MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1

MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the developme...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications Vol. 524; no. 3; pp. 716 - 722
Main Authors: Zhang, Meiyuan, Tang, Yan, Tang, E., Lu, Weirong
Format: Journal Article
Language:English
Published: United States Elsevier Inc 09.04.2020
Subjects:
ISSN:0006-291X, 1090-2104, 1090-2104
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3’ untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD. •miR-103 inhibits the expression of Fasn and Scd1 via binding mRNA 3′-UTR.•miR-103 blocks the lipid accumulation in oleate-incubated hepatocytes.•Overexpressing miR-103 repress HCD-promoted hepatic lipid contents and NAFLD.•miR-103 overexpression alleviates obesity-associated fatty liver in db/db mice.
AbstractList MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3’ untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD.
MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3' untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD.MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3' untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD.
MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3’ untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD. •miR-103 inhibits the expression of Fasn and Scd1 via binding mRNA 3′-UTR.•miR-103 blocks the lipid accumulation in oleate-incubated hepatocytes.•Overexpressing miR-103 repress HCD-promoted hepatic lipid contents and NAFLD.•miR-103 overexpression alleviates obesity-associated fatty liver in db/db mice.
Author Zhang, Meiyuan
Tang, Yan
Tang, E.
Lu, Weirong
Author_xml – sequence: 1
  givenname: Meiyuan
  surname: Zhang
  fullname: Zhang, Meiyuan
  organization: Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
– sequence: 2
  givenname: Yan
  surname: Tang
  fullname: Tang, Yan
  organization: Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
– sequence: 3
  givenname: E.
  surname: Tang
  fullname: Tang, E.
  organization: Digestive System Department, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
– sequence: 4
  givenname: Weirong
  surname: Lu
  fullname: Lu, Weirong
  email: luweirong75@163.com
  organization: Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32035613$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URNPCH-CAfOSy2_HHbnYlLlHaQKUQJAoSN8uxJ8HRxl5sJxL_Hoe0Fw4VJ89IzzuynveKXPjgkZC3DGoGrL3Z1et1NDUHDjWwmknxgkwY9FBxBvKCTACgrXjPflySq5R2AIzJtn9FLgUH0bRMTIj57EwMX1ezioGgEceIKWGiP3HU2RlqkfpwDHRwY9iix-QS1d5SPQx4dDoXdDVbLG9pWWjWcYvZ-S1dzB5Wf7mH-S17TV5u9JDwzeN7Tb4v7r7NP1XLLx_v57NlZUTX58oaI_VUTqebTWdF00nZdMIaa1mHfdNoocsORkD5PVjb6TJL0XO7xpY3Vopr8v58d4zh1wFTVnuXDA6D9hgOSfGGS84kF_-BikYUrS1vC_ruET2s92jVGN1ex9_qyWEBujNQRKYUcaOMy0Ve8DlqNygG6lSX2qlTXepUlwKmSl0lyv-JPl1_NvThHMLi8ugwqmQceoPWRTRZ2eCei_8BrgWqyA
CitedBy_id crossref_primary_10_1038_s41419_024_06463_6
crossref_primary_10_1002_advs_202408906
crossref_primary_10_1007_s10528_020_09971_0
crossref_primary_10_1177_20420188221132138
crossref_primary_10_31883_pjfns_182927
crossref_primary_10_1016_j_envint_2021_106497
crossref_primary_10_3389_fnut_2021_733197
crossref_primary_10_1016_j_bcp_2025_117239
crossref_primary_10_3390_ijms24119168
crossref_primary_10_1016_j_cbd_2021_100956
crossref_primary_10_1016_j_acthis_2024_152211
crossref_primary_10_1155_2022_6161694
crossref_primary_10_1016_j_ejphar_2021_174261
crossref_primary_10_1016_j_plipres_2022_101197
crossref_primary_10_1139_apnm_2024_0294
crossref_primary_10_1016_j_fsi_2024_109573
crossref_primary_10_1002_fsn3_3713
crossref_primary_10_3390_nu13072331
crossref_primary_10_3390_ijms23147841
crossref_primary_10_3389_fvets_2022_959906
crossref_primary_10_3389_fvets_2022_954882
crossref_primary_10_3390_ijms26041778
crossref_primary_10_3389_fphar_2025_1610498
crossref_primary_10_1016_j_ejphar_2023_175989
crossref_primary_10_3390_ijms22020689
crossref_primary_10_1016_j_biopha_2020_110472
crossref_primary_10_1016_j_biopha_2022_112972
crossref_primary_10_3390_cells9030590
crossref_primary_10_4254_wjh_v14_i1_168
crossref_primary_10_1016_j_gene_2021_145954
crossref_primary_10_1038_s41392_024_01914_0
Cites_doi 10.1507/endocrj.K07E-110
10.1515/hsz-2014-0241
10.3748/wjg.v24.i36.4104
10.1016/j.chemphyslip.2011.06.004
10.1002/hep.27153
10.1111/j.1463-1326.2010.01275.x
10.3109/10409231003667500
10.1007/s10620-016-4054-0
10.1038/nrg1379
10.1038/ni.3709
10.1002/hep.22774
10.1172/JCI200523962
10.1038/s41598-017-15141-x
10.1016/j.jhep.2008.01.009
10.1016/S0092-8674(01)00616-X
10.1016/j.cell.2012.02.017
10.1002/hep.23280
10.1016/j.jhep.2016.12.016
10.1016/S0140-6736(10)60408-4
10.1053/j.gastro.2013.11.049
10.1016/j.ymgme.2007.03.011
10.1016/S0021-9258(18)64849-5
10.1016/S0092-8674(04)00045-5
10.1016/S0021-9258(19)50107-7
10.1194/jlr.M082602
10.1016/j.cell.2010.05.017
10.1136/gutjnl-2018-318146
10.1038/nature10112
10.1038/ncomms4528
10.1002/hep.29871
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbrc.2020.01.143
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 722
ExternalDocumentID 32035613
10_1016_j_bbrc_2020_01_143
S0006291X20302266
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9DU
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~HD
~KM
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-dcc4a7477ff8d35844583dcdd18e955a3a5830c303200dd8a0c34392dbe625d43
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526792800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-291X
1090-2104
IngestDate Sun Sep 28 09:28:23 EDT 2025
Sun Sep 28 12:31:52 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Sat Nov 29 07:32:49 EST 2025
Tue Nov 18 22:40:02 EST 2025
Fri Feb 23 02:48:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords miR-103
Obesity
NAFLD
de novo lipogenesis
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-dcc4a7477ff8d35844583dcdd18e955a3a5830c303200dd8a0c34392dbe625d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32035613
PQID 2353020626
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2524214234
proquest_miscellaneous_2353020626
pubmed_primary_32035613
crossref_citationtrail_10_1016_j_bbrc_2020_01_143
crossref_primary_10_1016_j_bbrc_2020_01_143
elsevier_sciencedirect_doi_10_1016_j_bbrc_2020_01_143
PublicationCentury 2000
PublicationDate 2020-04-09
PublicationDateYYYYMMDD 2020-04-09
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References He, Hannon (bib14) 2004; 5
Zhang, Sun, Zhou, Tang (bib18) 2017; 7
Iizuka, Horikawa (bib8) 2008; 55
Shan, Wang, Wu, Xu, Xia, Dai, Shao, Zhao, He, Yang, Zhang, Nan, Li, Liu, Liu, Jia, Qiu, Song, Han, Rui, Duan, Liu (bib25) 2017; 18
Ferre, Foufelle (bib7) 2010; 12
Ng, Wu, Xiao, Chen, Willenbring, Steer, Song (bib16) 2014; 60
Strable, Ntambi (bib9) 2010; 45
Bartel (bib13) 2004; 116
Ntambi (bib10) 1992; 267
Ducheix, Lobaccaro, Martin, Guillou (bib6) 2011; 164
Shao, Shan, Liu, Deng, Yan, Wu, Mao, Qiu, Zhou, Jiang, Jia, Li, Li, Rui, Yang, Liu (bib23) 2014; 5
Fabbrini, Sullivan, Klein (bib5) 2010; 51
Lawes, Gilbert (bib29) 1877; 11
Gjorgjieva, Sobolewski, Dolicka, Correia de Sousa, Foti (bib4) 2019; 68
Li, Liu, Zhang, Liu, Sun, Sun (bib19) 2015; 396
Ambros (bib12) 2001; 107
Samuel, Petersen, Shulman (bib1) 2010; 375
Wang, Jiang, Wang, Li, Yu, You, Zeng, Gao, Rui, Li, Liu (bib11) 2009; 49
Samuel, Shulman (bib2) 2012; 148
Martello, Rosato, Ferrari, Manfrin, Cordenonsi, Dupont, Enzo, Guzzardo, Rondina, Spruce, Parenti, Daidone, Bicciato, Piccolo (bib28) 2010; 141
Wilfred, Wang, Nelson (bib15) 2007; 91
Trajkovski, Hausser, Soutschek, Bhat, Akin, Zavolan, Heim, Stoffel (bib20) 2011; 474
Lambert, Ramos-Roman, Browning, Parks (bib30) 2014; 146
de Alwis, Day (bib3) 2008; 48
Wu, Zhang, Pan, Steer, Li, Chen, Song (bib17) 2017; 66
Softic, Cohen, Kahn (bib31) 2016; 61
Folch, Lees, Sloane Stanley (bib26) 1957; 226
Jiang, Li, Liu, Ellsworth, Dallas-Yang, Wu, Ronan, Esau, Murphy, Szalkowski, Bergeron, Doebber, Zhang (bib22) 2005; 115
Wu, Shan, Dai, Xia, Cai, Chen, Lv, Feng, Zheng, Wang, Liu, Fang, Xie, Rui, Liu, Liu (bib24) 2018; 68
Torres, Novo-Veleiro, Manzanedo, Alvela-Suarez, Macias, Laso, Marcos (bib27) 2018; 24
Zhang, Wu, Muhammad, Ren, Sun (bib21) 2018; 59
Softic (10.1016/j.bbrc.2020.01.143_bib31) 2016; 61
Wu (10.1016/j.bbrc.2020.01.143_bib17) 2017; 66
Zhang (10.1016/j.bbrc.2020.01.143_bib18) 2017; 7
Wu (10.1016/j.bbrc.2020.01.143_bib24) 2018; 68
Li (10.1016/j.bbrc.2020.01.143_bib19) 2015; 396
Strable (10.1016/j.bbrc.2020.01.143_bib9) 2010; 45
Ducheix (10.1016/j.bbrc.2020.01.143_bib6) 2011; 164
Folch (10.1016/j.bbrc.2020.01.143_bib26) 1957; 226
Gjorgjieva (10.1016/j.bbrc.2020.01.143_bib4) 2019; 68
Bartel (10.1016/j.bbrc.2020.01.143_bib13) 2004; 116
Samuel (10.1016/j.bbrc.2020.01.143_bib2) 2012; 148
de Alwis (10.1016/j.bbrc.2020.01.143_bib3) 2008; 48
He (10.1016/j.bbrc.2020.01.143_bib14) 2004; 5
Jiang (10.1016/j.bbrc.2020.01.143_bib22) 2005; 115
Zhang (10.1016/j.bbrc.2020.01.143_bib21) 2018; 59
Martello (10.1016/j.bbrc.2020.01.143_bib28) 2010; 141
Ferre (10.1016/j.bbrc.2020.01.143_bib7) 2010; 12
Trajkovski (10.1016/j.bbrc.2020.01.143_bib20) 2011; 474
Ntambi (10.1016/j.bbrc.2020.01.143_bib10) 1992; 267
Ng (10.1016/j.bbrc.2020.01.143_bib16) 2014; 60
Shao (10.1016/j.bbrc.2020.01.143_bib23) 2014; 5
Lawes (10.1016/j.bbrc.2020.01.143_bib29) 1877; 11
Wang (10.1016/j.bbrc.2020.01.143_bib11) 2009; 49
Shan (10.1016/j.bbrc.2020.01.143_bib25) 2017; 18
Torres (10.1016/j.bbrc.2020.01.143_bib27) 2018; 24
Lambert (10.1016/j.bbrc.2020.01.143_bib30) 2014; 146
Wilfred (10.1016/j.bbrc.2020.01.143_bib15) 2007; 91
Iizuka (10.1016/j.bbrc.2020.01.143_bib8) 2008; 55
Ambros (10.1016/j.bbrc.2020.01.143_bib12) 2001; 107
Samuel (10.1016/j.bbrc.2020.01.143_bib1) 2010; 375
Fabbrini (10.1016/j.bbrc.2020.01.143_bib5) 2010; 51
References_xml – volume: 396
  start-page: 235
  year: 2015
  end-page: 244
  ident: bib19
  article-title: miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D
  publication-title: Biol. Chem.
– volume: 146
  start-page: 726
  year: 2014
  end-page: 735
  ident: bib30
  article-title: Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 48
  start-page: S104
  year: 2008
  end-page: S112
  ident: bib3
  article-title: Non-alcoholic fatty liver disease: the mist gradually clears
  publication-title: J. Hepatol.
– volume: 226
  start-page: 497
  year: 1957
  end-page: 509
  ident: bib26
  article-title: A simple method for the isolation and purification of total lipides from animal tissues
  publication-title: J. Biol. Chem.
– volume: 68
  start-page: 533
  year: 2018
  end-page: 546
  ident: bib24
  article-title: Dual role for inositol-requiring enzyme 1alpha in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice
  publication-title: Hepatol. (Baltimore, Md)
– volume: 59
  start-page: 843
  year: 2018
  end-page: 853
  ident: bib21
  article-title: miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes
  publication-title: J. Lipid Res.
– volume: 107
  start-page: 823
  year: 2001
  end-page: 826
  ident: bib12
  article-title: microRNAs: tiny regulators with great potential
  publication-title: Cell
– volume: 474
  start-page: 649
  year: 2011
  end-page: 653
  ident: bib20
  article-title: MicroRNAs 103 and 107 regulate insulin sensitivity
  publication-title: Nature
– volume: 148
  start-page: 852
  year: 2012
  end-page: 871
  ident: bib2
  article-title: Mechanisms for insulin resistance: common threads and missing links
  publication-title: Cell
– volume: 51
  start-page: 679
  year: 2010
  end-page: 689
  ident: bib5
  article-title: Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications
  publication-title: Hepatol. (Baltimore, Md)
– volume: 267
  start-page: 10925
  year: 1992
  end-page: 10930
  ident: bib10
  article-title: Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 83
  year: 2010
  end-page: 92
  ident: bib7
  article-title: Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c, Diabetes
  publication-title: Obes. Metabol.
– volume: 55
  start-page: 617
  year: 2008
  end-page: 624
  ident: bib8
  article-title: ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome
  publication-title: Endocr. J.
– volume: 91
  start-page: 209
  year: 2007
  end-page: 217
  ident: bib15
  article-title: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways
  publication-title: Mol. Genet. Metabol.
– volume: 11
  start-page: 577
  year: 1877
  end-page: 588
  ident: bib29
  article-title: The formation of fat in the animal body
  publication-title: J. Anat. Physiol.
– volume: 375
  start-page: 2267
  year: 2010
  end-page: 2277
  ident: bib1
  article-title: Lipid-induced insulin resistance: unravelling the mechanism
  publication-title: Lancet
– volume: 18
  start-page: 519
  year: 2017
  end-page: 529
  ident: bib25
  article-title: The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity
  publication-title: Nat. Immunol.
– volume: 115
  start-page: 1030
  year: 2005
  end-page: 1038
  ident: bib22
  article-title: Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1
  publication-title: J. Clin. Invest.
– volume: 45
  start-page: 199
  year: 2010
  end-page: 214
  ident: bib9
  article-title: Genetic control of de novo lipogenesis: role in diet-induced obesity
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 66
  start-page: 816
  year: 2017
  end-page: 824
  ident: bib17
  article-title: MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis
  publication-title: J. Hepatol.
– volume: 61
  start-page: 1282
  year: 2016
  end-page: 1293
  ident: bib31
  article-title: Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease
  publication-title: Dig. Dis. Sci.
– volume: 24
  start-page: 4104
  year: 2018
  end-page: 4118
  ident: bib27
  article-title: Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease
  publication-title: World J. Gastroenterol.
– volume: 7
  start-page: 14493
  year: 2017
  ident: bib18
  article-title: MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1
  publication-title: Sci. Rep.
– volume: 164
  start-page: 500
  year: 2011
  end-page: 514
  ident: bib6
  article-title: Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis
  publication-title: Chem. Phys. Lipids
– volume: 49
  start-page: 1166
  year: 2009
  end-page: 1175
  ident: bib11
  article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice
  publication-title: Hepatol. (Baltimore, Md)
– volume: 68
  start-page: 2065
  year: 2019
  end-page: 2079
  ident: bib4
  article-title: miRNAs and NAFLD: from pathophysiology to therapy
  publication-title: Gut
– volume: 5
  start-page: 3528
  year: 2014
  ident: bib23
  article-title: Hepatic IRE1alpha regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARalpha axis signalling
  publication-title: Nat. Commun.
– volume: 141
  start-page: 1195
  year: 2010
  end-page: 1207
  ident: bib28
  article-title: A MicroRNA targeting dicer for metastasis control
  publication-title: Cell
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  ident: bib13
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– volume: 60
  start-page: 554
  year: 2014
  end-page: 564
  ident: bib16
  article-title: Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia
  publication-title: Hepatol. (Baltimore, Md)
– volume: 5
  start-page: 522
  year: 2004
  end-page: 531
  ident: bib14
  article-title: MicroRNAs: small RNAs with a big role in gene regulation
  publication-title: Nat. Rev.
– volume: 55
  start-page: 617
  year: 2008
  ident: 10.1016/j.bbrc.2020.01.143_bib8
  article-title: ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome
  publication-title: Endocr. J.
  doi: 10.1507/endocrj.K07E-110
– volume: 396
  start-page: 235
  year: 2015
  ident: 10.1016/j.bbrc.2020.01.143_bib19
  article-title: miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2014-0241
– volume: 24
  start-page: 4104
  year: 2018
  ident: 10.1016/j.bbrc.2020.01.143_bib27
  article-title: Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v24.i36.4104
– volume: 164
  start-page: 500
  year: 2011
  ident: 10.1016/j.bbrc.2020.01.143_bib6
  article-title: Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2011.06.004
– volume: 60
  start-page: 554
  year: 2014
  ident: 10.1016/j.bbrc.2020.01.143_bib16
  article-title: Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia
  publication-title: Hepatol. (Baltimore, Md)
  doi: 10.1002/hep.27153
– volume: 12
  start-page: 83
  issue: Suppl 2
  year: 2010
  ident: 10.1016/j.bbrc.2020.01.143_bib7
  article-title: Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c, Diabetes
  publication-title: Obes. Metabol.
  doi: 10.1111/j.1463-1326.2010.01275.x
– volume: 45
  start-page: 199
  year: 2010
  ident: 10.1016/j.bbrc.2020.01.143_bib9
  article-title: Genetic control of de novo lipogenesis: role in diet-induced obesity
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409231003667500
– volume: 61
  start-page: 1282
  year: 2016
  ident: 10.1016/j.bbrc.2020.01.143_bib31
  article-title: Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-016-4054-0
– volume: 5
  start-page: 522
  year: 2004
  ident: 10.1016/j.bbrc.2020.01.143_bib14
  article-title: MicroRNAs: small RNAs with a big role in gene regulation
  publication-title: Nat. Rev.
  doi: 10.1038/nrg1379
– volume: 18
  start-page: 519
  year: 2017
  ident: 10.1016/j.bbrc.2020.01.143_bib25
  article-title: The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3709
– volume: 49
  start-page: 1166
  year: 2009
  ident: 10.1016/j.bbrc.2020.01.143_bib11
  article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice
  publication-title: Hepatol. (Baltimore, Md)
  doi: 10.1002/hep.22774
– volume: 115
  start-page: 1030
  year: 2005
  ident: 10.1016/j.bbrc.2020.01.143_bib22
  article-title: Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200523962
– volume: 7
  start-page: 14493
  year: 2017
  ident: 10.1016/j.bbrc.2020.01.143_bib18
  article-title: MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15141-x
– volume: 48
  start-page: S104
  issue: Suppl 1
  year: 2008
  ident: 10.1016/j.bbrc.2020.01.143_bib3
  article-title: Non-alcoholic fatty liver disease: the mist gradually clears
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2008.01.009
– volume: 107
  start-page: 823
  year: 2001
  ident: 10.1016/j.bbrc.2020.01.143_bib12
  article-title: microRNAs: tiny regulators with great potential
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00616-X
– volume: 148
  start-page: 852
  year: 2012
  ident: 10.1016/j.bbrc.2020.01.143_bib2
  article-title: Mechanisms for insulin resistance: common threads and missing links
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.017
– volume: 51
  start-page: 679
  year: 2010
  ident: 10.1016/j.bbrc.2020.01.143_bib5
  article-title: Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications
  publication-title: Hepatol. (Baltimore, Md)
  doi: 10.1002/hep.23280
– volume: 66
  start-page: 816
  year: 2017
  ident: 10.1016/j.bbrc.2020.01.143_bib17
  article-title: MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2016.12.016
– volume: 375
  start-page: 2267
  year: 2010
  ident: 10.1016/j.bbrc.2020.01.143_bib1
  article-title: Lipid-induced insulin resistance: unravelling the mechanism
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60408-4
– volume: 146
  start-page: 726
  year: 2014
  ident: 10.1016/j.bbrc.2020.01.143_bib30
  article-title: Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.11.049
– volume: 91
  start-page: 209
  year: 2007
  ident: 10.1016/j.bbrc.2020.01.143_bib15
  article-title: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways
  publication-title: Mol. Genet. Metabol.
  doi: 10.1016/j.ymgme.2007.03.011
– volume: 226
  start-page: 497
  year: 1957
  ident: 10.1016/j.bbrc.2020.01.143_bib26
  article-title: A simple method for the isolation and purification of total lipides from animal tissues
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 116
  start-page: 281
  year: 2004
  ident: 10.1016/j.bbrc.2020.01.143_bib13
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 267
  start-page: 10925
  year: 1992
  ident: 10.1016/j.bbrc.2020.01.143_bib10
  article-title: Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50107-7
– volume: 59
  start-page: 843
  year: 2018
  ident: 10.1016/j.bbrc.2020.01.143_bib21
  article-title: miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M082602
– volume: 141
  start-page: 1195
  year: 2010
  ident: 10.1016/j.bbrc.2020.01.143_bib28
  article-title: A MicroRNA targeting dicer for metastasis control
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.017
– volume: 68
  start-page: 2065
  year: 2019
  ident: 10.1016/j.bbrc.2020.01.143_bib4
  article-title: miRNAs and NAFLD: from pathophysiology to therapy
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-318146
– volume: 474
  start-page: 649
  year: 2011
  ident: 10.1016/j.bbrc.2020.01.143_bib20
  article-title: MicroRNAs 103 and 107 regulate insulin sensitivity
  publication-title: Nature
  doi: 10.1038/nature10112
– volume: 5
  start-page: 3528
  year: 2014
  ident: 10.1016/j.bbrc.2020.01.143_bib23
  article-title: Hepatic IRE1alpha regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARalpha axis signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4528
– volume: 68
  start-page: 533
  year: 2018
  ident: 10.1016/j.bbrc.2020.01.143_bib24
  article-title: Dual role for inositol-requiring enzyme 1alpha in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice
  publication-title: Hepatol. (Baltimore, Md)
  doi: 10.1002/hep.29871
– volume: 11
  start-page: 577
  year: 1877
  ident: 10.1016/j.bbrc.2020.01.143_bib29
  article-title: The formation of fat in the animal body
  publication-title: J. Anat. Physiol.
SSID ssj0011469
Score 2.4878223
Snippet MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 716
SubjectTerms de novo lipogenesis
fatty liver
hepatocytes
homeostasis
lipids
lipogenesis
liver
mice
microRNA
miR-103
NAFLD
Obesity
pathogenesis
Title MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1
URI https://dx.doi.org/10.1016/j.bbrc.2020.01.143
https://www.ncbi.nlm.nih.gov/pubmed/32035613
https://www.proquest.com/docview/2353020626
https://www.proquest.com/docview/2524214234
Volume 524
WOSCitedRecordID wos000526792800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1090-2104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011469
  issn: 0006-291X
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCDbGymUyEuIlypT75TF0rQB1FYKCylOU2O6UqUuq3rT9Iv4m58ROmm5qxR54iWzLsZKcL_Z37HMh5EPKLQ60Hpib54W64yeBniYm062EJWwM_NQqU7L86vuDQTAahd9arT-VL8xq4ud5cHMTTv-rqKENhI2usw8Qdz0oNEAZhA5XEDtc_0nwF2hi930QwdRnazNp6CrmwAinZXBWLrS8WBXaJJsWlzjRZTJKM-ZUWWXIPLVB1Oufa1DRpJ047ib0oh8DaebZOTc3ToIzzLm1DjqQZsW0kr2KJIS27Q03lJrF15vVFyK7Xa5hOlTNv-83dc-qlv6yNA8U6KZ32dy7sIzS5CXcmI893QrLpDn1fOxKp2oFPLsxu_qm11iofenQfG8NkNsRV2dpOsMYlZaBcVlNGQxqM-D2nYWwNk-sLN-uYhwjxjFiwwQtyd4jB5bvhjB9HkRfuqOv9YEVLDhK05IvpPyzpCnh3SfZxoG26Tgl1xk-J8-UkkIjCa4XpCXyQ3IU5cmiuL6lH2lpNlyexxySx5-q0pNOlTzwiLAmCmmNQqpQSLmgiELaQCEF9NA1CmmJQgoVWqOQIgrLfojCl-RnrzvsfNZVPg-dAS1e6JwxJwH11R-PA24D88Uze844NwMRum5iJ1A3GJAq-J85DxIoA1-2eCpAS-eOfUz28yIXJ4QmzPGdNAVtBCiogzHbUhuW7pAZoQjGJm8Ts_rCMVPB7jHnyiTeLts20ep7pjLUy87ebiW4WJFVSUJjwOHO-95XUo5BJng8l-SiWM5jy8YMXoZneTv6uGjCASqQ0yavJETqZ4WvZuN2wOsHvccb8nT9Z74l-4vZUrwjj9hqkc1np2TPHwWnCux_ARFB0rs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-103+represses+hepatic+de+novo+lipogenesis+and+alleviates+NAFLD+via+targeting+FASN+and+SCD1&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Zhang%2C+Meiyuan&rft.au=Tang%2C+Yan&rft.au=Tang%2C+E.&rft.au=Lu%2C+Weirong&rft.date=2020-04-09&rft.issn=0006-291X&rft.volume=524&rft.issue=3&rft.spage=716&rft.epage=722&rft_id=info:doi/10.1016%2Fj.bbrc.2020.01.143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbrc_2020_01_143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon