Multidimensional projection filters via automatic differentiation and sparse-grid integration
•We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing projection filters for multidimensional filtering problems using a non-Gaussian parametric density.•We show that the practical performance of the f...
Gespeichert in:
| Veröffentlicht in: | Signal processing Jg. 204; S. 108832 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2023
|
| Schlagworte: | |
| ISSN: | 0165-1684, 1872-7557, 1872-7557 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing projection filters for multidimensional filtering problems using a non-Gaussian parametric density.•We show that the practical performance of the filter is comparable to the particle filter and finite difference based solutions to the Kushner–Stratonovich equation.•An open-source implementation of the method is available.
The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner–Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory. |
|---|---|
| AbstractList | •We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing projection filters for multidimensional filtering problems using a non-Gaussian parametric density.•We show that the practical performance of the filter is comparable to the particle filter and finite difference based solutions to the Kushner–Stratonovich equation.•An open-source implementation of the method is available.
The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner–Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory. The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner–Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory. |
| ArticleNumber | 108832 |
| Author | Emzir, Muhammad Fuady Zhao, Zheng Särkkä, Simo |
| Author_xml | – sequence: 1 givenname: Muhammad Fuady orcidid: 0000-0002-1855-2124 surname: Emzir fullname: Emzir, Muhammad Fuady email: muhammad.emzir@kfupm.edu.sa organization: Control and Instrumentation Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia – sequence: 2 givenname: Zheng orcidid: 0000-0002-0368-786X surname: Zhao fullname: Zhao, Zheng organization: Uppsala University, Uppsala, Sweden – sequence: 3 givenname: Simo orcidid: 0000-0002-7031-9354 surname: Särkkä fullname: Särkkä, Simo organization: Aalto University, Espoo, Finland |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-492697$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqFkMtOw0AMRUcIJMrjD1jkA0iZV5IpC6SKt1TEBtihkTNxKldpUs1MQPw9oYENC1hZtu-9ts4B2227Fhk7EXwquMjPVtNAy43vppJLOYyMUXKHTYQpZFpkWbHLJoMsS0Vu9D47CGHFORcq5xP2-tA3kSpaYxuoa6FJhpwVujg0SU1NRB-SN4IE-titIZJLKqpr9NhGgq0K2ioJG_AB06WnKqE24tJvd0dsr4Ym4PF3PWTPN9dPl3fp4vH2_nK-SJ0ys5g6odEYnqPSUvIyy1HUBuQs17ooJDitwAmllTYqq4WAsuCYi0pmoEsnSlCH7HTMDe-46Uu78bQG_2E7IHtFL3Pb-aXte6tnMp8Vg_x8lDvfheCxto7i9uHogRoruP3iald25Gq_uNqR62DWv8w_1_6xXYw2HDi8EXobHGHrsCI_4LZVR38HfAJj9ZjW |
| CitedBy_id | crossref_primary_10_1016_j_sysconle_2025_106234 crossref_primary_10_1109_TAC_2023_3340979 crossref_primary_10_1016_j_sigpro_2024_109383 |
| Cites_doi | 10.1016/j.automatica.2018.10.014 10.1017/S0962492904000182 10.1137/0708048 10.1016/j.apm.2015.11.035 10.1109/PROC.1963.2123 10.1016/j.automatica.2004.12.013 10.1023/A:1019129717644 10.1006/jcom.1995.1001 10.1023/A:1018977404843 10.1007/s00245-013-9217-1 10.7717/peerj-cs.103 10.1175/MWR-D-15-0163.1 10.1090/S0025-5718-97-00861-2 10.1017/apr.2016.77 10.1016/j.sigpro.2012.09.002 10.2307/3318714 10.1016/0021-9045(82)90085-5 10.1175/2008MWR2529.1 10.2307/2004311 10.1093/oxfordhb/9780195375176.013.0027 10.1016/j.actaastro.2013.02.002 10.1112/plms.12226 10.1007/3-540-10861-0 10.1016/j.automatica.2011.08.057 10.1016/j.sigpro.2017.10.028 10.1137/0709022 10.1007/s002110050231 10.1109/TAC.1967.1098671 10.1109/9.855552 10.1007/BF00536382 10.1088/1464-4266/7/10/005 10.1109/9.661075 10.1109/TAC.2019.2953457 10.1007/s00498-015-0154-1 10.1016/j.automatica.2019.108716 10.1016/j.jcp.2009.01.006 10.1016/0022-0396(67)90023-X 10.1090/S0025-5718-68-99866-9 10.3982/ECTA6297 10.1109/TAC.1967.1098582 10.1016/j.cam.2018.04.006 10.1137/140952910 10.1080/17442508408833312 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION ADTPV AOWAS DF2 |
| DOI | 10.1016/j.sigpro.2022.108832 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7557 |
| ExternalDocumentID | oai_DiVA_org_uu_492697 10_1016_j_sigpro_2022_108832 S0165168422003711 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c389t-c14e8806e34220b56e1f8a29644772ac43ac13434835f11ab70e61d25a4bc1ba3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903754200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 1872-7557 |
| IngestDate | Tue Nov 04 17:18:49 EST 2025 Sat Nov 29 07:23:38 EST 2025 Tue Nov 18 21:45:12 EST 2025 Fri Feb 23 02:39:51 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonlinear filter Sparse-grid integration Projection filter Automatic differentiation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-c14e8806e34220b56e1f8a29644772ac43ac13434835f11ab70e61d25a4bc1ba3 |
| ORCID | 0000-0002-1855-2124 0000-0002-0368-786X 0000-0002-7031-9354 |
| OpenAccessLink | https://aaltodoc.aalto.fi/handle/123456789/117963 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_492697 crossref_citationtrail_10_1016_j_sigpro_2022_108832 crossref_primary_10_1016_j_sigpro_2022_108832 elsevier_sciencedirect_doi_10_1016_j_sigpro_2022_108832 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Crisan, Rozovskii (bib0024) 2011 Meurer, Smith, Paprocki, Čertík, Kirpichev, Rocklin, Kumar, Ivanov, Moore, Singh, Rathnayake, Vig, Granger, Muller, Bonazzi, Gupta, Vats, Johansson, Pedregosa, Curry, Terrel, Roučka, Saboo, Fernando, Kulal, Cimrman, Scopatz (bib0052) 2017; 3 Chopin (bib0022) 2020 Ma, Zabaras (bib0049) 2009; 228 Armstrong, Brigo (bib0005) 2019; 119 Särkkä, Sarmavuori (bib0060) 2013; 93 Bungartz, Griebel (bib0018) 2004; 13 Calin, Udrişte (bib0019) 2014 Zakai (bib0070) 1969; 11 Baek, Bang (bib0008) 2013; 87 Brigo, Hanzon, Gland (bib0015) 1995 Maurel, Michel (bib0051) 1984; 13 Gao, Zhang, Petersen (bib0028) 2019; 99 Kushner (bib0043) 1967; 12 Stoyanov (bib0065) 2015 Amari (bib0001) 1985 Bao, Cao, Webster, Zhang (bib0010) 2014; 2 D. Brigo, Optimal projection filters, 2022, arXiv preprint arXiv Brigo, Hanzon, Gland (bib0016) 1998; 43 Brigo, Hanzon, Gland (bib0017) 1999; 5 Candy (bib0020) 2016 Griewank, Walther (bib0032) 2008 Novak, Ritter (bib0053) 1996; 75 Hanzon, Hut (bib0034) 1991; vol. 1 Laurie (bib0045) 1997; 66 Julier, Uhlmann (bib0039) 1997 Delvos (bib0025) 1982; 34 Poterjoy (bib0055) 2015; 144 Chui (bib0023) 1972; 9 Amari, Nagaoka (bib0002) 2000 Patterson (bib0054) 1968; 22 Snyder, Bengtsson, Bickel, Anderson (bib0064) 2008; 136 Armstrong, Brigo (bib0004) 2018; 474 Kronrod (bib0041) 1966; 20 Mason, Handscomb (bib0050) 2003 Azimi-Sadjadi, Krishnaprasad (bib0007) 2005; 41 Rall (bib0057) 1981 . Gao, Zhang, Petersen (bib0029) 2020; 112 Wasilkowski, Woźniakowski (bib0067) 1995; 11 Doucet (bib0026) 2001 Armstrong, Brigo (bib0003) 2016; 28 Gao, Dong, Petersen, Ding (bib0027) 2020; 65 Griebel, Oettershagen (bib0031) 2014 Ceci, Colaneri (bib0021) 2013; 69 Kushner (bib0042) 1967; 12 Gerstner, Griebel (bib0030) 1998; 18 Armstrong, Brigo, Ferrucci (bib0006) 2018; 119 Radhakrishnan, Singh, Bhaumik, Tomar (bib0056) 2016; 40 Smolyak (bib0063) 1963; 148 Tronarp, Särkkä (bib0066) 2019 Judd, Skrainka (bib0038) 2011 Koyama (bib0040) 2018; 144 Särkkä (bib0059) 2013 Winshcel, Krätzig (bib0068) 2010; 78 Beskos, Crisan, Jasra, Kamatani, Zhou (bib0012) 2017; 49 Liptser, Shiryaev (bib0047) 2001 Ito, Xiong (bib0035) 2000; 45 Liptser, Shiryaev (bib0048) 2010 Wonham (bib0069) 1963; 51 J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable transformations of Python+NumPy programs, 2018 Leobacher, Pillichshammer (bib0046) 2014 Kushner (bib0044) 1967 van Handel, Mabuchi (bib0033) 2005; 7 Bain, Crisan (bib0009) 2009 Jazwinski (bib0036) 1970 Smith (bib0062) 1985 Jia, Xin, Cheng (bib0037) 2012; 48 Barthelmann, Novak, Ritter (bib0011) 2000; 12 Singh, Radhakrishnan, Bhaumik, Date (bib0061) 2018; 342 Riess (bib0058) 1971; 8 Koyama (10.1016/j.sigpro.2022.108832_bib0040) 2018; 144 Rall (10.1016/j.sigpro.2022.108832_bib0057) 1981 Bungartz (10.1016/j.sigpro.2022.108832_bib0018) 2004; 13 Mason (10.1016/j.sigpro.2022.108832_bib0050) 2003 Candy (10.1016/j.sigpro.2022.108832_bib0020) 2016 Brigo (10.1016/j.sigpro.2022.108832_bib0016) 1998; 43 Baek (10.1016/j.sigpro.2022.108832_bib0008) 2013; 87 Kronrod (10.1016/j.sigpro.2022.108832_bib0041) 1966; 20 Smith (10.1016/j.sigpro.2022.108832_bib0062) 1985 Bain (10.1016/j.sigpro.2022.108832_bib0009) 2009 Jia (10.1016/j.sigpro.2022.108832_bib0037) 2012; 48 Maurel (10.1016/j.sigpro.2022.108832_bib0051) 1984; 13 Griebel (10.1016/j.sigpro.2022.108832_bib0031) 2014 Barthelmann (10.1016/j.sigpro.2022.108832_bib0011) 2000; 12 Gao (10.1016/j.sigpro.2022.108832_bib0028) 2019; 99 Särkkä (10.1016/j.sigpro.2022.108832_bib0060) 2013; 93 Brigo (10.1016/j.sigpro.2022.108832_bib0015) 1995 Chopin (10.1016/j.sigpro.2022.108832_bib0022) 2020 Beskos (10.1016/j.sigpro.2022.108832_bib0012) 2017; 49 Gerstner (10.1016/j.sigpro.2022.108832_bib0030) 1998; 18 Stoyanov (10.1016/j.sigpro.2022.108832_bib0065) 2015 Särkkä (10.1016/j.sigpro.2022.108832_bib0059) 2013 Armstrong (10.1016/j.sigpro.2022.108832_bib0005) 2019; 119 Gao (10.1016/j.sigpro.2022.108832_bib0029) 2020; 112 Kushner (10.1016/j.sigpro.2022.108832_bib0043) 1967; 12 Liptser (10.1016/j.sigpro.2022.108832_bib0047) 2001 Jazwinski (10.1016/j.sigpro.2022.108832_bib0036) 1970 Winshcel (10.1016/j.sigpro.2022.108832_bib0068) 2010; 78 Griewank (10.1016/j.sigpro.2022.108832_bib0032) 2008 Armstrong (10.1016/j.sigpro.2022.108832_bib0003) 2016; 28 Poterjoy (10.1016/j.sigpro.2022.108832_bib0055) 2015; 144 Smolyak (10.1016/j.sigpro.2022.108832_bib0063) 1963; 148 Doucet (10.1016/j.sigpro.2022.108832_bib0026) 2001 Novak (10.1016/j.sigpro.2022.108832_bib0053) 1996; 75 Chui (10.1016/j.sigpro.2022.108832_bib0023) 1972; 9 Snyder (10.1016/j.sigpro.2022.108832_bib0064) 2008; 136 Ito (10.1016/j.sigpro.2022.108832_bib0035) 2000; 45 Kushner (10.1016/j.sigpro.2022.108832_bib0042) 1967; 12 Patterson (10.1016/j.sigpro.2022.108832_bib0054) 1968; 22 Gao (10.1016/j.sigpro.2022.108832_bib0027) 2020; 65 Armstrong (10.1016/j.sigpro.2022.108832_bib0004) 2018; 474 Tronarp (10.1016/j.sigpro.2022.108832_bib0066) 2019 Singh (10.1016/j.sigpro.2022.108832_bib0061) 2018; 342 Zakai (10.1016/j.sigpro.2022.108832_bib0070) 1969; 11 Riess (10.1016/j.sigpro.2022.108832_bib0058) 1971; 8 Amari (10.1016/j.sigpro.2022.108832_bib0002) 2000 Calin (10.1016/j.sigpro.2022.108832_bib0019) 2014 Amari (10.1016/j.sigpro.2022.108832_bib0001) 1985 Delvos (10.1016/j.sigpro.2022.108832_bib0025) 1982; 34 Kushner (10.1016/j.sigpro.2022.108832_bib0044) 1967 Azimi-Sadjadi (10.1016/j.sigpro.2022.108832_bib0007) 2005; 41 Hanzon (10.1016/j.sigpro.2022.108832_bib0034) 1991; vol. 1 Meurer (10.1016/j.sigpro.2022.108832_bib0052) 2017; 3 Bao (10.1016/j.sigpro.2022.108832_bib0010) 2014; 2 Laurie (10.1016/j.sigpro.2022.108832_bib0045) 1997; 66 van Handel (10.1016/j.sigpro.2022.108832_bib0033) 2005; 7 Ceci (10.1016/j.sigpro.2022.108832_bib0021) 2013; 69 Julier (10.1016/j.sigpro.2022.108832_bib0039) 1997 Brigo (10.1016/j.sigpro.2022.108832_bib0017) 1999; 5 Ma (10.1016/j.sigpro.2022.108832_bib0049) 2009; 228 Liptser (10.1016/j.sigpro.2022.108832_bib0048) 2010 Armstrong (10.1016/j.sigpro.2022.108832_bib0006) 2018; 119 Wonham (10.1016/j.sigpro.2022.108832_bib0069) 1963; 51 Leobacher (10.1016/j.sigpro.2022.108832_bib0046) 2014 Radhakrishnan (10.1016/j.sigpro.2022.108832_bib0056) 2016; 40 10.1016/j.sigpro.2022.108832_bib0013 10.1016/j.sigpro.2022.108832_bib0014 Judd (10.1016/j.sigpro.2022.108832_bib0038) 2011 Wasilkowski (10.1016/j.sigpro.2022.108832_bib0067) 1995; 11 Crisan (10.1016/j.sigpro.2022.108832_bib0024) 2011 |
| References_xml | – volume: 12 start-page: 262 year: 1967 end-page: 267 ident: bib0043 article-title: Nonlinear filtering: the exact dynamical equations satisfied by the conditional mode publication-title: IEEE Trans. Automat. Control – year: 2014 ident: bib0019 article-title: Geometric Modeling in Probability and Statistics – volume: 8 start-page: 509 year: 1971 end-page: 511 ident: bib0058 article-title: A note on error bounds for Gauss–Chebyshev quadrature publication-title: SIAM J. Numer. Anal. – volume: 87 start-page: 96 year: 2013 end-page: 106 ident: bib0008 article-title: Adaptive sparse grid quadrature filter for spacecraft relative navigation publication-title: Acta Astronaut. – volume: 112 start-page: 108716 year: 2020 ident: bib0029 article-title: An improved quantum projection filter publication-title: Automatica – volume: 2 start-page: 784 year: 2014 end-page: 804 ident: bib0010 article-title: A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 5 start-page: 495 year: 1999 ident: bib0017 article-title: Approximate nonlinear filtering by projection on exponential manifolds of densities publication-title: Bernoulli – year: 2013 ident: bib0059 article-title: Bayesian Filtering and Smoothing – volume: 18 start-page: 209 year: 1998 end-page: 232 ident: bib0030 article-title: Numerical integration using sparse grids publication-title: Numer. Algorithms – volume: 11 start-page: 1 year: 1995 end-page: 56 ident: bib0067 article-title: Explicit cost bounds of algorithms for multivariate tensor product problems publication-title: J. Complex – volume: 45 start-page: 910 year: 2000 end-page: 927 ident: bib0035 article-title: Gaussian filters for nonlinear filtering problems publication-title: IEEE Trans. Automat. Control – year: 2000 ident: bib0002 article-title: Methods of Information Geometry publication-title: Number 191 in Translations of Mathematical Monographs – volume: 12 start-page: 546 year: 1967 end-page: 556 ident: bib0042 article-title: Approximations to optimal nonlinear filters publication-title: IEEE Trans. Automat. Control – volume: 11 start-page: 230 year: 1969 end-page: 243 ident: bib0070 article-title: On the optimal filtering of diffusion processes publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete – volume: vol. 1 start-page: 623 year: 1991 end-page: 628 ident: bib0034 article-title: New results on the projection filter publication-title: Proceedings of the first European Control Conference – volume: 3 start-page: e103 year: 2017 ident: bib0052 article-title: SymPy: symbolic computing in Python publication-title: PeerJ Comput. Sci. – volume: 93 start-page: 500 year: 2013 end-page: 510 ident: bib0060 article-title: Gaussian filtering and smoothing for continuous-discrete dynamic systems publication-title: Signal Process. – volume: 119 start-page: 176 year: 2019 end-page: 213 ident: bib0005 article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections publication-title: Proc. London Math. Soc. – year: 2010 ident: bib0048 article-title: Statistics of Random Processes II – volume: 28 start-page: 5 year: 2016 ident: bib0003 article-title: Nonlinear filtering via stochastic PDE projection on mixture manifolds in publication-title: Math. Control Signals Syst. – year: 1981 ident: bib0057 article-title: Automatic Differentiation: Techniques and Applications publication-title: Number 120 in Lecture Notes in Computer Science – reference: J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable transformations of Python+NumPy programs, 2018, – year: 1985 ident: bib0062 article-title: Numerical Solution of Partial Differential Equations : Finite Difference Methods – volume: 34 start-page: 99 year: 1982 end-page: 114 ident: bib0025 article-title: d-Variate boolean interpolation publication-title: J. Approx. Theory – year: 2020 ident: bib0022 article-title: An Introduction to Sequential Monte Carlo – year: 2016 ident: bib0020 article-title: Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods – volume: 51 start-page: 530 year: 1963 ident: bib0069 article-title: Stochastic problems in optimal control publication-title: Proc. IEEE – volume: 40 start-page: 4441 year: 2016 end-page: 4450 ident: bib0056 article-title: Multiple sparse-grid Gauss-Hermite filtering publication-title: Appl Math Model – volume: 13 start-page: 147 year: 2004 end-page: 269 ident: bib0018 article-title: Sparse grids publication-title: Acta Numer. – volume: 65 start-page: 3693 year: 2020 end-page: 3700 ident: bib0027 article-title: Design of a quantum projection filter publication-title: IEEE Trans. Automat. Control – volume: 12 start-page: 273 year: 2000 end-page: 288 ident: bib0011 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Adv. Comput. Math. – volume: 66 start-page: 1133 year: 1997 end-page: 1146 ident: bib0045 article-title: Calculation of Gauss-Kronrod quadrature rules publication-title: Math. Comput. – volume: 148 start-page: 1042 year: 1963 end-page: 1045 ident: bib0063 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Dokl. Akad. Nauk SSSR – year: 2009 ident: bib0009 article-title: Fundamentals of Stochastic Filtering – year: 2003 ident: bib0050 article-title: Chebyshev Polynomials – year: 2014 ident: bib0046 article-title: Introduction to Quasi-Monte Carlo Integration and Applications – volume: 41 start-page: 945 year: 2005 end-page: 956 ident: bib0007 article-title: Approximate nonlinear filtering and its application in navigation publication-title: Automatica – year: 2019 ident: bib0066 article-title: Updates in Bayesian filtering by continuous projections on a manifold of densities publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – reference: D. Brigo, Optimal projection filters, 2022, arXiv preprint arXiv: – volume: 342 start-page: 305 year: 2018 end-page: 316 ident: bib0061 article-title: Adaptive sparse-grid Gauss-Hermite filter publication-title: J. Comput. Appl. Math. – volume: 13 start-page: 83 year: 1984 end-page: 102 ident: bib0051 article-title: Des resultats de non existence de filtre de dimension finie publication-title: Stochastics – volume: 9 start-page: 237 year: 1972 end-page: 240 ident: bib0023 article-title: Concerning Gaussian–Chebyshev quadrature errors publication-title: SIAM J Numer Anal – volume: 22 start-page: 847 year: 1968 ident: bib0054 article-title: The optimum addition of points to quadrature formulae publication-title: Math. Comput. – volume: 43 start-page: 247 year: 1998 end-page: 252 ident: bib0016 article-title: A differential geometric approach to nonlinear filtering: the projection filter publication-title: IEEE Trans. Automat. Control – volume: 75 start-page: 79 year: 1996 end-page: 97 ident: bib0053 article-title: High dimensional integration of smooth functions over cubes publication-title: Numer. Math. – volume: 7 start-page: S226 year: 2005 end-page: S236 ident: bib0033 article-title: Quantum projection filter for a highly nonlinear model in cavity QED publication-title: J. Opt. B Quantum Semiclass. Opt. – year: 1967 ident: bib0044 article-title: Dynamical equations for optimal nonlinear filtering publication-title: J. Differ. Equ. – volume: 69 start-page: 47 year: 2013 end-page: 82 ident: bib0021 article-title: The Zakai equation of nonlinear filtering for jump-diffusion observations: existence and uniqueness publication-title: Appl. Math. Optim. – volume: 119 start-page: 176 year: 2018 end-page: 213 ident: bib0006 article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections publication-title: Proc. London Math. Soc. – year: 1970 ident: bib0036 article-title: Stochastic Processes and Filtering Theory – year: 1997 ident: bib0039 article-title: New extension of the Kalman filter to nonlinear systems publication-title: Signal Processing, Sensor Fusion, and Target Recognition VI – volume: 99 start-page: 59 year: 2019 end-page: 68 ident: bib0028 article-title: An exponential quantum projection filter for open quantum systems publication-title: Automatica – volume: 144 start-page: 59 year: 2015 end-page: 76 ident: bib0055 article-title: A localized particle filter for high-dimensional nonlinear systems publication-title: Mon. Weather Rev. – year: 1995 ident: bib0015 article-title: A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter publication-title: Research Report 2598 – year: 2015 ident: bib0065 article-title: User Manual: TASMANIAN Sparse Grids publication-title: Technical Report ORNL/TM-2015/596 – volume: 20 start-page: 184 year: 1966 ident: bib0041 article-title: Nodes and weights of quadrature formulas publication-title: Math. Comput. – volume: 474 start-page: 20170559 year: 2018 ident: bib0004 article-title: Intrinsic stochastic differential equations as jets publication-title: Proc. R. Soc. A Math.Phys. Eng. Sci. – volume: 144 start-page: 333 year: 2018 end-page: 340 ident: bib0040 article-title: Projection smoothing for continuous and continuous-discrete stochastic dynamic systems publication-title: Signal Process. – reference: . – start-page: 109 year: 2014 end-page: 136 ident: bib0031 article-title: Dimension-adaptive sparse grid quadrature for integrals with boundary singularities publication-title: Sparse Grids and Applications - Munich 2012 – volume: 136 start-page: 4629 year: 2008 end-page: 4640 ident: bib0064 article-title: Obstacles to high-dimensional particle filtering publication-title: Mon. Weather Rev. – volume: 228 start-page: 3084 year: 2009 end-page: 3113 ident: bib0049 article-title: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations publication-title: J. Comput. Phys. – year: 2011 ident: bib0024 article-title: The Oxford Handbook of Nonlinear Filtering – year: 1985 ident: bib0001 article-title: Differential-Geometrical Methods in Statistics – year: 2001 ident: bib0026 article-title: Sequential Monte Carlo Methods in Practice – year: 2001 ident: bib0047 article-title: Statistics of Random Processes – volume: 78 start-page: 803 year: 2010 end-page: 821 ident: bib0068 article-title: Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality publication-title: Econometrica – volume: 48 start-page: 327 year: 2012 end-page: 341 ident: bib0037 article-title: Sparse-grid quadrature nonlinear filtering publication-title: Automatica – volume: 49 start-page: 24 year: 2017 end-page: 48 ident: bib0012 article-title: A stable particle filter for a class of high-dimensional state-space models publication-title: Adv. Appl. Probab. – year: 2011 ident: bib0038 article-title: High Performance Quadrature Rules: How Numerical Integration Affects a Popular Model of Product Differentiation publication-title: Technical Report – year: 2008 ident: bib0032 article-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation – ident: 10.1016/j.sigpro.2022.108832_bib0013 – volume: 99 start-page: 59 year: 2019 ident: 10.1016/j.sigpro.2022.108832_bib0028 article-title: An exponential quantum projection filter for open quantum systems publication-title: Automatica doi: 10.1016/j.automatica.2018.10.014 – volume: vol. 1 start-page: 623 year: 1991 ident: 10.1016/j.sigpro.2022.108832_bib0034 article-title: New results on the projection filter – year: 2008 ident: 10.1016/j.sigpro.2022.108832_bib0032 – volume: 13 start-page: 147 year: 2004 ident: 10.1016/j.sigpro.2022.108832_bib0018 article-title: Sparse grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 8 start-page: 509 issue: 3 year: 1971 ident: 10.1016/j.sigpro.2022.108832_bib0058 article-title: A note on error bounds for Gauss–Chebyshev quadrature publication-title: SIAM J. Numer. Anal. doi: 10.1137/0708048 – volume: 40 start-page: 4441 issue: 7–8 year: 2016 ident: 10.1016/j.sigpro.2022.108832_bib0056 article-title: Multiple sparse-grid Gauss-Hermite filtering publication-title: Appl Math Model doi: 10.1016/j.apm.2015.11.035 – year: 1970 ident: 10.1016/j.sigpro.2022.108832_bib0036 – volume: 51 start-page: 530 issue: 3 year: 1963 ident: 10.1016/j.sigpro.2022.108832_bib0069 article-title: Stochastic problems in optimal control publication-title: Proc. IEEE doi: 10.1109/PROC.1963.2123 – year: 2014 ident: 10.1016/j.sigpro.2022.108832_bib0019 – year: 2013 ident: 10.1016/j.sigpro.2022.108832_bib0059 – volume: 41 start-page: 945 issue: 6 year: 2005 ident: 10.1016/j.sigpro.2022.108832_bib0007 article-title: Approximate nonlinear filtering and its application in navigation publication-title: Automatica doi: 10.1016/j.automatica.2004.12.013 – volume: 18 start-page: 209 issue: 3/4 year: 1998 ident: 10.1016/j.sigpro.2022.108832_bib0030 article-title: Numerical integration using sparse grids publication-title: Numer. Algorithms doi: 10.1023/A:1019129717644 – year: 2003 ident: 10.1016/j.sigpro.2022.108832_bib0050 – volume: 11 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.sigpro.2022.108832_bib0067 article-title: Explicit cost bounds of algorithms for multivariate tensor product problems publication-title: J. Complex doi: 10.1006/jcom.1995.1001 – volume: 12 start-page: 273 issue: 4 year: 2000 ident: 10.1016/j.sigpro.2022.108832_bib0011 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Adv. Comput. Math. doi: 10.1023/A:1018977404843 – volume: 69 start-page: 47 issue: 1 year: 2013 ident: 10.1016/j.sigpro.2022.108832_bib0021 article-title: The Zakai equation of nonlinear filtering for jump-diffusion observations: existence and uniqueness publication-title: Appl. Math. Optim. doi: 10.1007/s00245-013-9217-1 – year: 2020 ident: 10.1016/j.sigpro.2022.108832_bib0022 – volume: 3 start-page: e103 year: 2017 ident: 10.1016/j.sigpro.2022.108832_bib0052 article-title: SymPy: symbolic computing in Python publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.103 – start-page: 109 year: 2014 ident: 10.1016/j.sigpro.2022.108832_bib0031 article-title: Dimension-adaptive sparse grid quadrature for integrals with boundary singularities – volume: 144 start-page: 59 issue: 1 year: 2015 ident: 10.1016/j.sigpro.2022.108832_bib0055 article-title: A localized particle filter for high-dimensional nonlinear systems publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-15-0163.1 – volume: 66 start-page: 1133 issue: 219 year: 1997 ident: 10.1016/j.sigpro.2022.108832_bib0045 article-title: Calculation of Gauss-Kronrod quadrature rules publication-title: Math. Comput. doi: 10.1090/S0025-5718-97-00861-2 – volume: 49 start-page: 24 issue: 1 year: 2017 ident: 10.1016/j.sigpro.2022.108832_bib0012 article-title: A stable particle filter for a class of high-dimensional state-space models publication-title: Adv. Appl. Probab. doi: 10.1017/apr.2016.77 – year: 2019 ident: 10.1016/j.sigpro.2022.108832_bib0066 article-title: Updates in Bayesian filtering by continuous projections on a manifold of densities – ident: 10.1016/j.sigpro.2022.108832_bib0014 – volume: 93 start-page: 500 issue: 2 year: 2013 ident: 10.1016/j.sigpro.2022.108832_bib0060 article-title: Gaussian filtering and smoothing for continuous-discrete dynamic systems publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.09.002 – volume: 5 start-page: 495 issue: 3 year: 1999 ident: 10.1016/j.sigpro.2022.108832_bib0017 article-title: Approximate nonlinear filtering by projection on exponential manifolds of densities publication-title: Bernoulli doi: 10.2307/3318714 – volume: 34 start-page: 99 issue: 2 year: 1982 ident: 10.1016/j.sigpro.2022.108832_bib0025 article-title: d-Variate boolean interpolation publication-title: J. Approx. Theory doi: 10.1016/0021-9045(82)90085-5 – volume: 136 start-page: 4629 issue: 12 year: 2008 ident: 10.1016/j.sigpro.2022.108832_bib0064 article-title: Obstacles to high-dimensional particle filtering publication-title: Mon. Weather Rev. doi: 10.1175/2008MWR2529.1 – year: 2010 ident: 10.1016/j.sigpro.2022.108832_bib0048 – volume: 20 start-page: 184 issue: 93 year: 1966 ident: 10.1016/j.sigpro.2022.108832_bib0041 article-title: Nodes and weights of quadrature formulas publication-title: Math. Comput. doi: 10.2307/2004311 – year: 2011 ident: 10.1016/j.sigpro.2022.108832_bib0024 doi: 10.1093/oxfordhb/9780195375176.013.0027 – volume: 87 start-page: 96 year: 2013 ident: 10.1016/j.sigpro.2022.108832_bib0008 article-title: Adaptive sparse grid quadrature filter for spacecraft relative navigation publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2013.02.002 – year: 1985 ident: 10.1016/j.sigpro.2022.108832_bib0001 – volume: 119 start-page: 176 issue: 1 year: 2018 ident: 10.1016/j.sigpro.2022.108832_bib0006 article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections publication-title: Proc. London Math. Soc. doi: 10.1112/plms.12226 – year: 2000 ident: 10.1016/j.sigpro.2022.108832_bib0002 article-title: Methods of Information Geometry – year: 1981 ident: 10.1016/j.sigpro.2022.108832_bib0057 article-title: Automatic Differentiation: Techniques and Applications doi: 10.1007/3-540-10861-0 – volume: 48 start-page: 327 issue: 2 year: 2012 ident: 10.1016/j.sigpro.2022.108832_bib0037 article-title: Sparse-grid quadrature nonlinear filtering publication-title: Automatica doi: 10.1016/j.automatica.2011.08.057 – volume: 144 start-page: 333 year: 2018 ident: 10.1016/j.sigpro.2022.108832_bib0040 article-title: Projection smoothing for continuous and continuous-discrete stochastic dynamic systems publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.10.028 – volume: 9 start-page: 237 issue: 2 year: 1972 ident: 10.1016/j.sigpro.2022.108832_bib0023 article-title: Concerning Gaussian–Chebyshev quadrature errors publication-title: SIAM J Numer Anal doi: 10.1137/0709022 – year: 1997 ident: 10.1016/j.sigpro.2022.108832_bib0039 article-title: New extension of the Kalman filter to nonlinear systems – volume: 474 start-page: 20170559 issue: 2210 year: 2018 ident: 10.1016/j.sigpro.2022.108832_bib0004 article-title: Intrinsic stochastic differential equations as jets publication-title: Proc. R. Soc. A Math.Phys. Eng. Sci. – year: 2015 ident: 10.1016/j.sigpro.2022.108832_bib0065 article-title: User Manual: TASMANIAN Sparse Grids – volume: 75 start-page: 79 issue: 1 year: 1996 ident: 10.1016/j.sigpro.2022.108832_bib0053 article-title: High dimensional integration of smooth functions over cubes publication-title: Numer. Math. doi: 10.1007/s002110050231 – volume: 12 start-page: 546 issue: 5 year: 1967 ident: 10.1016/j.sigpro.2022.108832_bib0042 article-title: Approximations to optimal nonlinear filters publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1967.1098671 – volume: 148 start-page: 1042 year: 1963 ident: 10.1016/j.sigpro.2022.108832_bib0063 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Dokl. Akad. Nauk SSSR – year: 1995 ident: 10.1016/j.sigpro.2022.108832_bib0015 article-title: A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter – volume: 45 start-page: 910 issue: 5 year: 2000 ident: 10.1016/j.sigpro.2022.108832_bib0035 article-title: Gaussian filters for nonlinear filtering problems publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.855552 – year: 2011 ident: 10.1016/j.sigpro.2022.108832_bib0038 article-title: High Performance Quadrature Rules: How Numerical Integration Affects a Popular Model of Product Differentiation – volume: 11 start-page: 230 issue: 3 year: 1969 ident: 10.1016/j.sigpro.2022.108832_bib0070 article-title: On the optimal filtering of diffusion processes publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete doi: 10.1007/BF00536382 – volume: 7 start-page: S226 issue: 10 year: 2005 ident: 10.1016/j.sigpro.2022.108832_bib0033 article-title: Quantum projection filter for a highly nonlinear model in cavity QED publication-title: J. Opt. B Quantum Semiclass. Opt. doi: 10.1088/1464-4266/7/10/005 – volume: 43 start-page: 247 issue: 2 year: 1998 ident: 10.1016/j.sigpro.2022.108832_bib0016 article-title: A differential geometric approach to nonlinear filtering: the projection filter publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.661075 – volume: 65 start-page: 3693 issue: 8 year: 2020 ident: 10.1016/j.sigpro.2022.108832_bib0027 article-title: Design of a quantum projection filter publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2019.2953457 – volume: 119 start-page: 176 issue: 1 year: 2019 ident: 10.1016/j.sigpro.2022.108832_bib0005 article-title: Optimal approximation of SDEs on submanifolds: the Itô-vector and Itô-jet projections publication-title: Proc. London Math. Soc. doi: 10.1112/plms.12226 – volume: 28 start-page: 5 issue: 1 year: 2016 ident: 10.1016/j.sigpro.2022.108832_bib0003 article-title: Nonlinear filtering via stochastic PDE projection on mixture manifolds in L2 direct metric publication-title: Math. Control Signals Syst. doi: 10.1007/s00498-015-0154-1 – year: 2001 ident: 10.1016/j.sigpro.2022.108832_bib0047 – volume: 112 start-page: 108716 year: 2020 ident: 10.1016/j.sigpro.2022.108832_bib0029 article-title: An improved quantum projection filter publication-title: Automatica doi: 10.1016/j.automatica.2019.108716 – volume: 228 start-page: 3084 issue: 8 year: 2009 ident: 10.1016/j.sigpro.2022.108832_bib0049 article-title: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.01.006 – year: 2014 ident: 10.1016/j.sigpro.2022.108832_bib0046 – year: 1967 ident: 10.1016/j.sigpro.2022.108832_bib0044 article-title: Dynamical equations for optimal nonlinear filtering publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(67)90023-X – year: 2016 ident: 10.1016/j.sigpro.2022.108832_bib0020 – year: 2009 ident: 10.1016/j.sigpro.2022.108832_bib0009 – year: 1985 ident: 10.1016/j.sigpro.2022.108832_bib0062 – volume: 22 start-page: 847 issue: 104 year: 1968 ident: 10.1016/j.sigpro.2022.108832_bib0054 article-title: The optimum addition of points to quadrature formulae publication-title: Math. Comput. doi: 10.1090/S0025-5718-68-99866-9 – volume: 78 start-page: 803 issue: 2 year: 2010 ident: 10.1016/j.sigpro.2022.108832_bib0068 article-title: Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality publication-title: Econometrica doi: 10.3982/ECTA6297 – year: 2001 ident: 10.1016/j.sigpro.2022.108832_bib0026 – volume: 12 start-page: 262 issue: 3 year: 1967 ident: 10.1016/j.sigpro.2022.108832_bib0043 article-title: Nonlinear filtering: the exact dynamical equations satisfied by the conditional mode publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1967.1098582 – volume: 342 start-page: 305 year: 2018 ident: 10.1016/j.sigpro.2022.108832_bib0061 article-title: Adaptive sparse-grid Gauss-Hermite filter publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.04.006 – volume: 2 start-page: 784 issue: 1 year: 2014 ident: 10.1016/j.sigpro.2022.108832_bib0010 article-title: A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/140952910 – volume: 13 start-page: 83 issue: 1–2 year: 1984 ident: 10.1016/j.sigpro.2022.108832_bib0051 article-title: Des resultats de non existence de filtre de dimension finie publication-title: Stochastics doi: 10.1080/17442508408833312 |
| SSID | ssj0001360 |
| Score | 2.4361165 |
| Snippet | •We use automatic differentiation and sparse-grid integration to automate the construction of the projection filter.•We present methods for constructing... The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner–Stratonovich stochastic... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 108832 |
| SubjectTerms | Automatic differentiation Nonlinear filter Projection filter Sparse-grid integration |
| Title | Multidimensional projection filters via automatic differentiation and sparse-grid integration |
| URI | https://dx.doi.org/10.1016/j.sigpro.2022.108832 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-492697 |
| Volume | 204 |
| WOSCitedRecordID | wos000903754200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftYexKuxt62J6CRmTJlv0YtpZtbGXQboTCMLItJ24bpzh2KPv1O7pYCc1Gu4e9GGMsW-j7LJ9zdM4nhN4IEZYBk4JwWUrCSxWRWAaMFDIqmAT7PrPq-l_E0VE8mSTfBgNfxb-6EHUdX10ll_8VargGYOvS2X-A2z8ULsA5gA5HgB2OtwLelNQWWrTfCm4MXbDF5BRWenF8OVzpUqyuXVi91n6TlNbCZNYTYKJplopMm6rwkhI9hM6WPa6m7vG61KD_BWrrfP6rMkT42s3kfC6L4WEnCx-7P51JE589nal1m2OzYs-b83N7YqKywKPNqASA69Oy-kBlFBIa2e3f-pk2sDsNb83aNoBw9m5ZTaHP4LQHgc59jF3kc1sP-0P1Y5wummnadalWPEzEHbQbiDCBqXl3_Olg8tn_jSkzleK-P9oBjwV4FWEo-lJKk--3_fK_miqbmrLGDjl5iB44BwKPLfCP0EDVj9H9DVnJJ-jndQrgNQWwowAGCmBPAXyNAhgogDcogDco8BR9Pzw4ef-RuG00SA7WaEtyyhXM0pFiPAhGWRgpWsL3mIAlDK6VzDmTOWWccTDGS0plJkYqokUQSp7lNJPsGdqpF7XaQzjhSZEJoWSUgSswEjLSX3SY0TzJ1IiX-4j1I5bmTmNeb3VykfbJhGepHedUj3Nqx3kfEd_q0mqs3HC_6MFInZ1o7b8UCHVDy7cWO_-eP7Pp-S3ve4Hurcn_Eu20Tadeobv5qq2WzWtHxd-Pv5oy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+projection+filters+via+automatic+differentiation+and+sparse-grid+integration&rft.jtitle=Signal+processing&rft.au=Emzir%2C+Muhammad+Fuady&rft.au=Zhao%2C+Zheng&rft.au=S%C3%A4rkk%C3%A4%2C+Simo&rft.date=2023-03-01&rft.issn=0165-1684&rft.volume=204&rft_id=info:doi/10.1016%2Fj.sigpro.2022.108832&rft.externalDocID=oai_DiVA_org_uu_492697 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |