Stochastic simulation-based genetic algorithm for chance constraint programming problems with continuous random variables

In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very di...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer mathematics Vol. 81; no. 9; pp. 1069 - 1076
Main Authors: Jana, R. K., Biswal, M. P.
Format: Journal Article
Language:English
Published: Taylor & Francis 01.09.2004
Subjects:
ISSN:0020-7160, 1029-0265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very difficult due to complicated multivariate integration and is only possible if the random variables involved in the chance constraint follow some specific distribution such as normal, uniform, exponential and lognormal distribution. In the proposed method, the stochastic model is directly used. The feasibility of the chance constraints are checked using stochastic simulation, and the genetic algorithm is used to obtain the optimal solution. A numerical example is presented to prove the efficiency of the proposed method. E-mail: rabin@maths.iitkgp.ernet.in
AbstractList In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very difficult due to complicated multivariate integration and is only possible if the random variables involved in the chance constraint follow some specific distribution such as normal, uniform, exponential and lognormal distribution. In the proposed method, the stochastic model is directly used. The feasibility of the chance constraints are checked using stochastic simulation, and the genetic algorithm is used to obtain the optimal solution. A numerical example is presented to prove the efficiency of the proposed method. E-mail: rabin@maths.iitkgp.ernet.in
In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very difficult due to complicated multivariate integration and is only possible if the random variables involved in the chance constraint follow some specific distribution such as normal, uniform, exponential and lognormal distribution. In the proposed method, the stochastic model is directly used. The feasibility of the chance constraints are checked using stochastic simulation, and the genetic algorithm is used to obtain the optimal solution. A numerical example is presented to prove the efficiency of the proposed method.
Author Biswal, M. P.
Jana, R. K.
Author_xml – sequence: 1
  givenname: R. K.
  surname: Jana
  fullname: Jana, R. K.
– sequence: 2
  givenname: M. P.
  surname: Biswal
  fullname: Biswal, M. P.
  email: mpbiswal@maths.iitkgp.ernet.in
BookMark eNqNkE1LXDEUhkNR6DjtP-giq-6unnyY3HRTitgqCF20ri9JJndMyYdNMur8--ZWVyKtcMIJ5H1ODs8ROkg5OYQ-EDgmMMIJMDiVigInlDFCJSWcv0ErAlQNQMXpAVoBUBgkEfAWHdX6CwBGJcUK7X-0bG90bd7i6uMu6OZzGoyuboO3LrnlQYdtLr7dRDzngns8WYdtTrUV7VPDtyVvi47Rp-1yN8HFiu87sISaT7u8q7jotMkR3-nidU_Ud-hw1qG69099ja6_nv88uxiuvn-7PPtyNVg2qjYYycnIpJYjcb3AKiWdULOz3FrBjNDGSc6o4pzNkszcGqPFvHFGUUMVY2v08XFu3-z3ztU2RV-tC0En1_eaqALBRD9rxB-DtuRai5un2-KjLvuJwLR4nl7y3LFPzzDr21-Li53wStinrjbq-1zCZmp6H3KZuzHr64vg1B5ahz__F2b__P4Pg0Gt9w
CitedBy_id crossref_primary_10_1007_s00170_014_6213_9
crossref_primary_10_1371_journal_pone_0274619
crossref_primary_10_1049_iet_gtd_2013_0442
crossref_primary_10_1016_j_omega_2010_09_002
crossref_primary_10_1080_00207160500154425
crossref_primary_10_1016_j_jclepro_2017_07_205
crossref_primary_10_1007_s11269_016_1406_7
crossref_primary_10_1080_16864360_2007_10738505
crossref_primary_10_1007_s43069_024_00294_z
crossref_primary_10_1007_s10479_021_04267_x
crossref_primary_10_1177_0037549717692415
crossref_primary_10_1016_j_asoc_2017_09_018
crossref_primary_10_1080_00207160801998934
Cites_doi 10.1287/opre.13.6.930
10.1287/mnsc.4.3.235
10.1007/BF01584661
10.1007/978-3-7908-1781-2
10.1002/9780470316511
10.1016/S0377-2217(97)90319-2
10.1080/02522667.1996.10699291
10.1201/9781420035605
10.2307/1910956
10.1287/mnsc.9.3.405
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2004
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2004
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/03057920412331272144
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1076
ExternalDocumentID 10_1080_03057920412331272144
10051867
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYJJ
AAYXX
ABEFU
ACGEE
ACTCW
ACTIO
AEUMN
AFFNX
AGCQS
AGLEN
AMXXU
AQRUH
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c389t-b741837a781e81e0c997e69fec4cc63b6abe74329443f71f4cbba6fdeb92b2933
IEDL.DBID TFW
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000223618600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Thu Oct 02 09:45:01 EDT 2025
Sat Nov 29 02:21:18 EST 2025
Tue Nov 18 22:12:32 EST 2025
Mon Oct 20 23:47:20 EDT 2025
Mon May 13 12:10:04 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-b741837a781e81e0c997e69fec4cc63b6abe74329443f71f4cbba6fdeb92b2933
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29063606
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_29063606
crossref_primary_10_1080_03057920412331272144
informaworld_taylorfrancis_310_1080_03057920412331272144
crossref_citationtrail_10_1080_03057920412331272144
PublicationCentury 2000
PublicationDate 9/1/2004
2004-09-00
20040901
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 9/1/2004
  day: 01
PublicationDecade 2000
PublicationTitle International journal of computer mathematics
PublicationYear 2004
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Backstrom G (b11) 1995
b14
Holland JH (b16) 1975
b15
Kall P (b6) 1994
Wolfram Stephen (b9) 1999
b1
b2
b3
Garvan Frank (b10) 2001
Joines JA (b17) 1994; 2
b4
b5
Goicoechea A (b7) 1982
b8
Goldberg DE (b12) 1989
Iwamura K (b13) 1996; 17
References_xml – volume-title: Adaptation in Natural and Artificial Systems, University of Michigan Press
  year: 1975
  ident: b16
– ident: b2
  doi: 10.1287/opre.13.6.930
– ident: b1
  doi: 10.1287/mnsc.4.3.235
– volume-title: Multi-objective Decision Analysis with Engineering and Business Applications, John Wiley and Sons
  year: 1982
  ident: b7
– ident: b3
  doi: 10.1007/BF01584661
– volume-title: Stochastic programming, John Wiley & Sons
  year: 1994
  ident: b6
– ident: b14
  doi: 10.1007/978-3-7908-1781-2
– volume-title: Practical Mathematics Using MATLAB, Chartwell-Yorke
  year: 1995
  ident: b11
– ident: b15
  doi: 10.1002/9780470316511
– ident: b8
  doi: 10.1016/S0377-2217(97)90319-2
– volume: 17
  start-page: 409
  year: 1996
  ident: b13
  publication-title: Journal of Information and Optimization Sciences
  doi: 10.1080/02522667.1996.10699291
– volume-title: The Mathematica Book
  year: 1999
  ident: b9
– volume: 2
  start-page: pp. 579–584
  volume-title: Proceeding of first IEEE International Conference on Evolutionary Computation
  year: 1994
  ident: b17
– volume-title: The Maple Book, Chapman & Hall
  year: 2001
  ident: b10
  doi: 10.1201/9781420035605
– ident: b4
  doi: 10.2307/1910956
– ident: b5
  doi: 10.1287/mnsc.9.3.405
– volume-title: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley
  year: 1989
  ident: b12
SSID ssj0008976
Score 1.7796495
Snippet In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1069
SubjectTerms Chance constraint
Continuous random variable
Genetic algorithm
Stochastic programming
Stochastic simulation
Title Stochastic simulation-based genetic algorithm for chance constraint programming problems with continuous random variables
URI https://www.tandfonline.com/doi/abs/10.1080/03057920412331272144
https://www.proquest.com/docview/29063606
Volume 81
WOSCitedRecordID wos000223618600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iHrz4FtdnDl6D2ybbNkcRFw8igit6K8lsqgtuK9vsov_emT5EcVVQ6K2ZNG3mmc58w9hxEMjAKSBJk1IQppSwVneFUxisGGXQSlUgrpfx1VVyf6-vP1TxU1olxdBZDRRR6WoSbmPLNiPuhHg01iEhRUkZhDGhfqESRstPkjno372r4kRX3eXIJxIYGHTb2rlvJvlkmz4hl37R1JX56a_-f-FrbKVxPflpzSvrbMHlG2y1bevAGynfZK83voBHQwDOvByNm_5eguzdkCO_UdkjN08PxWTkH8ccl8-pfBgcB3I2qeeE503e1xgtI2-a1pScDn1pkB_l02JacrSTw2LMZxivUwVXucVu--eDswvRdGgQgI6OF5awb2Rs4iRweHVB69hFOnOgACJpI2MduiihVkpmcZApsNZE2dBZHVp0NOQ2W8yL3O0wjjcjZXvoYPRAWQiNyYxOMnAhyEhBr8NkuzcpNPDl9EZPadCinM75uh0m3qmea_iOX8bLj9ue-urYJKt7nMylSP2L77DkByr58wOPWsZKUbDpb43JHW5BSjj8EsPL3b9PvseW60QjSonbZ4t-MnUHbAlmflRODitReQMvfA_V
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQGIvjE-tfM0PvFo0sZvEj2haNUSpkChib5F9dVilNUGNO23_PXeJMzExhoSQ8hbbceI7_-6cu98BvE0SlXiNrGlKSeaUks6ZsfSanBWrLaFUR-I6y-fz4uTEfI7RhG0Mq2QfuuqJIrq9mpWbD6OHkLh3LKS5SZkqSqkkzZn26y7cmxDUMn3-YvrtajMuTFdfjq0iSa7BeMie-8Mo19DpGnfpb3t1B0DTvf8w9UfwMFqf4n0vLo_hjq-fwN5Q2UFERX8Kl19Cg6eWOZxFu1rHEl-SIW8pSOQ481HYs-_NZhVO14LmLziDGL1Atje57EQQMfRrTeAoYt2aVvC5LzcKq3rbbFtBULls1uKcXHZO4mqfwdfp0eLwWMYiDRLJ1gnSMf2Nym1eJJ6uMRqT-8xUHjViplxmnScrJTVaqypPKo3O2axaemdSR7aGeg47dVP7fRB0M9NuQjbGBLXD1NrKmqJCn6LKNE5GoIbFKTEymPMbnZXJQHR6w9cdgbzq9aNn8PhLe_XrupehOzmp-jInN_Yow0UYQXFLL3X7Aw8GySpJt_mHja09LUHJVPyKPMwX_z74ATw4XnyalbMP848vYbePO-IIuVewEzZb_xru43lYtZs3nd78BFv0E_8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VghAXylMsUOpDrxab2JvERwRdUVGtKrWovUX2rE1X6ibVxlvBv2cmj6pVS5FAyi2248Qznm-cmW8AdpNEJV4ja5pSkjmlpHNmLL0mZ8VqS1aqJXE9yGez4vTUHF7L4uewSvahQ0cU0e7VrNwX8zBExH1kGc1NykxRSiVpzqxfD-AhIeeMZfx4enK1FxemLS_HoEiSZzAekuf-MMoN43SDuvTWVt3an-nW_8_8GTztsaf41AnLc9jw1QvYGuo6iF7NX8Kvo1jjmWUGZ9Esln2BL8kGby5I4DjvUdjzH_VqEc-WgqYvOH8YvUBGm1x0Ioo-8GtJplH0VWsawae-3CguqnW9bgQZynm9FJfksHMKV_MKvk_3jj9_lX2JBomEdKJ0TH6jcpsXiadrjMbkPjPBo0bMlMus84RRUqO1CnkSNDpnszD3zqSOkIZ6DZtVXfk3IOhmpt2EEMYEtcPU2mBNEdCnqDKNkxGoYW1K7PnL-Y3Oy2SgOb3j645AXvW66Pg7_tJeXV_2MrbnJqErcnJnjzL-jCMo7uml7n_gziBYJWk2_66xlaclKJmIX5F_-fbfB9-Bx4dfpuXB_uzbO3jSBR1xeNx72Iyrtd-GR3gZF83qQ6s1vwEJDxKx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+simulation-based+genetic+algorithm+for+chance+constraint+programming+problems+with+continuous+random+variables&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Jana%2C+R.+K.&rft.au=Biswal%2C+M.+P.&rft.date=2004-09-01&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=81&rft.issue=9&rft.spage=1069&rft.epage=1076&rft_id=info:doi/10.1080%2F03057920412331272144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03057920412331272144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon