title: Semirna: searching for plant miRNAs using target sequences
  publication-title: OMICS.
  doi: 10.1089/omi.2011.0115
– volume: 8
  start-page: 201
  issue: 7
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0660
  article-title: Expression of miR159 is altered in tomato plants undergoing drought stress
  publication-title: Plants (Basel, Switzerland)
– ident: 10.1016/j.gene.2022.146283_b0025
  doi: 10.1007/s11104-015-2561-y
– volume: 6
  start-page: 23890
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1455
  article-title: An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design
  publication-title: Sci Rep.
  doi: 10.1038/srep23890
– volume: 179
  start-page: 640
  issue: 2
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0675
  article-title: Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.01424
– ident: 10.1016/j.gene.2022.146283_b0180
  doi: 10.1002/etc.3097
– volume: 7
  start-page: 484
  issue: 4
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0450
  article-title: microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.19337
– ident: 10.1016/j.gene.2022.146283_b0445
  doi: 10.1016/j.molcel.2010.05.015
– volume: 40
  start-page: 1
  issue: 14
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1080
  article-title: miR535 negatively regulates cold tolerance in rice
  publication-title: Mol Breeding.
– ident: 10.1016/j.gene.2022.146283_b0055
  doi: 10.1007/s12298-013-0211-5
– ident: 10.1016/j.gene.2022.146283_b1280
  doi: 10.1371/journal.pgen.1006416
– volume: 182
  start-page: 287
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0665
  article-title: ARGONAUTE1 and ARGONAUTE4 regulate gene expression and hypoxia tolerance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00741
– volume: 99
  start-page: 621
  issue: 6
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0335
  article-title: The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in Arabidopsis
  publication-title: Plant Mol Biol.
  doi: 10.1007/s11103-019-00840-y
– volume: 15
  start-page: 1
  issue: 16
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0455
  article-title: Targeted genome modifications in soybean with CRISPR/Cas9
  publication-title: BMC Biotechnol.
– volume: 6
  start-page: 255
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0875
  article-title: Temporal aspects of copper homeostasis and its crosstalk with hormones
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2015.00255
– volume: 14
  start-page: 1605
  issue: 7
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0655
  article-title: Endogenous and silencing-associated small RNAs in plants
  publication-title: Plant Cell.
  doi: 10.1105/tpc.003210
– volume: 184
  start-page: 194
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1225
  article-title: The Apple microR171i-SCARECROW-LIKE PROTEINS 26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00476
– volume: 105
  start-page: 8795
  issue: 25
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0540
  article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802493105
– volume: 6
  start-page: 75
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0780
  article-title: Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies
  publication-title: Hortic Res.
  doi: 10.1038/s41438-019-0157-z
– volume: 11
  start-page: 1400
  issue: 11
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0880
  article-title: A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants
  publication-title: Mol Plant.
  doi: 10.1016/j.molp.2018.09.003
– volume: 66
  start-page: 1749
  issue: 7
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1375
  article-title: MicroRNA: a new target for improving plant tolerance to abiotic stress
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/erv013
– volume: 59
  start-page: 651
  issue: 1
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0765
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Rev Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 102
  start-page: 3691
  issue: 10
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0820
  article-title: Nuclear processing and export of microRNAs in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0405570102
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b0890
  article-title: Function and regulation of the plant COPT family of high-affinity copper transport proteins
  publication-title: Adv. Bot.
  doi: 10.1155/2014/476917
– volume: 26
  start-page: 1566
  issue: 12
  year: 2010
  ident: 10.1016/j.gene.2022.146283_b0165
  article-title: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq233
– volume: 21
  start-page: 494
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1425
  article-title: Integrated small RNA and degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.)
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-020-06913-3
– ident: 10.1016/j.gene.2022.146283_b5001
  doi: 10.3390/ijms19051431
– volume: 1819
  start-page: 137
  issue: 2
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0515
  article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbagrm.2011.05.001
– volume: 17
  start-page: 211
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0380
  article-title: Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-017-1172-6
– volume: 9
  issue: 11
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b1050
  article-title: The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113782
– volume: 62
  start-page: 97
  issue: 1
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0420
  article-title: Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean
  publication-title: Biol Plant
  doi: 10.1007/s10535-017-0752-5
– volume: 20
  start-page: 298
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1155
  article-title: Identification of small RNAs during cold acclimation in Arabidopsis thaliana
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02511-3
– volume: 11
  start-page: 264
  issue: 3
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0030
  article-title: Comparative analysis of miRNA expression profiles between heat-tolerant and heat-sensitive genotypes of flowering Chinese cabbage under heat stress using high-throughput sequencing
  publication-title: Genes.
  doi: 10.3390/genes11030264
– volume: 8
  start-page: 374
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0390
  article-title: Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.00374
– volume: 161
  start-page: 867
  issue: 7
  year: 2004
  ident: 10.1016/j.gene.2022.146283_b0460
  article-title: Carbohydrate metabolism in growing rice seedlings under arsenic toxicity
  publication-title: J Plant Physiol.
  doi: 10.1016/j.jplph.2004.01.004
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1350
  article-title: MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass
  publication-title: Hortic Res.
  doi: 10.1038/s41438-019-0130-x
– volume: 70
  start-page: 489
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1060
  article-title: MicroRNAs and their regulatory roles in plant-environment interactions
  publication-title: Annu Rev Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100334
– ident: 10.1016/j.gene.2022.146283_b0940
  doi: 10.1016/j.cpb.2016.10.003
– volume: 18
  start-page: 52
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1370
  article-title: Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1242-4
– volume: 20
  start-page: 537
  issue: 8
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0835
  article-title: Applications of machine learning in miRNA discovery and target prediction
  publication-title: Curr. Genom.
  doi: 10.2174/1389202921666200106111813
– volume: 140
  start-page: 55
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0350
  article-title: Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations
  publication-title: Ecotoxicol Environ Saf.
  doi: 10.1016/j.ecoenv.2017.01.042
– volume: 119
  start-page: 1217
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1250
  article-title: Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.099
– volume: 15
  start-page: e0228850
  issue: 2
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0525
  article-title: MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0228850
– volume: 13
  start-page: 33
  year: 2013
  ident: 10.1016/j.gene.2022.146283_b1420
  article-title: PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-33
– volume: 31
  start-page: 166
  issue: 2
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0065
  article-title: HTSeq-a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu638
– ident: 10.1016/j.gene.2022.146283_b2001
  doi: 10.4161/psb.26758
– volume: 29
  start-page: 2000
  issue: 10
  year: 2006
  ident: 10.1016/j.gene.2022.146283_b0130
  article-title: Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01576.x
– volume: 43
  start-page: D982
  issue: Database issue
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1305
  article-title: PNRD: a plant non-coding RNA database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1162
– volume: 19
  start-page: 532
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1020
  article-title: Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies
  publication-title: BMC Genom.
  doi: 10.1186/s12864-018-4897-1
– volume: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1235
  article-title: Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-018-4953-x
– ident: 10.1016/j.gene.2022.146283_b0295
  doi: 10.1093/jxb/eraa290
– start-page: 223
  year: 2007
  ident: 10.1016/j.gene.2022.146283_b0215
  article-title: Small RNAs: big role in abiotic stress tolerance of plants
– volume: 53
  start-page: 731
  issue: 5
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0815
  article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03363.x
– volume: 12
  start-page: 615114
  year: 2021
  ident: 10.1016/j.gene.2022.146283_b0150
  article-title: Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2021.615114
– volume: 10
  start-page: 495
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0475
  article-title: miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3
  publication-title: Biotech.
– volume: 16
  start-page: 145
  issue: 1
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0340
  article-title: Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-016-0830-4
– volume: 18
  start-page: 758
  issue: 10
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0015
  article-title: Endogenous siRNA and miRNA targets identied by sequencing of the Arabidopsis degradome
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.04.042
– volume: 258
  start-page: 122
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0080
  article-title: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.01.018
– volume: 6
  start-page: 957
  issue: 8
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1405
  article-title: Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis
  publication-title: Nat Plants.
  doi: 10.1038/s41477-020-0726-z
– year: 2020
  ident: 10.1016/j.gene.2022.146283_b0285
  article-title: microRNA regulation of fruit development
  doi: 10.1007/978-3-030-35772-6_5
– volume: 7
  start-page: 817
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1025
  article-title: MicroRNAs as potential targets for abiotic stress tolerance in plants
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2016.00817
– ident: 10.1016/j.gene.2022.146283_b1090
  doi: 10.1105/tpc.106.041673
– volume: 46
  start-page: 243
  year: 2006
  ident: 10.1016/j.gene.2022.146283_b1380
  article-title: Conservation and divergence of plant microRNA genes
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02697.x
– volume: 23
  start-page: 4051
  issue: 20
  year: 2004
  ident: 10.1016/j.gene.2022.146283_b0550
  article-title: MicroRNA genes are transcribed by RNA polymerase II
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600385
– volume: 64
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.gene.2022.146283_b1065
  article-title: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-010-9526-1
– volume: 9
  start-page: 2832
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1290
  article-title: The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-39397-7
– ident: 10.1016/j.gene.2022.146283_b5004
  doi: 10.1155/2018/9395261
– ident: 10.1016/j.gene.2022.146283_b0435
  doi: 10.1093/nar/gkt485
– volume: 5
  start-page: 84
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1265
  article-title: Identification of vacuolar phosphate efflux transporters in land plants
  publication-title: Nature plants
  doi: 10.1038/s41477-018-0334-3
– volume: 8
  start-page: 378
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0255
  article-title: Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.00378
– volume: 11
  start-page: 319
  issue: 3
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1180
  article-title: The critical role of miRNAs in regulation of flowering time and flower development
  publication-title: Genes.
  doi: 10.3390/genes11030319
– volume: 4
  start-page: 230
  issue: 3
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0785
  article-title: Origins and evolution of microRNA genes in plant species
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evs002
– volume: 1
  start-page: e0024
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0895
  article-title: Phosphate transport and homeostasis in Arabidopsis
  publication-title: The Arabidopsis Book
  doi: 10.1199/tab.0024
– volume: 12
  start-page: e0169212
  issue: 1
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0705
  article-title: Transcriptome-wide discovery of PASRs (Promoter-Associated Small RNAs) and TASRs (Terminus-Associated Small RNAs) in Arabidopsis thaliana
  publication-title: PloS one
  doi: 10.1371/journal.pone.0169212
– volume: 165
  start-page: 830
  issue: 4
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0730
  article-title: Alfalfa response to heat stress is modulated by microRNA156
  publication-title: Physiol Plant.
  doi: 10.1111/ppl.12787
– volume: 19
  start-page: 100
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0405
  article-title: Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites)
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1698-x
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b1005
  article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions
  publication-title: J Bot.
  doi: 10.1155/2012/217037
– volume: 18
  start-page: 938
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0585
  article-title: Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-017-4347-5
– ident: 10.1016/j.gene.2022.146283_b9011
  doi: 10.1093/nar/gky316
– volume: 53
  start-page: 1331
  issue: 372
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0045
  article-title: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.372.1331
– volume: 20
  start-page: 87
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0400
  article-title: Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2296-7
– ident: 10.1016/j.gene.2022.146283_b1395
  doi: 10.1186/s12284-018-0253-y
– volume: 11
  start-page: 687
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1320
  article-title: Chilling and heat stress-induced physiological changes and microRNA-related mechanism in sweetpotato (Ipomoea batatas L.). Front
  publication-title: Plant Sci.
– volume: 67
  start-page: 5811
  issue: 19
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0860
  article-title: Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/erw346
– volume: 16
  start-page: 235
  issue: 3
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0915
  article-title: PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes
  publication-title: Funct Integr Genomics.
  doi: 10.1007/s10142-016-0480-5
– volume: 14
  start-page: e0219176
  issue: 7
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0645
  article-title: Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing
  publication-title: PloS one.
  doi: 10.1371/journal.pone.0219176
– volume: 66
  start-page: 1519
  issue: 13
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0950
  article-title: Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity
  publication-title: Phytochem.
  doi: 10.1016/j.phytochem.2005.05.003
– volume: 58
  start-page: 426
  issue: 3
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0105
  article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley
  publication-title: Plant Cell Physiol.
– volume: 130
  start-page: 6
  issue: 1
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0745
  article-title: Short RNAs can identify new candidate transposable element families in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.007047
– volume: 21
  start-page: 2795
  issue: 8
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0900
  article-title: Genome-Wide identification and characterization of drought stress responsive microRNAs in Tibetan wild barley
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082795
– volume: 10
  start-page: 185
  issue: 4
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0120
  article-title: Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants
  publication-title: Plant Biotechnol Rep
  doi: 10.1007/s11816-016-0401-z
– volume: 26
  start-page: 1181
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0580
  article-title: miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana
  publication-title: Ecotoxicology.
  doi: 10.1007/s10646-017-1843-y
– volume: 39
  start-page: 32
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1255
  article-title: Identification of microRNAs from Zn-treated Solanum nigrum roots by small RNA sequencing
  publication-title: Acta Physiol Plant.
  doi: 10.1007/s11738-016-2337-x
– volume: 8
  start-page: 272
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1445
  article-title: Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.00272
– volume: 136
  start-page: 642
  issue: 4
  year: 2009
  ident: 10.1016/j.gene.2022.146283_b0200
  article-title: Origins and mechanisms of miRNAs and siRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.035
– volume: 1
  start-page: 375
  issue: 5
  year: 2009
  ident: 10.1016/j.gene.2022.146283_b0995
  article-title: Chromium interactions in plants: current status and future strategies
  publication-title: Metallomics.
  doi: 10.1039/b904571f
– ident: 10.1016/j.gene.2022.146283_b1075
  doi: 10.1093/bioinformatics/bty338
– volume: 25
  start-page: 2383
  issue: 7
  year: 2013
  ident: 10.1016/j.gene.2022.146283_b0955
  article-title: Biogenesis, turnover, and mode of action of plant microRNAs
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.113159
– ident: 10.1016/j.gene.2022.146283_b0615
  doi: 10.1093/jxb/erab336
– volume: 8
  start-page: 356
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0085
  article-title: An insight into microRNA156 role in salinity stress responses of alfalfa
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00356
– volume: 10
  start-page: 324
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0195
  article-title: The altered expression of microRNA408 influences the Arabidopsis response to iron deficiency
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00324
– ident: 10.1016/j.gene.2022.146283_b0145
  doi: 10.1105/tpc.111.090431
– volume: 6
  start-page: 188
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0410
  article-title: MicroRNA399 is involved in multiple nutrient starvation responses in rice
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2015.00188
– volume: 146
  start-page: 185
  issue: 2
  year: 2000
  ident: 10.1016/j.gene.2022.146283_b0190
  article-title: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00630.x
– volume: 12
  start-page: 76
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0470
  publication-title: Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways
– volume: 59
  start-page: 2143
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0365
  article-title: Differentially expressed microRNAs link cellular physiology to phenotypic changes in rice under stress conditions
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcy136
– volume: 6
  start-page: 117
  issue: 2–3
  year: 2013
  ident: 10.1016/j.gene.2022.146283_b1460
  article-title: Genome-wide analysis of microRNAs in sacred lotus, Nelumbo nucifera (Gaertn)
  publication-title: Trop Plant Biol.
  doi: 10.1007/s12042-013-9127-z
– volume: 8
  start-page: 6
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0480
  article-title: Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00006
– volume: 19
  start-page: 214
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1015
  article-title: Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum)
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1823-x
– volume: 40
  start-page: 183
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0905
  article-title: Wheat miRNA member TaMIR2275 involves plant nitrogen starvation adaptation via enhancement of the N acquisition-associated process
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-018-2758-9
– volume: 15
  start-page: e0230958
  issue: 4
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0830
  article-title: Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity
  publication-title: PloS one.
  doi: 10.1371/journal.pone.0230958
– volume: 16
  start-page: 1616
  issue: 13
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0935
  article-title: MicroRNAs in plants
  publication-title: Genes Dev.
  doi: 10.1101/gad.1004402
– volume: 20
  start-page: 740
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1200
  article-title: Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-019-6111-5
– volume: 13 Suppl 7 (Suppl 7)
  start-page: S16
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0795
  article-title: C-mii: a tool for plant miRNA and target identification
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-13-S7-S16
– volume: 9
  start-page: 499
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0110
  article-title: Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi Deprivation and salt stress via modulating stress-associated physiological processes
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2018.00499
– volume: 15
  start-page: 523
  issue: 5
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0175
  article-title: Plant miRNAs: biogenesis, organization and origins
  publication-title: Funct. Integr. Genomic
  doi: 10.1007/s10142-015-0451-2
– volume: 14
  start-page: 854
  issue: 6
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0360
  article-title: A link between RNA metabolism and silencing affecting Arabidopsis development
  publication-title: Dev Cell.
  doi: 10.1016/j.devcel.2008.04.005
– volume: 20
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1480
  article-title: Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-018-5395-1
– volume: 9
  start-page: 182
  issue: 5
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0005
  article-title: Identification of miRNAs and their response to cold stress in Astragalus membranaceus
  publication-title: Biomolecules.
  doi: 10.3390/biom9050182
– volume: 20
  start-page: 532
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0370
  article-title: miRkwood: a tool for the reliable identification of microRNAs in plant genomes
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-019-5913-9
– ident: 10.1016/j.gene.2022.146283_b0710
  doi: 10.1093/bioinformatics/btx797
– volume: 9
  start-page: e91357
  issue: 3
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b1215
  article-title: MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0091357
– volume: 38
  start-page: D806
  issue: Database issue
  year: 2010
  ident: 10.1016/j.gene.2022.146283_b1435
  article-title: PMRD: plant microRNA database
  publication-title: Nucleic Acids Research.
  doi: 10.1093/nar/gkp818
– ident: 10.1016/j.gene.2022.146283_b0535
  doi: 10.1093/bioinformatics/bty972
– volume: 48
  start-page: D1114
  issue: D1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0385
  article-title: PmiREN: a comprehensive encyclopedia of plant miRNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz894
– ident: 10.1016/j.gene.2022.146283_b0395
  doi: 10.1038/srep32805
– volume: 20
  start-page: 515
  issue: 5
  year: 2006
  ident: 10.1016/j.gene.2022.146283_b1170
  article-title: Control of translation and mRNA degradation by miRNAs and siRNAs
  publication-title: Genes Dev.
  doi: 10.1101/gad.1399806
– volume: 177
  start-page: 1691
  issue: 4
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0250
  article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00485
– volume: 16
  start-page: 362
  issue: 3
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1220
  article-title: MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2019.1574163
– volume: 17
  start-page: 1658
  issue: 6
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0100
  article-title: Antiquity of microRNAs and their targets in land plants
  publication-title: Plant Cell.
  doi: 10.1105/tpc.105.032185
– volume: 60
  start-page: 1440
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0520
  article-title: Understanding the complexity of iron sensing and signaling cascades in plants
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcz038
– volume: 37
  start-page: 1293
  issue: 9
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0650
  article-title: TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-018-2313-6
– volume: 64
  start-page: 343
  issue: 1
  year: 2013
  ident: 10.1016/j.gene.2022.146283_b0755
  article-title: Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/ers339
– volume: 12
  start-page: 1484
  issue: 17
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0825
  article-title: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana
  publication-title: Curr Biol.
  doi: 10.1016/S0960-9822(02)01017-5
– volume: 32
  start-page: 450
  issue: 3
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0840
  article-title: miTRATA: a web-based tool for microRNA truncation and tailing analysis
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv583
– volume: 57
  start-page: 1865
  issue: 9
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1430
  article-title: The miR396b of Poncirus trifoliate functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene-polyamine homeostasis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw108
– volume: 161
  start-page: 1235
  issue: 11
  year: 2004
  ident: 10.1016/j.gene.2022.146283_b0600
  article-title: Manganese accumulation in rice: implications for photosynthetic functioning
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2004.02.003
– volume: 42
  start-page: D74
  issue: Database issue
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b1105
  article-title: miRNEST 2.0: a database of plant and animal microRNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1156
– volume: 252
  start-page: 103
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0595
  article-title: miRNA alterations are important mechanism in maize adaptations to low-phosphate environments
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.07.009
– volume: 20
  start-page: 488
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0930
  article-title: MicroRNA-guided regulation of heat stress response in wheat
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-019-5799-6
– volume: 5
  start-page: 14024
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0640
  article-title: Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.)
  publication-title: Sci Rep.
  doi: 10.1038/srep14024
– volume: 32
  start-page: 27
  year: 2000
  ident: 10.1016/j.gene.2022.146283_b0715
  article-title: Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators?
  publication-title: Plant Growth Regul.
  doi: 10.1023/A:1006314001430
– volume: 53
  start-page: 247
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b1485
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu Rev Plant Biol.
  doi: 10.1146/annurev.arplant.53.091401.143329
– volume: 20
  start-page: 2391
  issue: 10
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1260
  article-title: Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt and alkali stress tolerance in tobacco
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20102391
– volume: 10
  start-page: 503
  issue: 10
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0925
  article-title: Sulfur metabolism: a versatile platform for launching defence operations
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2005.08.006
– volume: 1
  start-page: 6
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0575
  article-title: Current experimental strategies for intracellular target identification of microRNA
  publication-title: ExRNA.
  doi: 10.1186/s41544-018-0002-9
– volume: 8
  start-page: 156
  issue: 6
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0290
  article-title: Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides)
  publication-title: Genes.
  doi: 10.3390/genes8060156
– ident: 10.1016/j.gene.2022.146283_b0700
  doi: 10.1139/cjps-2018-0327
– volume: 9
  start-page: 602
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0980
  article-title: ARMOUR-A Rice miRNA: mRNA Interaction Resource
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2018.00602
– volume: 38
  start-page: 465
  issue: 3
  year: 2010
  ident: 10.1016/j.gene.2022.146283_b1240
  article-title: DNA methylation mediated by a microRNA pathway
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2010.03.008
– volume: 30
  start-page: 796
  issue: 4
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0375
  article-title: Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling
  publication-title: Plant Cell.
  doi: 10.1105/tpc.17.00842
– volume: 5
  start-page: 708
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b0850
  article-title: plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2014.00708
– volume: 46
  start-page: 10709
  issue: 20
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0760
  article-title: Efficiency and precision of microRNA biogenesis modes in plants
  publication-title: Nucleic Acids Res.
– volume: 154
  start-page: 29
  issue: 1
  year: 2002
  ident: 10.1016/j.gene.2022.146283_b0740
  article-title: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2002.00363.x
– volume: 6
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1345
  article-title: Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis
  publication-title: Sci Rep.
– volume: 8
  start-page: 124
  issue: 5
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0870
  article-title: DRB1, DRB2 and DRB4 are required for appropriate regulation of the microRNA399/PHOSPHATE2 expression module in Arabidopsis thaliana
  publication-title: Plants (Basel).
– ident: 10.1016/j.gene.2022.146283_b1130
  doi: 10.1007/978-1-4939-7136-7_22
– volume: 46
  start-page: 8730
  issue: 17
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1140
  article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 107
  year: 2011
  ident: 10.1016/j.gene.2022.146283_b1245
  article-title: MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-12-107
– volume: 230
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1385
  article-title: MicroRNA-based biotechnology for plant improvement
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.24685
– volume: 10
  start-page: e0142753
  issue: 11
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0230
  article-title: miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences
  publication-title: PloS One.
  doi: 10.1371/journal.pone.0142753
– volume: 47
  start-page: D155
  issue: D1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0530
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1141
– volume: 54
  start-page: 118
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0775
  article-title: Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (Brassica napus L.)
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2007.00214.x
– volume: 9
  start-page: 168
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1310
  article-title: Classification of transcription boundary-associated RNAs (TBARs) in animals and plants
  publication-title: Front Genet.
  doi: 10.3389/fgene.2018.00168
– volume: 17
  start-page: 1712
  issue: 10
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0205
  article-title: MicroRNA in control of gene expression: An overview of nuclear functions
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms17101712
– volume: 9
  start-page: 769
  issue: 3
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1095
  article-title: The Role of UV-B light on small RNA activity during grapevine berry development. G3 (Bethesda
  publication-title: Md.)
– volume: 19
  start-page: 78
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0985
  article-title: Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1679-0
– volume: 8
  start-page: 341
  year: 2007
  ident: 10.1016/j.gene.2022.146283_b0425
  article-title: MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-8-341
– volume: 285
  start-page: 68
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1335
  article-title: Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana
  publication-title: Plant Sc.
  doi: 10.1016/j.plantsci.2019.05.003
– volume: 9
  start-page: 383
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1410
  article-title: Lateral root development in potato is mediated by Stu-mi164 regulation of NAC transcription factor
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2018.00383
– volume: 7
  start-page: 174
  issue: 1
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1000
  article-title: Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice
  publication-title: Metallomics.
  doi: 10.1039/C4MT00264D
– volume: 21
  start-page: 100210
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0155
  article-title: Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L)
  publication-title: Plant Gene.
  doi: 10.1016/j.plgene.2019.100210
– volume: 33
  start-page: 429
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0495
  article-title: LncRNAs: Genetic and epigenetic effects in plants
  publication-title: Biotechnol Biotechnol Equip.
  doi: 10.1080/13102818.2019.1581085
– volume: 39
  start-page: 282
  issue: 2
  year: 2010
  ident: 10.1016/j.gene.2022.146283_b0440
  article-title: In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2010.05.014
– ident: 10.1016/j.gene.2022.146283_b0625
  doi: 10.1021/acs.jafc.5b04191
– volume: 2
  start-page: 16033
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1440
  article-title: Vascular-mediated signalling involved in early phosphate stress response in plants
  publication-title: Nat Plants.
  doi: 10.1038/nplants.2016.33
– volume: 7
  start-page: 23
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0510
  article-title: Ethylene and metal stress: small molecule, big impact
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2016.00023
– volume: 32
  start-page: 2722
  issue: 17
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0680
  article-title: Tools4miRs-one place to gather all the tools for miRNA analysis
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw189
– volume: 6
  start-page: 232
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0855
  article-title: miRNA regulation of nutrient homeostasis in plants
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2015.00232
– volume: 8
  start-page: 565
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0970
  article-title: MicroRNA and transcription factor: key players in plant regulatory network
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.00565
– volume: 9
  start-page: 34
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0270
  article-title: Applications and trends of machine learning in genomics and phenomics for next-generation breeding
  publication-title: Plants.
  doi: 10.3390/plants9010034
– volume: 20
  start-page: 466
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0465
  article-title: Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02595-x
– volume: 24
  start-page: 2168
  issue: 5
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0630
  article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096636
– volume: 17
  start-page: 272
  issue: 3
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0975
  article-title: Zinc accumulation and tolerance in Solanum nigrum are plant growth dependent
  publication-title: Int. J. Phytoremediation.
  doi: 10.1080/15226514.2014.898018
– volume: 9
  start-page: 465
  issue: 2
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1495
  article-title: Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum
  publication-title: Crop J.
  doi: 10.1016/j.cj.2020.07.005
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0240
  article-title: Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-ta-siRNA crosstalk as regulator of seed germination
  publication-title: Sci Rep
– volume: 18
  start-page: 212
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1055
  article-title: Response of microRNAs to cold treatment in the young spikes of common wheat
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-017-3556-2
– volume: 22
  start-page: 16441
  issue: 21
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b1195
  article-title: A review of soil cadmium contamination in China including a health risk assessment
  publication-title: Environ Sci Pollut Res Int.
  doi: 10.1007/s11356-015-5273-1
– volume: 21
  start-page: 100213
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1045
  article-title: Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2019.100213
– volume: 8
  start-page: 1598
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1465
  article-title: CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.01598
– volume: vol 19
  start-page: 223
  year: 2011
  ident: 10.1016/j.gene.2022.146283_b1165
  article-title: The role of plasma membrane nitrogen transporters in nitrogen acquisition and utilization
– volume: 321
  start-page: 1490
  issue: 5895
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0920
  article-title: Degradation of microRNAs by a family of exoribonucleases in Arabidopsis
  publication-title: Science.
  doi: 10.1126/science.1163728
– volume: 164
  start-page: 611
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0910
  article-title: Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress
  publication-title: Ecotoxicol Environ Saf.
  doi: 10.1016/j.ecoenv.2018.08.077
– volume: 136
  start-page: 479
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1360
  article-title: Response of NAC transcription factor genes against chromium stress in sunflower (Helianthus annuus L.)
  publication-title: Plant Cell Tiss Organ Cult
  doi: 10.1007/s11240-018-01529-8
– volume: 4975146
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0260
  article-title: miR319, miR390, and miR393 are involved in Aluminum response in Flax (Linum usitatissimum L.)
  publication-title: Bio Med Res Int.
– volume: 20
  start-page: 1474
  issue: 6
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1185
  article-title: Bioinformatic exploration of the targets of xylem sap miRNAs in maize under cadmium stress
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20061474
– ident: 10.1016/j.gene.2022.146283_b0305
  doi: 10.3389/fpls.2017.00864
– volume: 86
  start-page: 1
  issue: 1–2
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b1160
  article-title: Artificial microRNA mediated gene silencing in plants: progress and perspectives
  publication-title: Plant Mol Biol.
  doi: 10.1007/s11103-014-0224-7
– volume: 59
  start-page: 313
  issue: 1
  year: 2008
  ident: 10.1016/j.gene.2022.146283_b0115
  article-title: Flooding stress, acclimations and genetic diversity
  publication-title: Annu Rev Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092752
– year: 1995
  ident: 10.1016/j.gene.2022.146283_b0725
– volume: 217
  start-page: 1712
  issue: 4
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b0610
  article-title: Evolution of microRNA827 targeting in the plant kingdom
  publication-title: New Phytol.
  doi: 10.1111/nph.14938
– volume: 15
  start-page: e0236829
  issue: 7
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0605
  article-title: Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0236829
– volume: 294
  start-page: 379
  issue: 2
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1470
  article-title: MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells
  publication-title: Mol Genet Genomics.
  doi: 10.1007/s00438-018-1516-4
– volume: 17
  start-page: 697
  issue: 6
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0555
  article-title: Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance
  publication-title: Funct Integr Genomics.
  doi: 10.1007/s10142-017-0565-9
– volume: 10
  start-page: 340
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0320
  article-title: Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2019.00340
– volume: 57
  start-page: 19
  issue: 1
  year: 2006
  ident: 10.1016/j.gene.2022.146283_b0490
  article-title: MicroRNAS and their regulatory roles in plants
  publication-title: Annu Rev Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105218
– volume: 20
  start-page: 283
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0220
  article-title: Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor
  publication-title: BMC Plant Boil.
  doi: 10.1186/s12870-020-02489-y
– volume: 137
  start-page: 96
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b0345
  article-title: Insights into the miRNA-mediated response of maize leaf to arsenate stress
  publication-title: Environ Exp Bot.
  doi: 10.1016/j.envexpbot.2017.01.015
– volume: 151
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1295
  article-title: Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing
  publication-title: Ind Crop Prod.
  doi: 10.1016/j.indcrop.2020.112484
– volume: 6
  start-page: 32158
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0590
  article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds
  publication-title: Sci. Rep.
  doi: 10.1038/srep32158
– volume: 36
  start-page: 1171
  issue: 7
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1355
  article-title: Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.)
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2146-8
– volume: 111
  start-page: 1026
  issue: 5
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1030
  article-title: The role of miRNA in somatic embryogenesis
  publication-title: Genomics.
  doi: 10.1016/j.ygeno.2018.11.022
– volume: 10
  start-page: 366
  issue: 1
  year: 2009
  ident: 10.1016/j.gene.2022.146283_b0750
  article-title: MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-10-366
– volume: 39
  start-page: 120
  issue: 1
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1340
  article-title: Inhibition of root meristem growth by cadmiumin volves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12597
– volume: 48
  start-page: 1243
  issue: 9
  year: 2007
  ident: 10.1016/j.gene.2022.146283_b0315
  article-title: Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm099
– volume: 20
  start-page: 14
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0325
  article-title: Characterization of cadmium-responsive microRNAs and their target genes in maize (Zea mays) roots
  publication-title: BMC Molecular Biol.
  doi: 10.1186/s12867-019-0131-1
– volume: 18
  start-page: 645
  issue: 6
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1505
  article-title: MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-018-0619-7
– volume: 173
  start-page: 677
  issue: 4
  year: 2007
  ident: 10.1016/j.gene.2022.146283_b0170
  article-title: Zinc in plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.01996.x
– year: 1994
  ident: 10.1016/j.gene.2022.146283_b0500
– volume: 17
  start-page: 818
  issue: 9
  year: 2007
  ident: 10.1016/j.gene.2022.146283_b0280
  article-title: Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants
  publication-title: Curr Boil.
  doi: 10.1016/j.cub.2007.04.005
– year: 2020
  ident: 10.1016/j.gene.2022.146283_b0565
  article-title: Plant microRNAs regulate innate immunity through diverse mechanisms
  doi: 10.1007/978-3-030-35772-6_11
– volume: 55
  start-page: 76
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0355
  article-title: Identification of manganese-responsive microRNAs in Arabidopsis by small RNA sequencing
  publication-title: Czech J. Genet. Plant Breed.
  doi: 10.17221/57/2018-CJGPB
– volume: 91
  start-page: 651
  issue: 6
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1415
  article-title: The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses
  publication-title: Plant Mol Biol.
  doi: 10.1007/s11103-016-0488-1
– volume: 7
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b1390
  article-title: MicroRNA, a new target for engineering new crop cultivars
  publication-title: Bioengineered.
  doi: 10.1080/21655979.2016.1141838
– volume: 38
  start-page: 92
  issue: 2
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0035
  article-title: Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana
  publication-title: Plant Divers.
  doi: 10.1016/j.pld.2015.04.001
– volume: 48
  start-page: D148
  issue: D1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0415
  article-title: miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database
  publication-title: Nucleic Acids Res.
– volume: 136
  start-page: 2443
  year: 2004
  ident: 10.1016/j.gene.2022.146283_b0965
  article-title: Sulfur assimilatory metabolism. The long and smelling road
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.046755
– volume: 47
  start-page: W530
  issue: W1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0070
  article-title: sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz415
– volume: 109
  start-page: 12817
  issue: 31
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b0945
  article-title: Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1204915109
– volume: 682
  start-page: 13
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0960
  article-title: Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants
  publication-title: Gene
  doi: 10.1016/j.gene.2018.09.049
– volume: 8
  start-page: 58
  issue: 3
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0865
  article-title: Profiling the abiotic stress responsive microRNA landscape of Arabidopsis thaliana
  publication-title: Plants.
  doi: 10.3390/plants8030058
– volume: 25
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.gene.2022.146283_b0020
  article-title: Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680500365232
– volume: 70
  start-page: 4775
  issue: 18
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1150
  article-title: miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/erz264
– volume: 87
  start-page: 389
  issue: 3
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1325
  article-title: Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-019-00479-1
– volume: 4
  start-page: 1070
  year: 2015
  ident: 10.1016/j.gene.2022.146283_b0670
  article-title: RNA-Seq workflow: gene-level exploratory analysis and differential expression
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7035.1
– volume: 15
  start-page: 275
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b0060
  article-title: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-15-275
– ident: 10.1016/j.gene.2022.146283_b0720
  doi: 10.1111/tpj.14369
– ident: 10.1016/j.gene.2022.146283_b1120
  doi: 10.1093/jxb/erz132
– volume: 10
  start-page: 748
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1110
  article-title: Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00748
– volume: 231
  start-page: 303
  issue: 2
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0560
  article-title: MicroRNAs in control of plant development
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.25125
– volume: 19
  start-page: 570
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0310
  article-title: MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2189-9
– volume: 22
  start-page: 348
  year: 2021
  ident: 10.1016/j.gene.2022.146283_b0635
  article-title: TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-021-07680-5
– volume: 10
  start-page: 989
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0225
  article-title: Redox balance-DDR-miRNA triangle: Relevance in genome stability and stress responses in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00989
– volume: 31
  start-page: 2929
  issue: 12
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b0885
  article-title: MicroRNA dynamics and functions during Arabidopsis embryogenesis
  publication-title: Plant Cell.
  doi: 10.1105/tpc.19.00395
– volume: 34
  start-page: 931
  issue: 5
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0330
  article-title: Wheat microRNA member TaMIR444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress
  publication-title: Plant Mol Bio Rep.
  doi: 10.1007/s11105-016-0973-3
– volume: 7
  start-page: 225
  year: 1979
  ident: 10.1016/j.gene.2022.146283_b0075
  article-title: Aeration in higher plants
  publication-title: Adv. Bot. Res.
  doi: 10.1016/S0065-2296(08)60089-0
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: 10.1016/j.gene.2022.146283_b0135
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 85
  start-page: 1
  issue: 9
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1230
  article-title: Degradation of fungal microRNAs triggered by short tandem target mimics is via the small-RNA-degrading nuclease
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03132-18
– ident: 10.1016/j.gene.2022.146283_b0545
  doi: 10.1016/0092-8674(93)90529-Y
– volume: 19
  start-page: 585
  issue: 1
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1365
  article-title: Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2203-2
– volume: 195
  start-page: 97
  issue: 1
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b1315
  article-title: Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa)
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04154.x
– volume: 8
  start-page: 143
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0125
  article-title: MicroRNA involvement in signaling pathways during viral infection
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00143
– volume: 27
  start-page: 1215
  issue: 9
  year: 2011
  ident: 10.1016/j.gene.2022.146283_b1135
  article-title: SplamiR-prediction of spliced miRNAs in plants
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr132
– volume: 22
  start-page: 359
  issue: 3
  year: 2006
  ident: 10.1016/j.gene.2022.146283_b0245
  article-title: Identification of plant microRNA homologs
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bti802
– volume: 10
  start-page: 3041
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0095
  article-title: Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses
  publication-title: Sci Rep.
  doi: 10.1038/s41598-020-59981-6
– volume: 248
  start-page: 545
  issue: 3
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1040
  article-title: Plant small RNAs: advancement in the understanding of biogenesis and role in plant development
  publication-title: Planta.
  doi: 10.1007/s00425-018-2927-5
– volume: 183
  start-page: 1681
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1205
  article-title: The miR399- CsUBC24 module regulates reproductive development and male fertility in citrus
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00129
– volume: 31
  start-page: 739
  issue: 5
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0990
  article-title: Chromium toxicity in plants
  publication-title: Environment international
  doi: 10.1016/j.envint.2005.02.003
– volume: 65
  start-page: 1425
  issue: 6
  year: 2014
  ident: 10.1016/j.gene.2022.146283_b0235
  article-title: miRNAs in the crosstalk between phytohormone signalling pathways
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/eru002
– volume: 75
  start-page: 1468
  issue: 11
  year: 2009
  ident: 10.1016/j.gene.2022.146283_b1190
  article-title: The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2009.02.033
– volume: 15
  start-page: 78
  issue: 1
  year: 2005
  ident: 10.1016/j.gene.2022.146283_b0010
  article-title: Computational prediction of miRNAs in Arabidopsis thaliana
  publication-title: Genome Res.
  doi: 10.1101/gr.2908205
– volume: 175
  start-page: 1175
  issue: 3
  year: 2017
  ident: 10.1016/j.gene.2022.146283_b1400
  article-title: MiR408 regulates grain yield and photosynthesis via a phytocyanin protein
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01169
– volume: 58
  start-page: 118
  issue: 2
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b1115
  article-title: Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs
  publication-title: Methods (San Diego, Calif.)
  doi: 10.1016/j.ymeth.2012.10.006
– volume: 27
  start-page: 380
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b0265
  article-title: Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa)
  publication-title: Environ Sci Pollut Res Int.
  doi: 10.1007/s11356-019-06760-0
– volume: 24
  start-page: 415
  issue: 2
  year: 2012
  ident: 10.1016/j.gene.2022.146283_b1270
  article-title: Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis
  publication-title: Plant Cell.
  doi: 10.1105/tpc.111.094144
– volume: 11
  start-page: e1213474
  issue: 8
  year: 2016
  ident: 10.1016/j.gene.2022.146283_b0620
  article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants
  publication-title: Plant Signal Behav
  doi: 10.1080/15592324.2016.1213474
– volume: 248
  start-page: 805
  issue: 4
  year: 2011
  ident: 10.1016/j.gene.2022.146283_b1070
  article-title: Redox state and energetic equilibrium determine the magnitude of stress in upon exposure to arsenate
  publication-title: Hydrilla verticillata Protoplasma.
  doi: 10.1007/s00709-010-0256-z
– volume: 61
  start-page: 1880
  issue: 11
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1330
  article-title: The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcaa079
– volume: 18
  start-page: 290
  issue: 1
  year: 2018
  ident: 10.1016/j.gene.2022.146283_b1145
  article-title: MicroRNA 399 as a potential integrator of photo-response, phosphate homeostasis, and sucrose signaling under long day condition
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-018-1460-9
– ident: 10.1016/j.gene.2022.146283_b0695
  doi: 10.1111/tpj.12999
– volume: 14
  start-page: e0217806
  issue: 11
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1035
  article-title: Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0217806
– volume: 2
  issue: 3
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1100
  article-title: miRNAs in plant development
  publication-title: Annu Plant Rev.
  doi: 10.1002/9781119312994.apr0649
– volume: 62
  start-page: 157
  issue: 1
  year: 2011
  ident: 10.1016/j.gene.2022.146283_b1125
  article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103921
– volume: 232
  start-page: 1289
  issue: 6
  year: 2010
  ident: 10.1016/j.gene.2022.146283_b0300
  article-title: Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum)
  publication-title: Planta.
  doi: 10.1007/s00425-010-1255-1
– volume: 4
  start-page: 145
  year: 2013
  ident: 10.1016/j.gene.2022.146283_b0505
  article-title: Systemic regulation of mineral homeostasis by micro RNAs
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2013.00145
– ident: 10.1016/j.gene.2022.146283_b5002
  doi: 10.1007/s10142-019-00692-1
– volume: 140
  start-page: 57
  issue: 1
  year: 2010
  ident: 10.1016/j.gene.2022.146283_b0685
  article-title: Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays
  publication-title: Physiol Plant.
  doi: 10.1111/j.1399-3054.2010.01384.x
– volume: 10
  start-page: 360
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1210
  article-title: Plant microRNAs: Biogenesis, homeostasis, and degradation
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2019.00360
– volume: 20
  start-page: 107
  issue: 1
  year: 2020
  ident: 10.1016/j.gene.2022.146283_b1475
  article-title: Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2313-x
– volume: 41
  start-page: 1183
  issue: 10
  year: 2019
  ident: 10.1016/j.gene.2022.146283_b1300
  article-title: Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply
  publication-title: Genes Genomics
  doi: 10.1007/s13258-019-00848-0
SSID ssj0000552
Score 2.5738971
SecondaryResourceType review_article
Snippet [Display omitted] •miRNAs are important regulators of gene expression in plants.•Plant miRNAs play a pivotal role in abiotic stress responses.•Using...
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively...
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20–24 nucleotides in length. miRNAs negatively...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 146283
SubjectTerms Abiotic stress
cold
crops
drought
gene expression
Gene Expression Regulation, Plant
Gene Regulatory Networks
heat stress
heavy metals
High-Throughput Nucleotide Sequencing
High-throughput sequencing
hypoxia
MicoRNAs
microRNA
MicroRNAs - genetics
nucleotides
nutrient deficiencies
oxidative stress
plant growth
Plant Physiological Phenomena
Plant Proteins - genetics
Plants - genetics
prediction
RNA, Plant - genetics
salinity
Sequence Analysis, RNA
stress tolerance
Stress, Physiological
toxicity
Transcription factors
ultraviolet radiation
Title Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants
URI https://dx.doi.org/10.1016/j.gene.2022.146283
https://www.ncbi.nlm.nih.gov/pubmed/35143944
https://www.proquest.com/docview/2628301484
https://www.proquest.com/docview/2648840959
Volume 821
WOSCitedRecordID wos000781099600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0038
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000552
  issn: 0378-1119
  databaseCode: AIEXJ
  dateStart: 20210105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3_i9MwFMCDt1PQH0Tv_DK_HBHkUI6CbdMm_XHKDpUx5dhB_SkkbQo7XDu3nZz_ve8laTvEG-cP_lJCm3aln-zlveR9IeR1ycpQq5IHhch0wGIdB6JKkwCmEhVnsdG8tCnzJ3w6FXmeffXFFNe2nACva3F1lS3_K2o4B7AxdPYfcHcPhRPQBuhwBOxwvBH4M1ddHvfOW9fBBXrdnU1HdoV1MccWrgZ4F0eQeegQUPbuQ9Y5QM8bTObqg0k28KiVDS9obOlpnwGq1Wsxe3Vn2cML2FH2Ta0XPrG3X1cAkxS9-JIt8ROjfRl6geZlpYjCkyVKV9BKgr9KYLcYcIFfAbOQRpHv3c837R779Is8PZ9M5Gycz46XPwKsBIY75r4syh7Zj3iSiQHZH30a55_7-TVJ3N6Qfz8fCuW89v782evUjevMCatWzB6Q-94eoCPH8SG5ZeoDcjiqAeDiFz2m1kPXbn0ckDvv29a9rTSSh8T0yCkip01FO-T0jQP-ls5rCripw023cGN_j5s63LTDjdcc7kfk_HQ8-_Ax8OUzggK00E1g0qgA6fyuMkpnynAGyjYYA6Cg64wXYRqpKo0jJVhkeMlNyVIR6SSp4jhlJlFZ_JgM6qY2TzGwv9BclCLVSrEUg61BUVUp2OopEwWvhiRsv7IsfG55LHHyXbZOhBcSyUgkIx2ZITnp7lm6zCo7eyctPOl1Q6fzSRh4O-971ZKWIDhxN0zVprlcywgv43o629UH5jeGS-VD8sQNk-5dMQQGo8qf3eDu5-Ru_xd7QQab1aV5SW4XPzfz9eqI7PFcHPlh_hvu66Hi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+role+of+microRNAs+%28miRNAs%29+in+the+recent+development+of+abiotic+stress+tolerance+of+plants&rft.jtitle=Gene&rft.au=Begum%2C+Yasmin&rft.date=2022-05-05&rft.issn=0378-1119&rft.volume=821+p.146283-&rft_id=info:doi/10.1016%2Fj.gene.2022.146283&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon