Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network

•TgCNN is used for surrogate modeling of 3D subsurface flow problems.•Dynamic pressure estimation can be obtained given stochastic permeability fields.•Uncertainty quantification and inverse modeling tasks are studied.•TgCNN-based surrogate models show improved efficiency with high accuracy. We buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 613; S. 128321
Hauptverfasser: Xu, Rui, Zhang, Dongxiao, Wang, Nanzhe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2022
Schlagworte:
ISSN:0022-1694, 1879-2707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •TgCNN is used for surrogate modeling of 3D subsurface flow problems.•Dynamic pressure estimation can be obtained given stochastic permeability fields.•Uncertainty quantification and inverse modeling tasks are studied.•TgCNN-based surrogate models show improved efficiency with high accuracy. We build surrogate models for dynamic 3D subsurface single-phase flow problems with multiple vertical producing wells. The surrogate model provides efficient pressure estimation of the entire formation at any timestep given a stochastic permeability field, arbitrary well locations and penetration lengths, and a timestep matrix as inputs. The well production rate or bottom hole pressure can then be determined based on Peaceman’s formula. The original surrogate modeling task is transformed into an image-to-image regression problem using a convolutional encoder-decoder neural network architecture. The residual of the governing flow equation in its discretized form is incorporated into the loss function to impose theoretical guidance on the model training process. As a result, the accuracy and generalization ability of the trained surrogate models are significantly improved compared to those of fully data-driven models. They are also shown to possess flexible extrapolation ability to permeability fields with different statistics. The surrogate models are used to conduct uncertainty quantification considering a stochastic permeability field, as well as to infer unknown permeability information based on limited well production data and observation data of formation properties. Results are shown to be in close accordance with those of traditional numerical simulation tools, but computational efficiency is dramatically improved.
AbstractList •TgCNN is used for surrogate modeling of 3D subsurface flow problems.•Dynamic pressure estimation can be obtained given stochastic permeability fields.•Uncertainty quantification and inverse modeling tasks are studied.•TgCNN-based surrogate models show improved efficiency with high accuracy. We build surrogate models for dynamic 3D subsurface single-phase flow problems with multiple vertical producing wells. The surrogate model provides efficient pressure estimation of the entire formation at any timestep given a stochastic permeability field, arbitrary well locations and penetration lengths, and a timestep matrix as inputs. The well production rate or bottom hole pressure can then be determined based on Peaceman’s formula. The original surrogate modeling task is transformed into an image-to-image regression problem using a convolutional encoder-decoder neural network architecture. The residual of the governing flow equation in its discretized form is incorporated into the loss function to impose theoretical guidance on the model training process. As a result, the accuracy and generalization ability of the trained surrogate models are significantly improved compared to those of fully data-driven models. They are also shown to possess flexible extrapolation ability to permeability fields with different statistics. The surrogate models are used to conduct uncertainty quantification considering a stochastic permeability field, as well as to infer unknown permeability information based on limited well production data and observation data of formation properties. Results are shown to be in close accordance with those of traditional numerical simulation tools, but computational efficiency is dramatically improved.
We build surrogate models for dynamic 3D subsurface single-phase flow problems with multiple vertical producing wells. The surrogate model provides efficient pressure estimation of the entire formation at any timestep given a stochastic permeability field, arbitrary well locations and penetration lengths, and a timestep matrix as inputs. The well production rate or bottom hole pressure can then be determined based on Peaceman's formula. The original surrogate modeling task is transformed into an image-to-image regression problem using a convolutional encoder-decoder neural network architecture. The residual of the governing flow equation in its discretized form is incorporated into the loss function to impose theoretical guidance on the model training process. As a result, the accuracy and generalization ability of the trained surrogate models are significantly improved compared to those of fully data-driven models. They are also shown to possess flexible extrapolation ability to permeability fields with different statistics. The surrogate models are used to conduct uncertainty quantification considering a stochastic permeability field, as well as to infer unknown permeability information based on limited well production data and observation data of formation properties. Results are shown to be in close accordance with those of traditional numerical simulation tools, but computational efficiency is dramatically improved.
ArticleNumber 128321
Author Wang, Nanzhe
Xu, Rui
Zhang, Dongxiao
Author_xml – sequence: 1
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen 518055, Guangdong, PR China
– sequence: 2
  givenname: Dongxiao
  surname: Zhang
  fullname: Zhang, Dongxiao
  email: zhangdx@sustech.edu.cn
  organization: National Center for Applied Mathematics Shenzhen (NCAMS), Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
– sequence: 3
  givenname: Nanzhe
  surname: Wang
  fullname: Wang, Nanzhe
  organization: College of Engineering, Peking University, Beijing 100871, PR China
BookMark eNqFkb1OIzEUhS3ESgSWR0BySTNZ_2T-tAVCwC5ISDRQWx77OnHWscH2BOVl9lnxJFQ0uLmFv3Ou7jmn6NgHDwhdUDKnhDa_1vP1aqdjcHNGGJtT1nFGj9CMdm1fsZa0x2hGyk9Fm35xgk5TWpPyOF_M0P8XryBmaX3e4bdR-myNVTLb4LH0Glu_hZgAb4IGZ_0SmxBxGoc0RiMVYOPCe4Ewv8UryBDDEjyEMU3cZm-T8JgmocR5BSHuquVoNWisgt8GN06IdBi8KhtipWE_sYf8HuK_n-iHkS7B-ec8Qy9_7p5v7qvHp78PN9ePleJdnyvNe02J0hxaqagBOZie1byuVW3YgnUAQ1MD6_RAKO-p7E0rB05J0zbQMcP5Gbo8-L7G8DZCymJjkwLn5P4awVpaQm2atitofUBVDClFMOI12o2MO0GJmPoQa_HZh5j6EIc-iu73F52yeZ9QjtK6b9VXBzWUFLYWokjKltBA2wgqCx3sNw4fIImx6A
CitedBy_id crossref_primary_10_1007_s10596_024_10325_7
crossref_primary_10_2118_218386_PA
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_advwatres_2023_104607
crossref_primary_10_1016_j_jcp_2024_113132
crossref_primary_10_1029_2024WR037630
crossref_primary_10_1016_j_jhydrol_2023_129493
crossref_primary_10_2118_217972_PA
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_3390_pr12091934
crossref_primary_10_3390_pr13040958
crossref_primary_10_1016_j_compind_2025_104290
crossref_primary_10_1109_TIE_2024_3357845
crossref_primary_10_1016_j_geoen_2023_212554
crossref_primary_10_1016_j_jcp_2024_113438
Cites_doi 10.1016/j.jcp.2010.07.005
10.1016/j.jcp.2018.08.036
10.1016/j.jcp.2018.04.018
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2021.110318
10.1007/s10596-015-9478-7
10.1016/j.advwatres.2021.103941
10.1029/2020JB020549
10.1002/2017WR021884
10.1016/j.jhydrol.2020.124700
10.1029/2020WR027568
10.1016/j.jcp.2003.09.015
10.1109/TKDE.2017.2720168
10.1016/j.cma.2021.114037
10.1038/nature14539
10.1109/ICNN.1995.488968
10.1038/s43588-021-00171-3
10.1016/j.advwatres.2022.104180
10.1016/j.cma.2020.113492
10.1029/2018WR024638
10.1029/2018WR023528
10.1162/EVCO_r_00180
10.1016/j.fuel.2020.117750
10.1016/j.petrol.2021.109545
10.1029/2019WR026082
10.1016/j.jcp.2017.11.039
10.1016/j.jcp.2019.05.024
10.1002/2013WR014630
10.2118/59802-PA
10.1016/j.fuel.2016.05.011
10.1016/j.jngse.2015.07.005
10.1016/j.petrol.2020.107273
10.1016/j.cageo.2012.03.011
10.1016/j.advwatres.2021.104009
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128321
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_128321
S0022169422008939
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c389t-d39d10cd3e7ac1feabf925355c5f2428eeb65e28db01391a9f7ab310676e82f33
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862505600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 10:07:04 EST 2025
Sat Nov 29 07:26:01 EST 2025
Tue Nov 18 22:42:55 EST 2025
Fri Feb 23 02:38:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Subsurface flow
Surrogate modeling
Convolutional neural network
Theory-guided machine learning
Inverse problem
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-d39d10cd3e7ac1feabf925355c5f2428eeb65e28db01391a9f7ab310676e82f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.jhydrol.2022.128321
PQID 2718326678
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718326678
crossref_primary_10_1016_j_jhydrol_2022_128321
crossref_citationtrail_10_1016_j_jhydrol_2022_128321
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128321
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References LeCun, Bengio, Hinton (b0075) 2015; 521
Wang, N., Chang, H., Zhang, D., 2021d. Deep-learning-based inverse modeling approaches: A subsurface flow example. Journal of Geophysical Research: Solid Earth 126, e2020JB020549. 10.1029/2020JB020549.
Mo, Zabaras, Shi, Wu (b0085) 2020; 56
Xu, Prodanović, Landry (b0165) 2020; 56
Gao, Zhang, Yang, Liu (b0030) 2010
Xu, Zhang, Rong, Wang (b0175) 2021; 436
Zhu, Zabaras, Koutsourelakis, Perdikaris (b0205) 2019; 394
Mo, Zabaras, Shi, Wu (b0090) 2019; 55
Goodfellow, Bengio, Courville (b0040) 2016
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks. Presented at the Proceedings of ICNN’95 - International Conference on Neural Networks, pp. 1942–1948 vol.4. 10.1109/ICNN.1995.488968.
Wang, Chang, Zhang (b0130) 2021; 385
Yin, Qu, Zhang, Zhang, Wang (b0180) 2020; 273
Chang, Zhang (b0015) 2015; 19
Raissi, Perdikaris, Karniadakis (b0105) 2019; 378
Chang, Zhang, Lu (b0020) 2010; 229
Emerick, Reynolds (b0025) 2013; 55
Jin, Liu, Durlofsky (b0045) 2020; 192
Zha, Yeh, Illman, Zeng, Zhang, Sun, Shi (b0185) 2018; 54
Aziz, Settari (b0005) 1979
Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer, in: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Presented at the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69–73. 10.1109/ICEC.1998.699146.
Zhu, Zabaras (b0200) 2018; 366
Mo, Zhu, Zabaras, Shi, Wu (b0095) 2019; 55
Kadeethum, O’Malley, Fuhg, Choi, Lee, Viswanathan, Bouklas (b0055) 2021
Zhang, Li, Tchelepi (b0190) 2000; 5
Kitanidis, Lee (b0070) 2014; 50
Wang, Zhang, Chang, Li (b0150) 2020; 584
Wang, Chang, Zhang (b0135) 2021; 1–29
Karpatne, Atluri, Faghmous, Steinbach, Banerjee, Ganguly, Shekhar, Samatova, Kumar (b0060) 2017; 29
Wang, Chang, Zhang (b0125) 2021; 373
Li, Zhang, Li (b0080) 2015; 26
Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., Benson, S.M., 2021b. U-FNO -- an enhanced Fourier neural operator based-deep learning model for multiphase flow. arXiv:2109.03697 [physics].
Tripathy, Bilionis (b0120) 2018; 375
Bonyadi, Michalewicz (b0010) 2017; 25
Wang, Chang, Zhang, Xue, Chen (b0140) 2022; 208
Song, Yao, Li, Sun, Zhang, Yang, Zhao, Sui (b0115) 2016; 181
Xu, Wang, Zhang (b0170) 2021; 153
Ghanem, Spanos (b0035) 2003
Jo, Son, Hwang, Kim (b0050)
Raissi, Karniadakis (b0100) 2018; 357
Wen, Hay, Benson (b0160) 2021; 155
Zhang, Lu (b0195) 2004; 194
Mo (10.1016/j.jhydrol.2022.128321_b0095) 2019; 55
Jin (10.1016/j.jhydrol.2022.128321_b0045) 2020; 192
Yin (10.1016/j.jhydrol.2022.128321_b0180) 2020; 273
Tripathy (10.1016/j.jhydrol.2022.128321_b0120) 2018; 375
Goodfellow (10.1016/j.jhydrol.2022.128321_b0040) 2016
Ghanem (10.1016/j.jhydrol.2022.128321_b0035) 2003
10.1016/j.jhydrol.2022.128321_b0110
Wang (10.1016/j.jhydrol.2022.128321_b0135) 2021; 1–29
10.1016/j.jhydrol.2022.128321_b0155
LeCun (10.1016/j.jhydrol.2022.128321_b0075) 2015; 521
Mo (10.1016/j.jhydrol.2022.128321_b0085) 2020; 56
Wang (10.1016/j.jhydrol.2022.128321_b0125) 2021; 373
Wang (10.1016/j.jhydrol.2022.128321_b0140) 2022; 208
Xu (10.1016/j.jhydrol.2022.128321_b0175) 2021; 436
Zhang (10.1016/j.jhydrol.2022.128321_b0195) 2004; 194
Raissi (10.1016/j.jhydrol.2022.128321_b0100) 2018; 357
Chang (10.1016/j.jhydrol.2022.128321_b0020) 2010; 229
Karpatne (10.1016/j.jhydrol.2022.128321_b0060) 2017; 29
10.1016/j.jhydrol.2022.128321_b0145
Zhang (10.1016/j.jhydrol.2022.128321_b0190) 2000; 5
Bonyadi (10.1016/j.jhydrol.2022.128321_b0010) 2017; 25
Jo (10.1016/j.jhydrol.2022.128321_b0050)
Chang (10.1016/j.jhydrol.2022.128321_b0015) 2015; 19
10.1016/j.jhydrol.2022.128321_b0065
Song (10.1016/j.jhydrol.2022.128321_b0115) 2016; 181
Kitanidis (10.1016/j.jhydrol.2022.128321_b0070) 2014; 50
Wen (10.1016/j.jhydrol.2022.128321_b0160) 2021; 155
Kadeethum (10.1016/j.jhydrol.2022.128321_b0055) 2021
Li (10.1016/j.jhydrol.2022.128321_b0080) 2015; 26
Xu (10.1016/j.jhydrol.2022.128321_b0170) 2021; 153
Emerick (10.1016/j.jhydrol.2022.128321_b0025) 2013; 55
Mo (10.1016/j.jhydrol.2022.128321_b0090) 2019; 55
Wang (10.1016/j.jhydrol.2022.128321_b0150) 2020; 584
Zha (10.1016/j.jhydrol.2022.128321_b0185) 2018; 54
Wang (10.1016/j.jhydrol.2022.128321_b0130) 2021; 385
Raissi (10.1016/j.jhydrol.2022.128321_b0105) 2019; 378
Gao (10.1016/j.jhydrol.2022.128321_b0030) 2010
Xu (10.1016/j.jhydrol.2022.128321_b0165) 2020; 56
Zhu (10.1016/j.jhydrol.2022.128321_b0205) 2019; 394
Aziz (10.1016/j.jhydrol.2022.128321_b0005) 1979
Zhu (10.1016/j.jhydrol.2022.128321_b0200) 2018; 366
References_xml – volume: 194
  start-page: 773
  year: 2004
  end-page: 794
  ident: b0195
  article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions
  publication-title: J. Comput. Phys.
– volume: 1–29
  year: 2021
  ident: b0135
  article-title: Efficient uncertainty quantification and data assimilation via theory-guided convolutional neural network
  publication-title: SPE J.
– start-page: 67
  year: 2010
  end-page: 71
  ident: b0030
  article-title: An improved Sobel edge detection
  publication-title: 2010 3rd International Conference on Computer Science and Information Technology. Presented at the 2010 3rd International Conference on Computer Science and Information Technology
– reference: Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer, in: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Presented at the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69–73. 10.1109/ICEC.1998.699146.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b0105
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 155
  year: 2021
  ident: b0160
  article-title: CCSNet: A deep learning modeling suite for CO2 storage
  publication-title: Adv. Water Resour.
– volume: 55
  start-page: 3
  year: 2013
  end-page: 15
  ident: b0025
  article-title: Ensemble smoother with multiple data assimilation
  publication-title: Comput. Geosci.
– year: 2016
  ident: b0040
  article-title: Deep learning
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: b0205
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– volume: 19
  start-page: 727
  year: 2015
  end-page: 746
  ident: b0015
  article-title: Jointly updating the mean size and spatial distribution of facies in reservoir history matching
  publication-title: Comput. Geosci.
– volume: 56
  year: 2020
  ident: b0085
  article-title: Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities
  publication-title: Water Resour. Res.
– year: 2003
  ident: b0035
  article-title: Stochastic finite elements: A spectral approach
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: b0060
  article-title: Theory-guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 181
  start-page: 973
  year: 2016
  end-page: 984
  ident: b0115
  article-title: Apparent gas permeability in an organic-rich shale reservoir
  publication-title: Fuel
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b0200
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 208
  year: 2022
  ident: b0140
  article-title: Efficient well placement optimization based on theory-guided convolutional neural network
  publication-title: J. Petrol. Sci. Eng.
– volume: 229
  start-page: 8011
  year: 2010
  end-page: 8030
  ident: b0020
  article-title: History matching of facies distribution with the EnKF and level set parameterization
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 60
  year: 2000
  end-page: 70
  ident: b0190
  article-title: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs
  publication-title: SPE J.
– ident: b0050
  article-title: Deep neural network approach to forward-inverse problems
– volume: 385
  year: 2021
  ident: b0130
  article-title: Theory-guided auto-encoder for surrogate construction and inverse modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 50
  start-page: 5428
  year: 2014
  end-page: 5443
  ident: b0070
  article-title: Principal component geostatistical approach for large-dimensional inverse problems
  publication-title: Water Resour. Res.
– volume: 55
  start-page: 703
  year: 2019
  end-page: 728
  ident: b0095
  article-title: Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
  publication-title: Water Resour. Res.
– volume: 375
  start-page: 565
  year: 2018
  end-page: 588
  ident: b0120
  article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 54
  start-page: 1616
  year: 2018
  end-page: 1632
  ident: b0185
  article-title: A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0075
  article-title: Deep learning
  publication-title: Nature
– volume: 273
  year: 2020
  ident: b0180
  article-title: Three-dimensional pore-scale study of methane gas mass diffusion in shale with spatially heterogeneous and anisotropic features
  publication-title: Fuel
– reference: Wang, N., Chang, H., Zhang, D., 2021d. Deep-learning-based inverse modeling approaches: A subsurface flow example. Journal of Geophysical Research: Solid Earth 126, e2020JB020549. 10.1029/2020JB020549.
– volume: 55
  start-page: 3856
  year: 2019
  end-page: 3881
  ident: b0090
  article-title: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification
  publication-title: Water Resour. Res.
– volume: 373
  year: 2021
  ident: b0125
  article-title: Efficient uncertainty quantification for dynamic subsurface flow with surrogate by theory-guided neural network
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 153
  year: 2021
  ident: b0170
  article-title: Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form theory-guided neural network
  publication-title: Adv. Water Resour.
– volume: 192
  year: 2020
  ident: b0045
  article-title: Deep-learning-based surrogate model for reservoir simulation with time-varying well controls
  publication-title: J. Petrol. Sci. Eng.
– start-page: 819
  year: 2021
  end-page: 829
  ident: b0055
  article-title: A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
  publication-title: Nat. Comput. Sci.
– volume: 56
  year: 2020
  ident: b0165
  article-title: Pore-scale study of water adsorption and subsequent methane transport in clay in the presence of wettability heterogeneity
  publication-title: Water Resour. Res.
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b0100
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– reference: Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., Benson, S.M., 2021b. U-FNO -- an enhanced Fourier neural operator based-deep learning model for multiphase flow. arXiv:2109.03697 [physics].
– year: 1979
  ident: b0005
  article-title: Petroleum reservoir simulation
– volume: 584
  year: 2020
  ident: b0150
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol.
– volume: 25
  start-page: 1
  year: 2017
  end-page: 54
  ident: b0010
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evol. Comput.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks. Presented at the Proceedings of ICNN’95 - International Conference on Neural Networks, pp. 1942–1948 vol.4. 10.1109/ICNN.1995.488968.
– volume: 436
  year: 2021
  ident: b0175
  article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 652
  year: 2015
  end-page: 669
  ident: b0080
  article-title: A multi-continuum multiple flow mechanism simulator for unconventional oil and gas recovery
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 229
  start-page: 8011
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128321_b0020
  article-title: History matching of facies distribution with the EnKF and level set parameterization
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.07.005
– volume: 375
  start-page: 565
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128321_b0120
  article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.036
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128321_b0200
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128321_b0105
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– year: 1979
  ident: 10.1016/j.jhydrol.2022.128321_b0005
– volume: 436
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0175
  article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110318
– volume: 19
  start-page: 727
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128321_b0015
  article-title: Jointly updating the mean size and spatial distribution of facies in reservoir history matching
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9478-7
– volume: 153
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0170
  article-title: Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form theory-guided neural network
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.103941
– ident: 10.1016/j.jhydrol.2022.128321_b0050
– volume: 1–29
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0135
  article-title: Efficient uncertainty quantification and data assimilation via theory-guided convolutional neural network
  publication-title: SPE J.
– ident: 10.1016/j.jhydrol.2022.128321_b0145
  doi: 10.1029/2020JB020549
– volume: 54
  start-page: 1616
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128321_b0185
  article-title: A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021884
– volume: 584
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128321_b0150
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124700
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128321_b0165
  article-title: Pore-scale study of water adsorption and subsequent methane transport in clay in the presence of wettability heterogeneity
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR027568
– volume: 194
  start-page: 773
  year: 2004
  ident: 10.1016/j.jhydrol.2022.128321_b0195
  article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.015
– volume: 29
  start-page: 2318
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128321_b0060
  article-title: Theory-guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 385
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0130
  article-title: Theory-guided auto-encoder for surrogate construction and inverse modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114037
– year: 2003
  ident: 10.1016/j.jhydrol.2022.128321_b0035
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128321_b0075
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.jhydrol.2022.128321_b0065
  doi: 10.1109/ICNN.1995.488968
– start-page: 819
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0055
  article-title: A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00171-3
– ident: 10.1016/j.jhydrol.2022.128321_b0155
  doi: 10.1016/j.advwatres.2022.104180
– year: 2016
  ident: 10.1016/j.jhydrol.2022.128321_b0040
– volume: 373
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0125
  article-title: Efficient uncertainty quantification for dynamic subsurface flow with surrogate by theory-guided neural network
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113492
– volume: 55
  start-page: 3856
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128321_b0090
  article-title: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024638
– volume: 55
  start-page: 703
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128321_b0095
  article-title: Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023528
– volume: 25
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128321_b0010
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_r_00180
– volume: 273
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128321_b0180
  article-title: Three-dimensional pore-scale study of methane gas mass diffusion in shale with spatially heterogeneous and anisotropic features
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117750
– ident: 10.1016/j.jhydrol.2022.128321_b0110
– volume: 208
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128321_b0140
  article-title: Efficient well placement optimization based on theory-guided convolutional neural network
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109545
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128321_b0085
  article-title: Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026082
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128321_b0100
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128321_b0205
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– volume: 50
  start-page: 5428
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128321_b0070
  article-title: Principal component geostatistical approach for large-dimensional inverse problems
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014630
– volume: 5
  start-page: 60
  year: 2000
  ident: 10.1016/j.jhydrol.2022.128321_b0190
  article-title: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs
  publication-title: SPE J.
  doi: 10.2118/59802-PA
– volume: 181
  start-page: 973
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128321_b0115
  article-title: Apparent gas permeability in an organic-rich shale reservoir
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.011
– volume: 26
  start-page: 652
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128321_b0080
  article-title: A multi-continuum multiple flow mechanism simulator for unconventional oil and gas recovery
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.07.005
– start-page: 67
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128321_b0030
  article-title: An improved Sobel edge detection
– volume: 192
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128321_b0045
  article-title: Deep-learning-based surrogate model for reservoir simulation with time-varying well controls
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107273
– volume: 55
  start-page: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128321_b0025
  article-title: Ensemble smoother with multiple data assimilation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.03.011
– volume: 155
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128321_b0160
  article-title: CCSNet: A deep learning modeling suite for CO2 storage
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.104009
SSID ssj0000334
Score 2.4999857
Snippet •TgCNN is used for surrogate modeling of 3D subsurface flow problems.•Dynamic pressure estimation can be obtained given stochastic permeability...
We build surrogate models for dynamic 3D subsurface single-phase flow problems with multiple vertical producing wells. The surrogate model provides efficient...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128321
SubjectTerms Convolutional neural network
equations
Inverse problem
mathematical models
permeability
Subsurface flow
Surrogate modeling
Theory-guided machine learning
uncertainty
Uncertainty quantification
Title Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128321
https://www.proquest.com/docview/2718326678
Volume 613
WOSCitedRecordID wos000862505600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQviKsYNxmJtymliRvHfpzouAlNPGxS3yLHPt5alXS0zej4MbzxPzmOc2lXpgESL2kV1bGS74v99fg7x4S8EjLRsUhsAJbbYGA4CwQ3NtB9pWTGnR2qRPpTcngoRiP5udP5WefCnE-TPBerlTz7r1DjOQTbpc7-BdzNRfEEfkfQ8Yiw4_GPgD9GGMtlfpTXXwvlzUAeZl9pyRkxwG-BU9soFzh8FHOr8CW309k3FwRhQxSR-NBn2BE4n2yT5rjYK8oAg_JZkBfBSTE2YEoDe3VniLsrkGlgHhgoP_dy7ze_QgyfXpi5rwaFinf_i6veYBxVmzDFqCjJUIy3It3DWX6yGqtZuzTgz-O88f0U1qMa-Ie49sdVobatdJsm9SDkflfkHvgRWyTSJdUl60M69_mtW9ODj1RMehN_Vz3Xcy8sd2tq58PGpegWsiPXXeRMIpLJG2QnSmIpumRn_8PB6GM75TM2qMvSuwZtqtjr33Z2lQi6JAdKjXN0l9yp8KD7nlT3SAfy--TWO6jKmj8gP9bIRTfJRZFctCIXrclFkTS0JRd15MIfUTakG-SiLbloSS6q6Aa56Aa56CVy0YpcD8nx24OjN--DaoePQKNQXgaGSRP2tWGQKB1aUJmVUYwSWMcWtaMAyHgMkTAuWi9DJW2iMuaqHnIQkWXsEenmsxweE8o0B52BhL4eDPphJgCFOefCJjFkkQ13yaB-5Kmuyt-7XVimae1znKQVUqlDKvVI7ZJe0-zM13-5roGo8UwrEevFaYokvK7pyxr_FAd5t3KnShDSKHEzL0dh-eTfL_-U3G7ftGeku5wX8Jzc1OfL8WL-oqL0L5gj2m0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+and+inverse+modeling+for+subsurface+flow+in+3D+heterogeneous+formations+using+a+theory-guided+convolutional+encoder-decoder+network&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Xu%2C+Rui&rft.au=Zhang%2C+Dongxiao&rft.au=Wang%2C+Nanzhe&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=613&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128321&rft.externalDocID=S0022169422008939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon