Multidimensional projection filters via automatic differentiation and sparse-grid integration

•We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing projection filters for multidimensional filtering problems using a non-Gaussian parametric density.•We show that the practical performance of the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 204; S. 108832
Hauptverfasser: Emzir, Muhammad Fuady, Zhao, Zheng, Särkkä, Simo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2023
Schlagworte:
ISSN:0165-1684, 1872-7557, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing projection filters for multidimensional filtering problems using a non-Gaussian parametric density.•We show that the practical performance of the filter is comparable to the particle filter and finite difference based solutions to the Kushner–Stratonovich equation.•An open-source implementation of the method is available. The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner–Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory.
AbstractList •We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing projection filters for multidimensional filtering problems using a non-Gaussian parametric density.•We show that the practical performance of the filter is comparable to the particle filter and finite difference based solutions to the Kushner–Stratonovich equation.•An open-source implementation of the method is available. The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner–Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory.
The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner–Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory.
ArticleNumber 108832
Author Emzir, Muhammad Fuady
Zhao, Zheng
Särkkä, Simo
Author_xml – sequence: 1
  givenname: Muhammad Fuady
  orcidid: 0000-0002-1855-2124
  surname: Emzir
  fullname: Emzir, Muhammad Fuady
  email: muhammad.emzir@kfupm.edu.sa
  organization: Control and Instrumentation Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0002-0368-786X
  surname: Zhao
  fullname: Zhao, Zheng
  organization: Uppsala University, Uppsala, Sweden
– sequence: 3
  givenname: Simo
  orcidid: 0000-0002-7031-9354
  surname: Särkkä
  fullname: Särkkä, Simo
  organization: Aalto University, Espoo, Finland
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-492697$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkMtOw0AMRUcIJMrjD1jkA0iZV5IpC6SKt1TEBtihkTNxKldpUs1MQPw9oYENC1hZtu-9ts4B2227Fhk7EXwquMjPVtNAy43vppJLOYyMUXKHTYQpZFpkWbHLJoMsS0Vu9D47CGHFORcq5xP2-tA3kSpaYxuoa6FJhpwVujg0SU1NRB-SN4IE-titIZJLKqpr9NhGgq0K2ioJG_AB06WnKqE24tJvd0dsr4Ym4PF3PWTPN9dPl3fp4vH2_nK-SJ0ys5g6odEYnqPSUvIyy1HUBuQs17ooJDitwAmllTYqq4WAsuCYi0pmoEsnSlCH7HTMDe-46Uu78bQG_2E7IHtFL3Pb-aXte6tnMp8Vg_x8lDvfheCxto7i9uHogRoruP3iald25Gq_uNqR62DWv8w_1_6xXYw2HDi8EXobHGHrsCI_4LZVR38HfAJj9ZjW
CitedBy_id crossref_primary_10_1016_j_sysconle_2025_106234
crossref_primary_10_1109_TAC_2023_3340979
crossref_primary_10_1016_j_sigpro_2024_109383
Cites_doi 10.1016/j.automatica.2018.10.014
10.1017/S0962492904000182
10.1137/0708048
10.1016/j.apm.2015.11.035
10.1109/PROC.1963.2123
10.1016/j.automatica.2004.12.013
10.1023/A:1019129717644
10.1006/jcom.1995.1001
10.1023/A:1018977404843
10.1007/s00245-013-9217-1
10.7717/peerj-cs.103
10.1175/MWR-D-15-0163.1
10.1090/S0025-5718-97-00861-2
10.1017/apr.2016.77
10.1016/j.sigpro.2012.09.002
10.2307/3318714
10.1016/0021-9045(82)90085-5
10.1175/2008MWR2529.1
10.2307/2004311
10.1093/oxfordhb/9780195375176.013.0027
10.1016/j.actaastro.2013.02.002
10.1112/plms.12226
10.1007/3-540-10861-0
10.1016/j.automatica.2011.08.057
10.1016/j.sigpro.2017.10.028
10.1137/0709022
10.1007/s002110050231
10.1109/TAC.1967.1098671
10.1109/9.855552
10.1007/BF00536382
10.1088/1464-4266/7/10/005
10.1109/9.661075
10.1109/TAC.2019.2953457
10.1007/s00498-015-0154-1
10.1016/j.automatica.2019.108716
10.1016/j.jcp.2009.01.006
10.1016/0022-0396(67)90023-X
10.1090/S0025-5718-68-99866-9
10.3982/ECTA6297
10.1109/TAC.1967.1098582
10.1016/j.cam.2018.04.006
10.1137/140952910
10.1080/17442508408833312
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
DF2
DOI 10.1016/j.sigpro.2022.108832
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID oai_DiVA_org_uu_492697
10_1016_j_sigpro_2022_108832
S0165168422003711
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c389t-c14e8806e34220b56e1f8a29644772ac43ac13434835f11ab70e61d25a4bc1ba3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903754200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
1872-7557
IngestDate Tue Nov 04 17:18:49 EST 2025
Sat Nov 29 07:23:38 EST 2025
Tue Nov 18 21:45:12 EST 2025
Fri Feb 23 02:39:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear filter
Sparse-grid integration
Projection filter
Automatic differentiation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-c14e8806e34220b56e1f8a29644772ac43ac13434835f11ab70e61d25a4bc1ba3
ORCID 0000-0002-1855-2124
0000-0002-0368-786X
0000-0002-7031-9354
OpenAccessLink https://aaltodoc.aalto.fi/handle/123456789/117963
ParticipantIDs swepub_primary_oai_DiVA_org_uu_492697
crossref_citationtrail_10_1016_j_sigpro_2022_108832
crossref_primary_10_1016_j_sigpro_2022_108832
elsevier_sciencedirect_doi_10_1016_j_sigpro_2022_108832
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Crisan, Rozovskii (bib0024) 2011
Meurer, Smith, Paprocki, Čertík, Kirpichev, Rocklin, Kumar, Ivanov, Moore, Singh, Rathnayake, Vig, Granger, Muller, Bonazzi, Gupta, Vats, Johansson, Pedregosa, Curry, Terrel, Roučka, Saboo, Fernando, Kulal, Cimrman, Scopatz (bib0052) 2017; 3
Chopin (bib0022) 2020
Ma, Zabaras (bib0049) 2009; 228
Armstrong, Brigo (bib0005) 2019; 119
Särkkä, Sarmavuori (bib0060) 2013; 93
Bungartz, Griebel (bib0018) 2004; 13
Calin, Udrişte (bib0019) 2014
Zakai (bib0070) 1969; 11
Baek, Bang (bib0008) 2013; 87
Brigo, Hanzon, Gland (bib0015) 1995
Maurel, Michel (bib0051) 1984; 13
Gao, Zhang, Petersen (bib0028) 2019; 99
Kushner (bib0043) 1967; 12
Stoyanov (bib0065) 2015
Amari (bib0001) 1985
Bao, Cao, Webster, Zhang (bib0010) 2014; 2
D. Brigo, Optimal projection filters, 2022, arXiv preprint arXiv
Brigo, Hanzon, Gland (bib0016) 1998; 43
Brigo, Hanzon, Gland (bib0017) 1999; 5
Candy (bib0020) 2016
Griewank, Walther (bib0032) 2008
Novak, Ritter (bib0053) 1996; 75
Hanzon, Hut (bib0034) 1991; vol. 1
Laurie (bib0045) 1997; 66
Julier, Uhlmann (bib0039) 1997
Delvos (bib0025) 1982; 34
Poterjoy (bib0055) 2015; 144
Chui (bib0023) 1972; 9
Amari, Nagaoka (bib0002) 2000
Patterson (bib0054) 1968; 22
Snyder, Bengtsson, Bickel, Anderson (bib0064) 2008; 136
Armstrong, Brigo (bib0004) 2018; 474
Kronrod (bib0041) 1966; 20
Mason, Handscomb (bib0050) 2003
Azimi-Sadjadi, Krishnaprasad (bib0007) 2005; 41
Rall (bib0057) 1981
.
Gao, Zhang, Petersen (bib0029) 2020; 112
Wasilkowski, Woźniakowski (bib0067) 1995; 11
Doucet (bib0026) 2001
Armstrong, Brigo (bib0003) 2016; 28
Gao, Dong, Petersen, Ding (bib0027) 2020; 65
Griebel, Oettershagen (bib0031) 2014
Ceci, Colaneri (bib0021) 2013; 69
Kushner (bib0042) 1967; 12
Gerstner, Griebel (bib0030) 1998; 18
Armstrong, Brigo, Ferrucci (bib0006) 2018; 119
Radhakrishnan, Singh, Bhaumik, Tomar (bib0056) 2016; 40
Smolyak (bib0063) 1963; 148
Tronarp, Särkkä (bib0066) 2019
Judd, Skrainka (bib0038) 2011
Koyama (bib0040) 2018; 144
Särkkä (bib0059) 2013
Winshcel, Krätzig (bib0068) 2010; 78
Beskos, Crisan, Jasra, Kamatani, Zhou (bib0012) 2017; 49
Liptser, Shiryaev (bib0047) 2001
Ito, Xiong (bib0035) 2000; 45
Liptser, Shiryaev (bib0048) 2010
Wonham (bib0069) 1963; 51
J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable transformations of Python+NumPy programs, 2018
Leobacher, Pillichshammer (bib0046) 2014
Kushner (bib0044) 1967
van Handel, Mabuchi (bib0033) 2005; 7
Bain, Crisan (bib0009) 2009
Jazwinski (bib0036) 1970
Smith (bib0062) 1985
Jia, Xin, Cheng (bib0037) 2012; 48
Barthelmann, Novak, Ritter (bib0011) 2000; 12
Singh, Radhakrishnan, Bhaumik, Date (bib0061) 2018; 342
Riess (bib0058) 1971; 8
Koyama (10.1016/j.sigpro.2022.108832_bib0040) 2018; 144
Rall (10.1016/j.sigpro.2022.108832_bib0057) 1981
Bungartz (10.1016/j.sigpro.2022.108832_bib0018) 2004; 13
Mason (10.1016/j.sigpro.2022.108832_bib0050) 2003
Candy (10.1016/j.sigpro.2022.108832_bib0020) 2016
Brigo (10.1016/j.sigpro.2022.108832_bib0016) 1998; 43
Baek (10.1016/j.sigpro.2022.108832_bib0008) 2013; 87
Kronrod (10.1016/j.sigpro.2022.108832_bib0041) 1966; 20
Smith (10.1016/j.sigpro.2022.108832_bib0062) 1985
Bain (10.1016/j.sigpro.2022.108832_bib0009) 2009
Jia (10.1016/j.sigpro.2022.108832_bib0037) 2012; 48
Maurel (10.1016/j.sigpro.2022.108832_bib0051) 1984; 13
Griebel (10.1016/j.sigpro.2022.108832_bib0031) 2014
Barthelmann (10.1016/j.sigpro.2022.108832_bib0011) 2000; 12
Gao (10.1016/j.sigpro.2022.108832_bib0028) 2019; 99
Särkkä (10.1016/j.sigpro.2022.108832_bib0060) 2013; 93
Brigo (10.1016/j.sigpro.2022.108832_bib0015) 1995
Chopin (10.1016/j.sigpro.2022.108832_bib0022) 2020
Beskos (10.1016/j.sigpro.2022.108832_bib0012) 2017; 49
Gerstner (10.1016/j.sigpro.2022.108832_bib0030) 1998; 18
Stoyanov (10.1016/j.sigpro.2022.108832_bib0065) 2015
Särkkä (10.1016/j.sigpro.2022.108832_bib0059) 2013
Armstrong (10.1016/j.sigpro.2022.108832_bib0005) 2019; 119
Gao (10.1016/j.sigpro.2022.108832_bib0029) 2020; 112
Kushner (10.1016/j.sigpro.2022.108832_bib0043) 1967; 12
Liptser (10.1016/j.sigpro.2022.108832_bib0047) 2001
Jazwinski (10.1016/j.sigpro.2022.108832_bib0036) 1970
Winshcel (10.1016/j.sigpro.2022.108832_bib0068) 2010; 78
Griewank (10.1016/j.sigpro.2022.108832_bib0032) 2008
Armstrong (10.1016/j.sigpro.2022.108832_bib0003) 2016; 28
Poterjoy (10.1016/j.sigpro.2022.108832_bib0055) 2015; 144
Smolyak (10.1016/j.sigpro.2022.108832_bib0063) 1963; 148
Doucet (10.1016/j.sigpro.2022.108832_bib0026) 2001
Novak (10.1016/j.sigpro.2022.108832_bib0053) 1996; 75
Chui (10.1016/j.sigpro.2022.108832_bib0023) 1972; 9
Snyder (10.1016/j.sigpro.2022.108832_bib0064) 2008; 136
Ito (10.1016/j.sigpro.2022.108832_bib0035) 2000; 45
Kushner (10.1016/j.sigpro.2022.108832_bib0042) 1967; 12
Patterson (10.1016/j.sigpro.2022.108832_bib0054) 1968; 22
Gao (10.1016/j.sigpro.2022.108832_bib0027) 2020; 65
Armstrong (10.1016/j.sigpro.2022.108832_bib0004) 2018; 474
Tronarp (10.1016/j.sigpro.2022.108832_bib0066) 2019
Singh (10.1016/j.sigpro.2022.108832_bib0061) 2018; 342
Zakai (10.1016/j.sigpro.2022.108832_bib0070) 1969; 11
Riess (10.1016/j.sigpro.2022.108832_bib0058) 1971; 8
Amari (10.1016/j.sigpro.2022.108832_bib0002) 2000
Calin (10.1016/j.sigpro.2022.108832_bib0019) 2014
Amari (10.1016/j.sigpro.2022.108832_bib0001) 1985
Delvos (10.1016/j.sigpro.2022.108832_bib0025) 1982; 34
Kushner (10.1016/j.sigpro.2022.108832_bib0044) 1967
Azimi-Sadjadi (10.1016/j.sigpro.2022.108832_bib0007) 2005; 41
Hanzon (10.1016/j.sigpro.2022.108832_bib0034) 1991; vol. 1
Meurer (10.1016/j.sigpro.2022.108832_bib0052) 2017; 3
Bao (10.1016/j.sigpro.2022.108832_bib0010) 2014; 2
Laurie (10.1016/j.sigpro.2022.108832_bib0045) 1997; 66
van Handel (10.1016/j.sigpro.2022.108832_bib0033) 2005; 7
Ceci (10.1016/j.sigpro.2022.108832_bib0021) 2013; 69
Julier (10.1016/j.sigpro.2022.108832_bib0039) 1997
Brigo (10.1016/j.sigpro.2022.108832_bib0017) 1999; 5
Ma (10.1016/j.sigpro.2022.108832_bib0049) 2009; 228
Liptser (10.1016/j.sigpro.2022.108832_bib0048) 2010
Armstrong (10.1016/j.sigpro.2022.108832_bib0006) 2018; 119
Wonham (10.1016/j.sigpro.2022.108832_bib0069) 1963; 51
Leobacher (10.1016/j.sigpro.2022.108832_bib0046) 2014
Radhakrishnan (10.1016/j.sigpro.2022.108832_bib0056) 2016; 40
10.1016/j.sigpro.2022.108832_bib0013
10.1016/j.sigpro.2022.108832_bib0014
Judd (10.1016/j.sigpro.2022.108832_bib0038) 2011
Wasilkowski (10.1016/j.sigpro.2022.108832_bib0067) 1995; 11
Crisan (10.1016/j.sigpro.2022.108832_bib0024) 2011
References_xml – volume: 12
  start-page: 262
  year: 1967
  end-page: 267
  ident: bib0043
  article-title: Nonlinear filtering: the exact dynamical equations satisfied by the conditional mode
  publication-title: IEEE Trans. Automat. Control
– year: 2014
  ident: bib0019
  article-title: Geometric Modeling in Probability and Statistics
– volume: 8
  start-page: 509
  year: 1971
  end-page: 511
  ident: bib0058
  article-title: A note on error bounds for Gauss–Chebyshev quadrature
  publication-title: SIAM J. Numer. Anal.
– volume: 87
  start-page: 96
  year: 2013
  end-page: 106
  ident: bib0008
  article-title: Adaptive sparse grid quadrature filter for spacecraft relative navigation
  publication-title: Acta Astronaut.
– volume: 112
  start-page: 108716
  year: 2020
  ident: bib0029
  article-title: An improved quantum projection filter
  publication-title: Automatica
– volume: 2
  start-page: 784
  year: 2014
  end-page: 804
  ident: bib0010
  article-title: A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 5
  start-page: 495
  year: 1999
  ident: bib0017
  article-title: Approximate nonlinear filtering by projection on exponential manifolds of densities
  publication-title: Bernoulli
– year: 2013
  ident: bib0059
  article-title: Bayesian Filtering and Smoothing
– volume: 18
  start-page: 209
  year: 1998
  end-page: 232
  ident: bib0030
  article-title: Numerical integration using sparse grids
  publication-title: Numer. Algorithms
– volume: 11
  start-page: 1
  year: 1995
  end-page: 56
  ident: bib0067
  article-title: Explicit cost bounds of algorithms for multivariate tensor product problems
  publication-title: J. Complex
– volume: 45
  start-page: 910
  year: 2000
  end-page: 927
  ident: bib0035
  article-title: Gaussian filters for nonlinear filtering problems
  publication-title: IEEE Trans. Automat. Control
– year: 2000
  ident: bib0002
  article-title: Methods of Information Geometry
  publication-title: Number 191 in Translations of Mathematical Monographs
– volume: 12
  start-page: 546
  year: 1967
  end-page: 556
  ident: bib0042
  article-title: Approximations to optimal nonlinear filters
  publication-title: IEEE Trans. Automat. Control
– volume: 11
  start-page: 230
  year: 1969
  end-page: 243
  ident: bib0070
  article-title: On the optimal filtering of diffusion processes
  publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
– volume: vol. 1
  start-page: 623
  year: 1991
  end-page: 628
  ident: bib0034
  article-title: New results on the projection filter
  publication-title: Proceedings of the first European Control Conference
– volume: 3
  start-page: e103
  year: 2017
  ident: bib0052
  article-title: SymPy: symbolic computing in Python
  publication-title: PeerJ Comput. Sci.
– volume: 93
  start-page: 500
  year: 2013
  end-page: 510
  ident: bib0060
  article-title: Gaussian filtering and smoothing for continuous-discrete dynamic systems
  publication-title: Signal Process.
– volume: 119
  start-page: 176
  year: 2019
  end-page: 213
  ident: bib0005
  article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections
  publication-title: Proc. London Math. Soc.
– year: 2010
  ident: bib0048
  article-title: Statistics of Random Processes II
– volume: 28
  start-page: 5
  year: 2016
  ident: bib0003
  article-title: Nonlinear filtering via stochastic PDE projection on mixture manifolds in
  publication-title: Math. Control Signals Syst.
– year: 1981
  ident: bib0057
  article-title: Automatic Differentiation: Techniques and Applications
  publication-title: Number 120 in Lecture Notes in Computer Science
– reference: J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable transformations of Python+NumPy programs, 2018,
– year: 1985
  ident: bib0062
  article-title: Numerical Solution of Partial Differential Equations : Finite Difference Methods
– volume: 34
  start-page: 99
  year: 1982
  end-page: 114
  ident: bib0025
  article-title: d-Variate boolean interpolation
  publication-title: J. Approx. Theory
– year: 2020
  ident: bib0022
  article-title: An Introduction to Sequential Monte Carlo
– year: 2016
  ident: bib0020
  article-title: Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods
– volume: 51
  start-page: 530
  year: 1963
  ident: bib0069
  article-title: Stochastic problems in optimal control
  publication-title: Proc. IEEE
– volume: 40
  start-page: 4441
  year: 2016
  end-page: 4450
  ident: bib0056
  article-title: Multiple sparse-grid Gauss-Hermite filtering
  publication-title: Appl Math Model
– volume: 13
  start-page: 147
  year: 2004
  end-page: 269
  ident: bib0018
  article-title: Sparse grids
  publication-title: Acta Numer.
– volume: 65
  start-page: 3693
  year: 2020
  end-page: 3700
  ident: bib0027
  article-title: Design of a quantum projection filter
  publication-title: IEEE Trans. Automat. Control
– volume: 12
  start-page: 273
  year: 2000
  end-page: 288
  ident: bib0011
  article-title: High dimensional polynomial interpolation on sparse grids
  publication-title: Adv. Comput. Math.
– volume: 66
  start-page: 1133
  year: 1997
  end-page: 1146
  ident: bib0045
  article-title: Calculation of Gauss-Kronrod quadrature rules
  publication-title: Math. Comput.
– volume: 148
  start-page: 1042
  year: 1963
  end-page: 1045
  ident: bib0063
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Dokl. Akad. Nauk SSSR
– year: 2009
  ident: bib0009
  article-title: Fundamentals of Stochastic Filtering
– year: 2003
  ident: bib0050
  article-title: Chebyshev Polynomials
– year: 2014
  ident: bib0046
  article-title: Introduction to Quasi-Monte Carlo Integration and Applications
– volume: 41
  start-page: 945
  year: 2005
  end-page: 956
  ident: bib0007
  article-title: Approximate nonlinear filtering and its application in navigation
  publication-title: Automatica
– year: 2019
  ident: bib0066
  article-title: Updates in Bayesian filtering by continuous projections on a manifold of densities
  publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– reference: D. Brigo, Optimal projection filters, 2022, arXiv preprint arXiv:
– volume: 342
  start-page: 305
  year: 2018
  end-page: 316
  ident: bib0061
  article-title: Adaptive sparse-grid Gauss-Hermite filter
  publication-title: J. Comput. Appl. Math.
– volume: 13
  start-page: 83
  year: 1984
  end-page: 102
  ident: bib0051
  article-title: Des resultats de non existence de filtre de dimension finie
  publication-title: Stochastics
– volume: 9
  start-page: 237
  year: 1972
  end-page: 240
  ident: bib0023
  article-title: Concerning Gaussian–Chebyshev quadrature errors
  publication-title: SIAM J Numer Anal
– volume: 22
  start-page: 847
  year: 1968
  ident: bib0054
  article-title: The optimum addition of points to quadrature formulae
  publication-title: Math. Comput.
– volume: 43
  start-page: 247
  year: 1998
  end-page: 252
  ident: bib0016
  article-title: A differential geometric approach to nonlinear filtering: the projection filter
  publication-title: IEEE Trans. Automat. Control
– volume: 75
  start-page: 79
  year: 1996
  end-page: 97
  ident: bib0053
  article-title: High dimensional integration of smooth functions over cubes
  publication-title: Numer. Math.
– volume: 7
  start-page: S226
  year: 2005
  end-page: S236
  ident: bib0033
  article-title: Quantum projection filter for a highly nonlinear model in cavity QED
  publication-title: J. Opt. B Quantum Semiclass. Opt.
– year: 1967
  ident: bib0044
  article-title: Dynamical equations for optimal nonlinear filtering
  publication-title: J. Differ. Equ.
– volume: 69
  start-page: 47
  year: 2013
  end-page: 82
  ident: bib0021
  article-title: The Zakai equation of nonlinear filtering for jump-diffusion observations: existence and uniqueness
  publication-title: Appl. Math. Optim.
– volume: 119
  start-page: 176
  year: 2018
  end-page: 213
  ident: bib0006
  article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections
  publication-title: Proc. London Math. Soc.
– year: 1970
  ident: bib0036
  article-title: Stochastic Processes and Filtering Theory
– year: 1997
  ident: bib0039
  article-title: New extension of the Kalman filter to nonlinear systems
  publication-title: Signal Processing, Sensor Fusion, and Target Recognition VI
– volume: 99
  start-page: 59
  year: 2019
  end-page: 68
  ident: bib0028
  article-title: An exponential quantum projection filter for open quantum systems
  publication-title: Automatica
– volume: 144
  start-page: 59
  year: 2015
  end-page: 76
  ident: bib0055
  article-title: A localized particle filter for high-dimensional nonlinear systems
  publication-title: Mon. Weather Rev.
– year: 1995
  ident: bib0015
  article-title: A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter
  publication-title: Research Report 2598
– year: 2015
  ident: bib0065
  article-title: User Manual: TASMANIAN Sparse Grids
  publication-title: Technical Report ORNL/TM-2015/596
– volume: 20
  start-page: 184
  year: 1966
  ident: bib0041
  article-title: Nodes and weights of quadrature formulas
  publication-title: Math. Comput.
– volume: 474
  start-page: 20170559
  year: 2018
  ident: bib0004
  article-title: Intrinsic stochastic differential equations as jets
  publication-title: Proc. R. Soc. A Math.Phys. Eng. Sci.
– volume: 144
  start-page: 333
  year: 2018
  end-page: 340
  ident: bib0040
  article-title: Projection smoothing for continuous and continuous-discrete stochastic dynamic systems
  publication-title: Signal Process.
– reference: .
– start-page: 109
  year: 2014
  end-page: 136
  ident: bib0031
  article-title: Dimension-adaptive sparse grid quadrature for integrals with boundary singularities
  publication-title: Sparse Grids and Applications - Munich 2012
– volume: 136
  start-page: 4629
  year: 2008
  end-page: 4640
  ident: bib0064
  article-title: Obstacles to high-dimensional particle filtering
  publication-title: Mon. Weather Rev.
– volume: 228
  start-page: 3084
  year: 2009
  end-page: 3113
  ident: bib0049
  article-title: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations
  publication-title: J. Comput. Phys.
– year: 2011
  ident: bib0024
  article-title: The Oxford Handbook of Nonlinear Filtering
– year: 1985
  ident: bib0001
  article-title: Differential-Geometrical Methods in Statistics
– year: 2001
  ident: bib0026
  article-title: Sequential Monte Carlo Methods in Practice
– year: 2001
  ident: bib0047
  article-title: Statistics of Random Processes
– volume: 78
  start-page: 803
  year: 2010
  end-page: 821
  ident: bib0068
  article-title: Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality
  publication-title: Econometrica
– volume: 48
  start-page: 327
  year: 2012
  end-page: 341
  ident: bib0037
  article-title: Sparse-grid quadrature nonlinear filtering
  publication-title: Automatica
– volume: 49
  start-page: 24
  year: 2017
  end-page: 48
  ident: bib0012
  article-title: A stable particle filter for a class of high-dimensional state-space models
  publication-title: Adv. Appl. Probab.
– year: 2011
  ident: bib0038
  article-title: High Performance Quadrature Rules: How Numerical Integration Affects a Popular Model of Product Differentiation
  publication-title: Technical Report
– year: 2008
  ident: bib0032
  article-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
– ident: 10.1016/j.sigpro.2022.108832_bib0013
– volume: 99
  start-page: 59
  year: 2019
  ident: 10.1016/j.sigpro.2022.108832_bib0028
  article-title: An exponential quantum projection filter for open quantum systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.10.014
– volume: vol. 1
  start-page: 623
  year: 1991
  ident: 10.1016/j.sigpro.2022.108832_bib0034
  article-title: New results on the projection filter
– year: 2008
  ident: 10.1016/j.sigpro.2022.108832_bib0032
– volume: 13
  start-page: 147
  year: 2004
  ident: 10.1016/j.sigpro.2022.108832_bib0018
  article-title: Sparse grids
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 8
  start-page: 509
  issue: 3
  year: 1971
  ident: 10.1016/j.sigpro.2022.108832_bib0058
  article-title: A note on error bounds for Gauss–Chebyshev quadrature
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0708048
– volume: 40
  start-page: 4441
  issue: 7–8
  year: 2016
  ident: 10.1016/j.sigpro.2022.108832_bib0056
  article-title: Multiple sparse-grid Gauss-Hermite filtering
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.11.035
– year: 1970
  ident: 10.1016/j.sigpro.2022.108832_bib0036
– volume: 51
  start-page: 530
  issue: 3
  year: 1963
  ident: 10.1016/j.sigpro.2022.108832_bib0069
  article-title: Stochastic problems in optimal control
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1963.2123
– year: 2014
  ident: 10.1016/j.sigpro.2022.108832_bib0019
– year: 2013
  ident: 10.1016/j.sigpro.2022.108832_bib0059
– volume: 41
  start-page: 945
  issue: 6
  year: 2005
  ident: 10.1016/j.sigpro.2022.108832_bib0007
  article-title: Approximate nonlinear filtering and its application in navigation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.12.013
– volume: 18
  start-page: 209
  issue: 3/4
  year: 1998
  ident: 10.1016/j.sigpro.2022.108832_bib0030
  article-title: Numerical integration using sparse grids
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019129717644
– year: 2003
  ident: 10.1016/j.sigpro.2022.108832_bib0050
– volume: 11
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.sigpro.2022.108832_bib0067
  article-title: Explicit cost bounds of algorithms for multivariate tensor product problems
  publication-title: J. Complex
  doi: 10.1006/jcom.1995.1001
– volume: 12
  start-page: 273
  issue: 4
  year: 2000
  ident: 10.1016/j.sigpro.2022.108832_bib0011
  article-title: High dimensional polynomial interpolation on sparse grids
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018977404843
– volume: 69
  start-page: 47
  issue: 1
  year: 2013
  ident: 10.1016/j.sigpro.2022.108832_bib0021
  article-title: The Zakai equation of nonlinear filtering for jump-diffusion observations: existence and uniqueness
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-013-9217-1
– year: 2020
  ident: 10.1016/j.sigpro.2022.108832_bib0022
– volume: 3
  start-page: e103
  year: 2017
  ident: 10.1016/j.sigpro.2022.108832_bib0052
  article-title: SymPy: symbolic computing in Python
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.103
– start-page: 109
  year: 2014
  ident: 10.1016/j.sigpro.2022.108832_bib0031
  article-title: Dimension-adaptive sparse grid quadrature for integrals with boundary singularities
– volume: 144
  start-page: 59
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2022.108832_bib0055
  article-title: A localized particle filter for high-dimensional nonlinear systems
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-15-0163.1
– volume: 66
  start-page: 1133
  issue: 219
  year: 1997
  ident: 10.1016/j.sigpro.2022.108832_bib0045
  article-title: Calculation of Gauss-Kronrod quadrature rules
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-97-00861-2
– volume: 49
  start-page: 24
  issue: 1
  year: 2017
  ident: 10.1016/j.sigpro.2022.108832_bib0012
  article-title: A stable particle filter for a class of high-dimensional state-space models
  publication-title: Adv. Appl. Probab.
  doi: 10.1017/apr.2016.77
– year: 2019
  ident: 10.1016/j.sigpro.2022.108832_bib0066
  article-title: Updates in Bayesian filtering by continuous projections on a manifold of densities
– ident: 10.1016/j.sigpro.2022.108832_bib0014
– volume: 93
  start-page: 500
  issue: 2
  year: 2013
  ident: 10.1016/j.sigpro.2022.108832_bib0060
  article-title: Gaussian filtering and smoothing for continuous-discrete dynamic systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.09.002
– volume: 5
  start-page: 495
  issue: 3
  year: 1999
  ident: 10.1016/j.sigpro.2022.108832_bib0017
  article-title: Approximate nonlinear filtering by projection on exponential manifolds of densities
  publication-title: Bernoulli
  doi: 10.2307/3318714
– volume: 34
  start-page: 99
  issue: 2
  year: 1982
  ident: 10.1016/j.sigpro.2022.108832_bib0025
  article-title: d-Variate boolean interpolation
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(82)90085-5
– volume: 136
  start-page: 4629
  issue: 12
  year: 2008
  ident: 10.1016/j.sigpro.2022.108832_bib0064
  article-title: Obstacles to high-dimensional particle filtering
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2008MWR2529.1
– year: 2010
  ident: 10.1016/j.sigpro.2022.108832_bib0048
– volume: 20
  start-page: 184
  issue: 93
  year: 1966
  ident: 10.1016/j.sigpro.2022.108832_bib0041
  article-title: Nodes and weights of quadrature formulas
  publication-title: Math. Comput.
  doi: 10.2307/2004311
– year: 2011
  ident: 10.1016/j.sigpro.2022.108832_bib0024
  doi: 10.1093/oxfordhb/9780195375176.013.0027
– volume: 87
  start-page: 96
  year: 2013
  ident: 10.1016/j.sigpro.2022.108832_bib0008
  article-title: Adaptive sparse grid quadrature filter for spacecraft relative navigation
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2013.02.002
– year: 1985
  ident: 10.1016/j.sigpro.2022.108832_bib0001
– volume: 119
  start-page: 176
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2022.108832_bib0006
  article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms.12226
– year: 2000
  ident: 10.1016/j.sigpro.2022.108832_bib0002
  article-title: Methods of Information Geometry
– year: 1981
  ident: 10.1016/j.sigpro.2022.108832_bib0057
  article-title: Automatic Differentiation: Techniques and Applications
  doi: 10.1007/3-540-10861-0
– volume: 48
  start-page: 327
  issue: 2
  year: 2012
  ident: 10.1016/j.sigpro.2022.108832_bib0037
  article-title: Sparse-grid quadrature nonlinear filtering
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.08.057
– volume: 144
  start-page: 333
  year: 2018
  ident: 10.1016/j.sigpro.2022.108832_bib0040
  article-title: Projection smoothing for continuous and continuous-discrete stochastic dynamic systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.10.028
– volume: 9
  start-page: 237
  issue: 2
  year: 1972
  ident: 10.1016/j.sigpro.2022.108832_bib0023
  article-title: Concerning Gaussian–Chebyshev quadrature errors
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0709022
– year: 1997
  ident: 10.1016/j.sigpro.2022.108832_bib0039
  article-title: New extension of the Kalman filter to nonlinear systems
– volume: 474
  start-page: 20170559
  issue: 2210
  year: 2018
  ident: 10.1016/j.sigpro.2022.108832_bib0004
  article-title: Intrinsic stochastic differential equations as jets
  publication-title: Proc. R. Soc. A Math.Phys. Eng. Sci.
– year: 2015
  ident: 10.1016/j.sigpro.2022.108832_bib0065
  article-title: User Manual: TASMANIAN Sparse Grids
– volume: 75
  start-page: 79
  issue: 1
  year: 1996
  ident: 10.1016/j.sigpro.2022.108832_bib0053
  article-title: High dimensional integration of smooth functions over cubes
  publication-title: Numer. Math.
  doi: 10.1007/s002110050231
– volume: 12
  start-page: 546
  issue: 5
  year: 1967
  ident: 10.1016/j.sigpro.2022.108832_bib0042
  article-title: Approximations to optimal nonlinear filters
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1967.1098671
– volume: 148
  start-page: 1042
  year: 1963
  ident: 10.1016/j.sigpro.2022.108832_bib0063
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Dokl. Akad. Nauk SSSR
– year: 1995
  ident: 10.1016/j.sigpro.2022.108832_bib0015
  article-title: A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter
– volume: 45
  start-page: 910
  issue: 5
  year: 2000
  ident: 10.1016/j.sigpro.2022.108832_bib0035
  article-title: Gaussian filters for nonlinear filtering problems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.855552
– year: 2011
  ident: 10.1016/j.sigpro.2022.108832_bib0038
  article-title: High Performance Quadrature Rules: How Numerical Integration Affects a Popular Model of Product Differentiation
– volume: 11
  start-page: 230
  issue: 3
  year: 1969
  ident: 10.1016/j.sigpro.2022.108832_bib0070
  article-title: On the optimal filtering of diffusion processes
  publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
  doi: 10.1007/BF00536382
– volume: 7
  start-page: S226
  issue: 10
  year: 2005
  ident: 10.1016/j.sigpro.2022.108832_bib0033
  article-title: Quantum projection filter for a highly nonlinear model in cavity QED
  publication-title: J. Opt. B Quantum Semiclass. Opt.
  doi: 10.1088/1464-4266/7/10/005
– volume: 43
  start-page: 247
  issue: 2
  year: 1998
  ident: 10.1016/j.sigpro.2022.108832_bib0016
  article-title: A differential geometric approach to nonlinear filtering: the projection filter
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.661075
– volume: 65
  start-page: 3693
  issue: 8
  year: 2020
  ident: 10.1016/j.sigpro.2022.108832_bib0027
  article-title: Design of a quantum projection filter
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2019.2953457
– volume: 119
  start-page: 176
  issue: 1
  year: 2019
  ident: 10.1016/j.sigpro.2022.108832_bib0005
  article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms.12226
– volume: 28
  start-page: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2022.108832_bib0003
  article-title: Nonlinear filtering via stochastic PDE projection on mixture manifolds in L2 direct metric
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/s00498-015-0154-1
– year: 2001
  ident: 10.1016/j.sigpro.2022.108832_bib0047
– volume: 112
  start-page: 108716
  year: 2020
  ident: 10.1016/j.sigpro.2022.108832_bib0029
  article-title: An improved quantum projection filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108716
– volume: 228
  start-page: 3084
  issue: 8
  year: 2009
  ident: 10.1016/j.sigpro.2022.108832_bib0049
  article-title: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.01.006
– year: 2014
  ident: 10.1016/j.sigpro.2022.108832_bib0046
– year: 1967
  ident: 10.1016/j.sigpro.2022.108832_bib0044
  article-title: Dynamical equations for optimal nonlinear filtering
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(67)90023-X
– year: 2016
  ident: 10.1016/j.sigpro.2022.108832_bib0020
– year: 2009
  ident: 10.1016/j.sigpro.2022.108832_bib0009
– year: 1985
  ident: 10.1016/j.sigpro.2022.108832_bib0062
– volume: 22
  start-page: 847
  issue: 104
  year: 1968
  ident: 10.1016/j.sigpro.2022.108832_bib0054
  article-title: The optimum addition of points to quadrature formulae
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-68-99866-9
– volume: 78
  start-page: 803
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2022.108832_bib0068
  article-title: Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality
  publication-title: Econometrica
  doi: 10.3982/ECTA6297
– year: 2001
  ident: 10.1016/j.sigpro.2022.108832_bib0026
– volume: 12
  start-page: 262
  issue: 3
  year: 1967
  ident: 10.1016/j.sigpro.2022.108832_bib0043
  article-title: Nonlinear filtering: the exact dynamical equations satisfied by the conditional mode
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1967.1098582
– volume: 342
  start-page: 305
  year: 2018
  ident: 10.1016/j.sigpro.2022.108832_bib0061
  article-title: Adaptive sparse-grid Gauss-Hermite filter
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.04.006
– volume: 2
  start-page: 784
  issue: 1
  year: 2014
  ident: 10.1016/j.sigpro.2022.108832_bib0010
  article-title: A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/140952910
– volume: 13
  start-page: 83
  issue: 1–2
  year: 1984
  ident: 10.1016/j.sigpro.2022.108832_bib0051
  article-title: Des resultats de non existence de filtre de dimension finie
  publication-title: Stochastics
  doi: 10.1080/17442508408833312
SSID ssj0001360
Score 2.4361165
Snippet •We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing...
The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108832
SubjectTerms Automatic differentiation
Nonlinear filter
Projection filter
Sparse-grid integration
Title Multidimensional projection filters via automatic differentiation and sparse-grid integration
URI https://dx.doi.org/10.1016/j.sigpro.2022.108832
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-492697
Volume 204
WOSCitedRecordID wos000903754200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftYexKuxt62J6CRmTJlv0YtpZtbGXQboTCMLItJ24bpzh2KPv1O7pYCc1Gu4e9GGMsW-j7LJ9zdM4nhN4IEZYBk4JwWUrCSxWRWAaMFDIqmAT7PrPq-l_E0VE8mSTfBgNfxb-6EHUdX10ll_8VargGYOvS2X-A2z8ULsA5gA5HgB2OtwLelNQWWrTfCm4MXbDF5BRWenF8OVzpUqyuXVi91n6TlNbCZNYTYKJplopMm6rwkhI9hM6WPa6m7vG61KD_BWrrfP6rMkT42s3kfC6L4WEnCx-7P51JE589nal1m2OzYs-b83N7YqKywKPNqASA69Oy-kBlFBIa2e3f-pk2sDsNb83aNoBw9m5ZTaHP4LQHgc59jF3kc1sP-0P1Y5wummnadalWPEzEHbQbiDCBqXl3_Olg8tn_jSkzleK-P9oBjwV4FWEo-lJKk--3_fK_miqbmrLGDjl5iB44BwKPLfCP0EDVj9H9DVnJJ-jndQrgNQWwowAGCmBPAXyNAhgogDcogDco8BR9Pzw4ef-RuG00SA7WaEtyyhXM0pFiPAhGWRgpWsL3mIAlDK6VzDmTOWWccTDGS0plJkYqokUQSp7lNJPsGdqpF7XaQzjhSZEJoWSUgSswEjLSX3SY0TzJ1IiX-4j1I5bmTmNeb3VykfbJhGepHedUj3Nqx3kfEd_q0mqs3HC_6MFInZ1o7b8UCHVDy7cWO_-eP7Pp-S3ve4Hurcn_Eu20Tadeobv5qq2WzWtHxd-Pv5oy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+projection+filters+via+automatic+differentiation+and+sparse-grid+integration&rft.jtitle=Signal+processing&rft.au=Emzir%2C+Muhammad+Fuady&rft.au=Zhao%2C+Zheng&rft.au=S%C3%A4rkk%C3%A4%2C+Simo&rft.date=2023-03-01&rft.issn=0165-1684&rft.volume=204&rft_id=info:doi/10.1016%2Fj.sigpro.2022.108832&rft.externalDocID=oai_DiVA_org_uu_492697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon