MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1
MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the developme...
Saved in:
| Published in: | Biochemical and biophysical research communications Vol. 524; no. 3; pp. 716 - 722 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
09.04.2020
|
| Subjects: | |
| ISSN: | 0006-291X, 1090-2104, 1090-2104 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3’ untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD.
•miR-103 inhibits the expression of Fasn and Scd1 via binding mRNA 3′-UTR.•miR-103 blocks the lipid accumulation in oleate-incubated hepatocytes.•Overexpressing miR-103 repress HCD-promoted hepatic lipid contents and NAFLD.•miR-103 overexpression alleviates obesity-associated fatty liver in db/db mice. |
|---|---|
| AbstractList | MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3’ untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD. MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3' untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD.MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3' untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD. MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid metabolism and fatty liver still remain well elucidated. Here, we found that miR-103 represses de novo lipogenesis (DNL) and dampens the development of obesity/diet-induced fatty liver through targeting at Fasn and Scd1 in mouse liver. miR-103, robustly amplified in obese livers, inhibits the expression of Fasn and Scd1 via directly interacting with their mRNA 3’ untranslated regions. Upregulated miR-103 sufficiently reduces the expression of Fasn and Scd1 and blocks the lipid accumulation in oleate-incubated hepatocytes. Furthermore, specifically overexpressing miR-103 in mouse liver by adenovirus significantly inhibits hepatic DNL to repress HCD-promoted hepatic lipid contents as well as NAFLD development. Meanwhile, enforced expression of hepatic miR-103 also alleviates obesity-associated fatty liver via reducing Fasn and Scd1 in db/db mice. Together, our study reveals a critical role of miR-103 in lipid homeostasis of liver and pathogenesis of NAFLD. •miR-103 inhibits the expression of Fasn and Scd1 via binding mRNA 3′-UTR.•miR-103 blocks the lipid accumulation in oleate-incubated hepatocytes.•Overexpressing miR-103 repress HCD-promoted hepatic lipid contents and NAFLD.•miR-103 overexpression alleviates obesity-associated fatty liver in db/db mice. |
| Author | Zhang, Meiyuan Tang, Yan Tang, E. Lu, Weirong |
| Author_xml | – sequence: 1 givenname: Meiyuan surname: Zhang fullname: Zhang, Meiyuan organization: Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China – sequence: 2 givenname: Yan surname: Tang fullname: Tang, Yan organization: Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China – sequence: 3 givenname: E. surname: Tang fullname: Tang, E. organization: Digestive System Department, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China – sequence: 4 givenname: Weirong surname: Lu fullname: Lu, Weirong email: luweirong75@163.com organization: Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32035613$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vEzEQhi1URNPCH-CAfOSy2_HHbnYlLlHaQKUQJAoSN8uxJ8HRxl5sJxL_Hoe0Fw4VJ89IzzuynveKXPjgkZC3DGoGrL3Z1et1NDUHDjWwmknxgkwY9FBxBvKCTACgrXjPflySq5R2AIzJtn9FLgUH0bRMTIj57EwMX1ezioGgEceIKWGiP3HU2RlqkfpwDHRwY9iix-QS1d5SPQx4dDoXdDVbLG9pWWjWcYvZ-S1dzB5Wf7mH-S17TV5u9JDwzeN7Tb4v7r7NP1XLLx_v57NlZUTX58oaI_VUTqebTWdF00nZdMIaa1mHfdNoocsORkD5PVjb6TJL0XO7xpY3Vopr8v58d4zh1wFTVnuXDA6D9hgOSfGGS84kF_-BikYUrS1vC_ruET2s92jVGN1ex9_qyWEBujNQRKYUcaOMy0Ve8DlqNygG6lSX2qlTXepUlwKmSl0lyv-JPl1_NvThHMLi8ugwqmQceoPWRTRZ2eCei_8BrgWqyA |
| CitedBy_id | crossref_primary_10_1038_s41419_024_06463_6 crossref_primary_10_1002_advs_202408906 crossref_primary_10_1007_s10528_020_09971_0 crossref_primary_10_1177_20420188221132138 crossref_primary_10_31883_pjfns_182927 crossref_primary_10_1016_j_envint_2021_106497 crossref_primary_10_3389_fnut_2021_733197 crossref_primary_10_1016_j_bcp_2025_117239 crossref_primary_10_3390_ijms24119168 crossref_primary_10_1016_j_cbd_2021_100956 crossref_primary_10_1016_j_acthis_2024_152211 crossref_primary_10_1155_2022_6161694 crossref_primary_10_1016_j_ejphar_2021_174261 crossref_primary_10_1016_j_plipres_2022_101197 crossref_primary_10_1139_apnm_2024_0294 crossref_primary_10_1016_j_fsi_2024_109573 crossref_primary_10_1002_fsn3_3713 crossref_primary_10_3390_nu13072331 crossref_primary_10_3390_ijms23147841 crossref_primary_10_3389_fvets_2022_959906 crossref_primary_10_3389_fvets_2022_954882 crossref_primary_10_3390_ijms26041778 crossref_primary_10_3389_fphar_2025_1610498 crossref_primary_10_1016_j_ejphar_2023_175989 crossref_primary_10_3390_ijms22020689 crossref_primary_10_1016_j_biopha_2020_110472 crossref_primary_10_1016_j_biopha_2022_112972 crossref_primary_10_3390_cells9030590 crossref_primary_10_4254_wjh_v14_i1_168 crossref_primary_10_1016_j_gene_2021_145954 crossref_primary_10_1038_s41392_024_01914_0 |
| Cites_doi | 10.1507/endocrj.K07E-110 10.1515/hsz-2014-0241 10.3748/wjg.v24.i36.4104 10.1016/j.chemphyslip.2011.06.004 10.1002/hep.27153 10.1111/j.1463-1326.2010.01275.x 10.3109/10409231003667500 10.1007/s10620-016-4054-0 10.1038/nrg1379 10.1038/ni.3709 10.1002/hep.22774 10.1172/JCI200523962 10.1038/s41598-017-15141-x 10.1016/j.jhep.2008.01.009 10.1016/S0092-8674(01)00616-X 10.1016/j.cell.2012.02.017 10.1002/hep.23280 10.1016/j.jhep.2016.12.016 10.1016/S0140-6736(10)60408-4 10.1053/j.gastro.2013.11.049 10.1016/j.ymgme.2007.03.011 10.1016/S0021-9258(18)64849-5 10.1016/S0092-8674(04)00045-5 10.1016/S0021-9258(19)50107-7 10.1194/jlr.M082602 10.1016/j.cell.2010.05.017 10.1136/gutjnl-2018-318146 10.1038/nature10112 10.1038/ncomms4528 10.1002/hep.29871 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.bbrc.2020.01.143 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1090-2104 |
| EndPage | 722 |
| ExternalDocumentID | 32035613 10_1016_j_bbrc_2020_01_143 S0006291X20302266 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9DU 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- SBG SEW UQL WUQ X7M Y6R ZGI ZKB ~HD ~KM NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c389t-dcc4a7477ff8d35844583dcdd18e955a3a5830c303200dd8a0c34392dbe625d43 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526792800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-291X 1090-2104 |
| IngestDate | Sun Sep 28 09:28:23 EDT 2025 Sun Sep 28 12:31:52 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Sat Nov 29 07:32:49 EST 2025 Tue Nov 18 22:40:02 EST 2025 Fri Feb 23 02:48:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | miR-103 Obesity NAFLD de novo lipogenesis |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-dcc4a7477ff8d35844583dcdd18e955a3a5830c303200dd8a0c34392dbe625d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 32035613 |
| PQID | 2353020626 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2524214234 proquest_miscellaneous_2353020626 pubmed_primary_32035613 crossref_citationtrail_10_1016_j_bbrc_2020_01_143 crossref_primary_10_1016_j_bbrc_2020_01_143 elsevier_sciencedirect_doi_10_1016_j_bbrc_2020_01_143 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-09 |
| PublicationDateYYYYMMDD | 2020-04-09 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biochemical and biophysical research communications |
| PublicationTitleAlternate | Biochem Biophys Res Commun |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | He, Hannon (bib14) 2004; 5 Zhang, Sun, Zhou, Tang (bib18) 2017; 7 Iizuka, Horikawa (bib8) 2008; 55 Shan, Wang, Wu, Xu, Xia, Dai, Shao, Zhao, He, Yang, Zhang, Nan, Li, Liu, Liu, Jia, Qiu, Song, Han, Rui, Duan, Liu (bib25) 2017; 18 Ferre, Foufelle (bib7) 2010; 12 Ng, Wu, Xiao, Chen, Willenbring, Steer, Song (bib16) 2014; 60 Strable, Ntambi (bib9) 2010; 45 Bartel (bib13) 2004; 116 Ntambi (bib10) 1992; 267 Ducheix, Lobaccaro, Martin, Guillou (bib6) 2011; 164 Shao, Shan, Liu, Deng, Yan, Wu, Mao, Qiu, Zhou, Jiang, Jia, Li, Li, Rui, Yang, Liu (bib23) 2014; 5 Fabbrini, Sullivan, Klein (bib5) 2010; 51 Lawes, Gilbert (bib29) 1877; 11 Gjorgjieva, Sobolewski, Dolicka, Correia de Sousa, Foti (bib4) 2019; 68 Li, Liu, Zhang, Liu, Sun, Sun (bib19) 2015; 396 Ambros (bib12) 2001; 107 Samuel, Petersen, Shulman (bib1) 2010; 375 Wang, Jiang, Wang, Li, Yu, You, Zeng, Gao, Rui, Li, Liu (bib11) 2009; 49 Samuel, Shulman (bib2) 2012; 148 Martello, Rosato, Ferrari, Manfrin, Cordenonsi, Dupont, Enzo, Guzzardo, Rondina, Spruce, Parenti, Daidone, Bicciato, Piccolo (bib28) 2010; 141 Wilfred, Wang, Nelson (bib15) 2007; 91 Trajkovski, Hausser, Soutschek, Bhat, Akin, Zavolan, Heim, Stoffel (bib20) 2011; 474 Lambert, Ramos-Roman, Browning, Parks (bib30) 2014; 146 de Alwis, Day (bib3) 2008; 48 Wu, Zhang, Pan, Steer, Li, Chen, Song (bib17) 2017; 66 Softic, Cohen, Kahn (bib31) 2016; 61 Folch, Lees, Sloane Stanley (bib26) 1957; 226 Jiang, Li, Liu, Ellsworth, Dallas-Yang, Wu, Ronan, Esau, Murphy, Szalkowski, Bergeron, Doebber, Zhang (bib22) 2005; 115 Wu, Shan, Dai, Xia, Cai, Chen, Lv, Feng, Zheng, Wang, Liu, Fang, Xie, Rui, Liu, Liu (bib24) 2018; 68 Torres, Novo-Veleiro, Manzanedo, Alvela-Suarez, Macias, Laso, Marcos (bib27) 2018; 24 Zhang, Wu, Muhammad, Ren, Sun (bib21) 2018; 59 Softic (10.1016/j.bbrc.2020.01.143_bib31) 2016; 61 Wu (10.1016/j.bbrc.2020.01.143_bib17) 2017; 66 Zhang (10.1016/j.bbrc.2020.01.143_bib18) 2017; 7 Wu (10.1016/j.bbrc.2020.01.143_bib24) 2018; 68 Li (10.1016/j.bbrc.2020.01.143_bib19) 2015; 396 Strable (10.1016/j.bbrc.2020.01.143_bib9) 2010; 45 Ducheix (10.1016/j.bbrc.2020.01.143_bib6) 2011; 164 Folch (10.1016/j.bbrc.2020.01.143_bib26) 1957; 226 Gjorgjieva (10.1016/j.bbrc.2020.01.143_bib4) 2019; 68 Bartel (10.1016/j.bbrc.2020.01.143_bib13) 2004; 116 Samuel (10.1016/j.bbrc.2020.01.143_bib2) 2012; 148 de Alwis (10.1016/j.bbrc.2020.01.143_bib3) 2008; 48 He (10.1016/j.bbrc.2020.01.143_bib14) 2004; 5 Jiang (10.1016/j.bbrc.2020.01.143_bib22) 2005; 115 Zhang (10.1016/j.bbrc.2020.01.143_bib21) 2018; 59 Martello (10.1016/j.bbrc.2020.01.143_bib28) 2010; 141 Ferre (10.1016/j.bbrc.2020.01.143_bib7) 2010; 12 Trajkovski (10.1016/j.bbrc.2020.01.143_bib20) 2011; 474 Ntambi (10.1016/j.bbrc.2020.01.143_bib10) 1992; 267 Ng (10.1016/j.bbrc.2020.01.143_bib16) 2014; 60 Shao (10.1016/j.bbrc.2020.01.143_bib23) 2014; 5 Lawes (10.1016/j.bbrc.2020.01.143_bib29) 1877; 11 Wang (10.1016/j.bbrc.2020.01.143_bib11) 2009; 49 Shan (10.1016/j.bbrc.2020.01.143_bib25) 2017; 18 Torres (10.1016/j.bbrc.2020.01.143_bib27) 2018; 24 Lambert (10.1016/j.bbrc.2020.01.143_bib30) 2014; 146 Wilfred (10.1016/j.bbrc.2020.01.143_bib15) 2007; 91 Iizuka (10.1016/j.bbrc.2020.01.143_bib8) 2008; 55 Ambros (10.1016/j.bbrc.2020.01.143_bib12) 2001; 107 Samuel (10.1016/j.bbrc.2020.01.143_bib1) 2010; 375 Fabbrini (10.1016/j.bbrc.2020.01.143_bib5) 2010; 51 |
| References_xml | – volume: 396 start-page: 235 year: 2015 end-page: 244 ident: bib19 article-title: miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D publication-title: Biol. Chem. – volume: 146 start-page: 726 year: 2014 end-page: 735 ident: bib30 article-title: Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 48 start-page: S104 year: 2008 end-page: S112 ident: bib3 article-title: Non-alcoholic fatty liver disease: the mist gradually clears publication-title: J. Hepatol. – volume: 226 start-page: 497 year: 1957 end-page: 509 ident: bib26 article-title: A simple method for the isolation and purification of total lipides from animal tissues publication-title: J. Biol. Chem. – volume: 68 start-page: 533 year: 2018 end-page: 546 ident: bib24 article-title: Dual role for inositol-requiring enzyme 1alpha in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice publication-title: Hepatol. (Baltimore, Md) – volume: 59 start-page: 843 year: 2018 end-page: 853 ident: bib21 article-title: miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes publication-title: J. Lipid Res. – volume: 107 start-page: 823 year: 2001 end-page: 826 ident: bib12 article-title: microRNAs: tiny regulators with great potential publication-title: Cell – volume: 474 start-page: 649 year: 2011 end-page: 653 ident: bib20 article-title: MicroRNAs 103 and 107 regulate insulin sensitivity publication-title: Nature – volume: 148 start-page: 852 year: 2012 end-page: 871 ident: bib2 article-title: Mechanisms for insulin resistance: common threads and missing links publication-title: Cell – volume: 51 start-page: 679 year: 2010 end-page: 689 ident: bib5 article-title: Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications publication-title: Hepatol. (Baltimore, Md) – volume: 267 start-page: 10925 year: 1992 end-page: 10930 ident: bib10 article-title: Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver publication-title: J. Biol. Chem. – volume: 12 start-page: 83 year: 2010 end-page: 92 ident: bib7 article-title: Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c, Diabetes publication-title: Obes. Metabol. – volume: 55 start-page: 617 year: 2008 end-page: 624 ident: bib8 article-title: ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome publication-title: Endocr. J. – volume: 91 start-page: 209 year: 2007 end-page: 217 ident: bib15 article-title: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways publication-title: Mol. Genet. Metabol. – volume: 11 start-page: 577 year: 1877 end-page: 588 ident: bib29 article-title: The formation of fat in the animal body publication-title: J. Anat. Physiol. – volume: 375 start-page: 2267 year: 2010 end-page: 2277 ident: bib1 article-title: Lipid-induced insulin resistance: unravelling the mechanism publication-title: Lancet – volume: 18 start-page: 519 year: 2017 end-page: 529 ident: bib25 article-title: The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity publication-title: Nat. Immunol. – volume: 115 start-page: 1030 year: 2005 end-page: 1038 ident: bib22 article-title: Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1 publication-title: J. Clin. Invest. – volume: 45 start-page: 199 year: 2010 end-page: 214 ident: bib9 article-title: Genetic control of de novo lipogenesis: role in diet-induced obesity publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 66 start-page: 816 year: 2017 end-page: 824 ident: bib17 article-title: MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis publication-title: J. Hepatol. – volume: 61 start-page: 1282 year: 2016 end-page: 1293 ident: bib31 article-title: Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease publication-title: Dig. Dis. Sci. – volume: 24 start-page: 4104 year: 2018 end-page: 4118 ident: bib27 article-title: Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease publication-title: World J. Gastroenterol. – volume: 7 start-page: 14493 year: 2017 ident: bib18 article-title: MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1 publication-title: Sci. Rep. – volume: 164 start-page: 500 year: 2011 end-page: 514 ident: bib6 article-title: Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis publication-title: Chem. Phys. Lipids – volume: 49 start-page: 1166 year: 2009 end-page: 1175 ident: bib11 article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice publication-title: Hepatol. (Baltimore, Md) – volume: 68 start-page: 2065 year: 2019 end-page: 2079 ident: bib4 article-title: miRNAs and NAFLD: from pathophysiology to therapy publication-title: Gut – volume: 5 start-page: 3528 year: 2014 ident: bib23 article-title: Hepatic IRE1alpha regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARalpha axis signalling publication-title: Nat. Commun. – volume: 141 start-page: 1195 year: 2010 end-page: 1207 ident: bib28 article-title: A MicroRNA targeting dicer for metastasis control publication-title: Cell – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: bib13 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – volume: 60 start-page: 554 year: 2014 end-page: 564 ident: bib16 article-title: Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia publication-title: Hepatol. (Baltimore, Md) – volume: 5 start-page: 522 year: 2004 end-page: 531 ident: bib14 article-title: MicroRNAs: small RNAs with a big role in gene regulation publication-title: Nat. Rev. – volume: 55 start-page: 617 year: 2008 ident: 10.1016/j.bbrc.2020.01.143_bib8 article-title: ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome publication-title: Endocr. J. doi: 10.1507/endocrj.K07E-110 – volume: 396 start-page: 235 year: 2015 ident: 10.1016/j.bbrc.2020.01.143_bib19 article-title: miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D publication-title: Biol. Chem. doi: 10.1515/hsz-2014-0241 – volume: 24 start-page: 4104 year: 2018 ident: 10.1016/j.bbrc.2020.01.143_bib27 article-title: Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v24.i36.4104 – volume: 164 start-page: 500 year: 2011 ident: 10.1016/j.bbrc.2020.01.143_bib6 article-title: Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2011.06.004 – volume: 60 start-page: 554 year: 2014 ident: 10.1016/j.bbrc.2020.01.143_bib16 article-title: Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia publication-title: Hepatol. (Baltimore, Md) doi: 10.1002/hep.27153 – volume: 12 start-page: 83 issue: Suppl 2 year: 2010 ident: 10.1016/j.bbrc.2020.01.143_bib7 article-title: Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c, Diabetes publication-title: Obes. Metabol. doi: 10.1111/j.1463-1326.2010.01275.x – volume: 45 start-page: 199 year: 2010 ident: 10.1016/j.bbrc.2020.01.143_bib9 article-title: Genetic control of de novo lipogenesis: role in diet-induced obesity publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409231003667500 – volume: 61 start-page: 1282 year: 2016 ident: 10.1016/j.bbrc.2020.01.143_bib31 article-title: Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-016-4054-0 – volume: 5 start-page: 522 year: 2004 ident: 10.1016/j.bbrc.2020.01.143_bib14 article-title: MicroRNAs: small RNAs with a big role in gene regulation publication-title: Nat. Rev. doi: 10.1038/nrg1379 – volume: 18 start-page: 519 year: 2017 ident: 10.1016/j.bbrc.2020.01.143_bib25 article-title: The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity publication-title: Nat. Immunol. doi: 10.1038/ni.3709 – volume: 49 start-page: 1166 year: 2009 ident: 10.1016/j.bbrc.2020.01.143_bib11 article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice publication-title: Hepatol. (Baltimore, Md) doi: 10.1002/hep.22774 – volume: 115 start-page: 1030 year: 2005 ident: 10.1016/j.bbrc.2020.01.143_bib22 article-title: Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1 publication-title: J. Clin. Invest. doi: 10.1172/JCI200523962 – volume: 7 start-page: 14493 year: 2017 ident: 10.1016/j.bbrc.2020.01.143_bib18 article-title: MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-15141-x – volume: 48 start-page: S104 issue: Suppl 1 year: 2008 ident: 10.1016/j.bbrc.2020.01.143_bib3 article-title: Non-alcoholic fatty liver disease: the mist gradually clears publication-title: J. Hepatol. doi: 10.1016/j.jhep.2008.01.009 – volume: 107 start-page: 823 year: 2001 ident: 10.1016/j.bbrc.2020.01.143_bib12 article-title: microRNAs: tiny regulators with great potential publication-title: Cell doi: 10.1016/S0092-8674(01)00616-X – volume: 148 start-page: 852 year: 2012 ident: 10.1016/j.bbrc.2020.01.143_bib2 article-title: Mechanisms for insulin resistance: common threads and missing links publication-title: Cell doi: 10.1016/j.cell.2012.02.017 – volume: 51 start-page: 679 year: 2010 ident: 10.1016/j.bbrc.2020.01.143_bib5 article-title: Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications publication-title: Hepatol. (Baltimore, Md) doi: 10.1002/hep.23280 – volume: 66 start-page: 816 year: 2017 ident: 10.1016/j.bbrc.2020.01.143_bib17 article-title: MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.12.016 – volume: 375 start-page: 2267 year: 2010 ident: 10.1016/j.bbrc.2020.01.143_bib1 article-title: Lipid-induced insulin resistance: unravelling the mechanism publication-title: Lancet doi: 10.1016/S0140-6736(10)60408-4 – volume: 146 start-page: 726 year: 2014 ident: 10.1016/j.bbrc.2020.01.143_bib30 article-title: Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.11.049 – volume: 91 start-page: 209 year: 2007 ident: 10.1016/j.bbrc.2020.01.143_bib15 article-title: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways publication-title: Mol. Genet. Metabol. doi: 10.1016/j.ymgme.2007.03.011 – volume: 226 start-page: 497 year: 1957 ident: 10.1016/j.bbrc.2020.01.143_bib26 article-title: A simple method for the isolation and purification of total lipides from animal tissues publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64849-5 – volume: 116 start-page: 281 year: 2004 ident: 10.1016/j.bbrc.2020.01.143_bib13 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 267 start-page: 10925 year: 1992 ident: 10.1016/j.bbrc.2020.01.143_bib10 article-title: Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50107-7 – volume: 59 start-page: 843 year: 2018 ident: 10.1016/j.bbrc.2020.01.143_bib21 article-title: miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes publication-title: J. Lipid Res. doi: 10.1194/jlr.M082602 – volume: 141 start-page: 1195 year: 2010 ident: 10.1016/j.bbrc.2020.01.143_bib28 article-title: A MicroRNA targeting dicer for metastasis control publication-title: Cell doi: 10.1016/j.cell.2010.05.017 – volume: 68 start-page: 2065 year: 2019 ident: 10.1016/j.bbrc.2020.01.143_bib4 article-title: miRNAs and NAFLD: from pathophysiology to therapy publication-title: Gut doi: 10.1136/gutjnl-2018-318146 – volume: 474 start-page: 649 year: 2011 ident: 10.1016/j.bbrc.2020.01.143_bib20 article-title: MicroRNAs 103 and 107 regulate insulin sensitivity publication-title: Nature doi: 10.1038/nature10112 – volume: 5 start-page: 3528 year: 2014 ident: 10.1016/j.bbrc.2020.01.143_bib23 article-title: Hepatic IRE1alpha regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARalpha axis signalling publication-title: Nat. Commun. doi: 10.1038/ncomms4528 – volume: 68 start-page: 533 year: 2018 ident: 10.1016/j.bbrc.2020.01.143_bib24 article-title: Dual role for inositol-requiring enzyme 1alpha in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice publication-title: Hepatol. (Baltimore, Md) doi: 10.1002/hep.29871 – volume: 11 start-page: 577 year: 1877 ident: 10.1016/j.bbrc.2020.01.143_bib29 article-title: The formation of fat in the animal body publication-title: J. Anat. Physiol. |
| SSID | ssj0011469 |
| Score | 2.4878223 |
| Snippet | MicroRNAs are well acknowledged as key mediators in the development of chronic metabolic diseases, including NAFLD. However, their roles in hepatic lipid... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 716 |
| SubjectTerms | de novo lipogenesis fatty liver hepatocytes homeostasis lipids lipogenesis liver mice microRNA miR-103 NAFLD Obesity pathogenesis |
| Title | MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1 |
| URI | https://dx.doi.org/10.1016/j.bbrc.2020.01.143 https://www.ncbi.nlm.nih.gov/pubmed/32035613 https://www.proquest.com/docview/2353020626 https://www.proquest.com/docview/2524214234 |
| Volume | 524 |
| WOSCitedRecordID | wos000526792800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1090-2104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011469 issn: 0006-291X databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCDbGymUyEuIlypT75TF0rQB1FYKCylOU2O6UqUuq3rT9Iv4m58ROmm5qxR54iWzLsZKcL_Z37HMh5EPKLQ60Hpib54W64yeBniYm062EJWwM_NQqU7L86vuDQTAahd9arT-VL8xq4ud5cHMTTv-rqKENhI2usw8Qdz0oNEAZhA5XEDtc_0nwF2hi930QwdRnazNp6CrmwAinZXBWLrS8WBXaJJsWlzjRZTJKM-ZUWWXIPLVB1Oufa1DRpJ047ib0oh8DaebZOTc3ToIzzLm1DjqQZsW0kr2KJIS27Q03lJrF15vVFyK7Xa5hOlTNv-83dc-qlv6yNA8U6KZ32dy7sIzS5CXcmI893QrLpDn1fOxKp2oFPLsxu_qm11iofenQfG8NkNsRV2dpOsMYlZaBcVlNGQxqM-D2nYWwNk-sLN-uYhwjxjFiwwQtyd4jB5bvhjB9HkRfuqOv9YEVLDhK05IvpPyzpCnh3SfZxoG26Tgl1xk-J8-UkkIjCa4XpCXyQ3IU5cmiuL6lH2lpNlyexxySx5-q0pNOlTzwiLAmCmmNQqpQSLmgiELaQCEF9NA1CmmJQgoVWqOQIgrLfojCl-RnrzvsfNZVPg-dAS1e6JwxJwH11R-PA24D88Uze844NwMRum5iJ1A3GJAq-J85DxIoA1-2eCpAS-eOfUz28yIXJ4QmzPGdNAVtBCiogzHbUhuW7pAZoQjGJm8Ts_rCMVPB7jHnyiTeLts20ep7pjLUy87ebiW4WJFVSUJjwOHO-95XUo5BJng8l-SiWM5jy8YMXoZneTv6uGjCASqQ0yavJETqZ4WvZuN2wOsHvccb8nT9Z74l-4vZUrwjj9hqkc1np2TPHwWnCux_ARFB0rs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-103+represses+hepatic+de+novo+lipogenesis+and+alleviates+NAFLD+via+targeting+FASN+and+SCD1&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Zhang%2C+Meiyuan&rft.au=Tang%2C+Yan&rft.au=Tang%2C+E.&rft.au=Lu%2C+Weirong&rft.date=2020-04-09&rft.issn=0006-291X&rft.volume=524&rft.issue=3&rft.spage=716&rft.epage=722&rft_id=info:doi/10.1016%2Fj.bbrc.2020.01.143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbrc_2020_01_143 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |