Semiglobal Suboptimal Output Regulation for Heterogeneous Multi-Agent Systems With Input Saturation via Adaptive Dynamic Programming

This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 35; no. 3; pp. 1 - 9
Main Authors: Wang, Bingjie, Xu, Lei, Yi, Xinlei, Jia, Yao, Yang, Tao
Format: Journal Article
Language:English
Published: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example.
AbstractList This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example.
This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example.This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example.
This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents’ dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent’s output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example. 
Author Wang, Bingjie
Xu, Lei
Yang, Tao
Yi, Xinlei
Jia, Yao
Author_xml – sequence: 1
  givenname: Bingjie
  surname: Wang
  fullname: Wang, Bingjie
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Xinlei
  orcidid: 0000-0003-4299-0471
  surname: Yi
  fullname: Yi, Xinlei
  organization: School of Electrical Engineering and Computer Science, Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 4
  givenname: Yao
  orcidid: 0000-0002-3401-7826
  surname: Jia
  fullname: Jia, Yao
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 5
  givenname: Tao
  orcidid: 0000-0003-4090-8497
  surname: Yang
  fullname: Yang, Tao
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35895655$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326670$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kUtv1DAUhSNUREvpHwAJWWLDJoMfsWMvRy3QSkOLSHnsLCdxpi5JHPwomj0_HM9kmEUXeONr6Tvn-t7zPDsa7aiz7CWCC4SgeHd7fb2qFhhivCBIIFaSJ9kJRgznmHB-dKjLH8fZmff3MB0GKSvEs-yYUC4oo_Qk-1Ppwax7W6seVLG2UzBDKm9imGIAX_Q69ioYO4LOOnCpg3Z2rUdtowefYh9MvkzPAKqND3rw4LsJd-Bq3GorFaKbtQ9GgWWrkveDBhebUQ2mAZ-Tk1PDYMb1i-xpp3qvz_b3afb1w_vb88t8dfPx6ny5yhvCRchVpxEhUJWK0qKlFLcaK1SgljS0rTkVCkKquq6tu4aTsi1YiSgvoWJclFgocprls6__radYy8mlYd1GWmXkhfm2lNat5c9wJwlmrISJfzvzk7O_ovZBDsY3uu_VbgMSM0GxQKXACX3zCL230Y1pGokFIQwKxrfU6z0V60G3hw_8yyMBeAYaZ713ujsgCMpt7nKXu9zmLve5JxF_JGpM2G0-OGX6_0tfzVKjtT70ErwggkLyFz9JvHE
CODEN ITNNAL
CitedBy_id crossref_primary_10_1002_acs_3898
crossref_primary_10_1016_j_automatica_2025_112535
crossref_primary_10_1109_TNNLS_2025_3563773
crossref_primary_10_1007_s11424_024_3429_0
crossref_primary_10_1109_JIOT_2025_3557790
crossref_primary_10_1109_TNNLS_2025_3563155
crossref_primary_10_1080_00207179_2024_2447570
crossref_primary_10_1109_TCYB_2025_3549821
crossref_primary_10_1007_s11071_025_11423_6
crossref_primary_10_1109_ACCESS_2025_3553850
crossref_primary_10_1109_TASE_2025_3556707
crossref_primary_10_1109_JIOT_2024_3497979
crossref_primary_10_1002_rnc_7961
crossref_primary_10_1109_TCNS_2024_3425659
Cites_doi 10.1109/TAC.1968.1098829
10.1109/TAC.2010.2076250
10.3182/20090924-3-IT-4005.00002
10.1109/TNNLS.2015.2499757
10.1016/j.automatica.2016.09.038
10.1109/TITS.2016.2597279
10.1016/j.automatica.2019.01.005
10.1016/j.isatra.2020.07.029
10.1016/j.automatica.2009.07.022
10.1002/rnc.4291
10.1049/iet-cta.2015.0627
10.1109/CDC40024.2019.9029829
10.1109/TSMC.2020.3042876
10.1049/iet-cta.2016.1571
10.1016/j.automatica.2016.01.040
10.1016/j.automatica.2019.02.002
10.1109/TIE.2016.2636810
10.1016/j.automatica.2014.01.003
10.1109/TAC.2013.2255973
10.1007/978-1-4757-2204-8_21
10.1109/TCSII.2021.3098095
10.1109/TNNLS.2017.2761718
10.1016/j.jfranklin.2021.07.049
10.1109/TNNLS.2018.2806347
10.1016/j.neunet.2018.06.007
10.1016/j.automatica.2012.06.081
10.1109/CDC.2013.6760204
10.1016/j.automatica.2018.01.020
10.23919/ACC.2017.7963356
10.1109/TCYB.2020.2989419
10.1007/s12555-017-0635-8
10.1561/2600000023
10.1016/j.automatica.2013.11.008
10.1002/rnc.2905
10.1109/TAC.2016.2548662
10.1002/rnc.2965
10.1109/TAC.2011.2169618
10.1016/0005-1098(95)00110-7
10.1109/TNNLS.2017.2773458
10.1016/0167-6911(93)90033-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTPV
AOWAS
D8V
DOI 10.1109/TNNLS.2022.3191673
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 9
ExternalDocumentID oai_DiVA_org_kth_326670
35895655
10_1109_TNNLS_2022_3191673
9843950
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62133003; 61991403
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c389t-afe1330a7a554d552de2a141d3c5db859a005affdbfc837d46715870a689729a3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833063900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Tue Nov 04 16:51:09 EST 2025
Wed Oct 01 14:08:10 EDT 2025
Sun Nov 09 06:11:07 EST 2025
Sun Apr 06 01:21:16 EDT 2025
Sat Nov 29 01:40:21 EST 2025
Tue Nov 18 20:59:39 EST 2025
Wed Aug 27 02:17:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-afe1330a7a554d552de2a141d3c5db859a005affdbfc837d46715870a689729a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4299-0471
0000-0003-4090-8497
0000-0002-3401-7826
0000-0003-4753-4774
PMID 35895655
PQID 2933609682
PQPubID 85436
PageCount 9
ParticipantIDs pubmed_primary_35895655
proquest_miscellaneous_2695291792
swepub_primary_oai_DiVA_org_kth_326670
crossref_primary_10_1109_TNNLS_2022_3191673
ieee_primary_9843950
proquest_journals_2933609682
crossref_citationtrail_10_1109_TNNLS_2022_3191673
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Khalil (ref40) 2002
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref39
  doi: 10.1109/TAC.1968.1098829
– ident: ref4
  doi: 10.1109/TAC.2010.2076250
– ident: ref1
  doi: 10.3182/20090924-3-IT-4005.00002
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref40
– ident: ref30
  doi: 10.1109/TNNLS.2015.2499757
– ident: ref7
  doi: 10.1016/j.automatica.2016.09.038
– ident: ref36
  doi: 10.1109/TITS.2016.2597279
– ident: ref37
  doi: 10.1016/j.automatica.2019.01.005
– ident: ref35
  doi: 10.1016/j.isatra.2020.07.029
– ident: ref17
  doi: 10.1016/j.automatica.2009.07.022
– ident: ref21
  doi: 10.1002/rnc.4291
– ident: ref33
  doi: 10.1049/iet-cta.2015.0627
– ident: ref27
  doi: 10.1109/CDC40024.2019.9029829
– ident: ref25
  doi: 10.1109/TSMC.2020.3042876
– ident: ref6
  doi: 10.1049/iet-cta.2016.1571
– ident: ref14
  doi: 10.1016/j.automatica.2016.01.040
– ident: ref19
  doi: 10.1016/j.automatica.2019.02.002
– ident: ref3
  doi: 10.1109/TIE.2016.2636810
– ident: ref2
  doi: 10.1016/j.automatica.2014.01.003
– ident: ref12
  doi: 10.1109/TAC.2013.2255973
– ident: ref38
  doi: 10.1007/978-1-4757-2204-8_21
– ident: ref13
  doi: 10.1109/TCSII.2021.3098095
– ident: ref26
  doi: 10.1109/TNNLS.2017.2761718
– ident: ref22
  doi: 10.1016/j.jfranklin.2021.07.049
– ident: ref28
  doi: 10.1109/TNNLS.2018.2806347
– ident: ref34
  doi: 10.1016/j.neunet.2018.06.007
– ident: ref8
  doi: 10.1016/j.automatica.2012.06.081
– ident: ref9
  doi: 10.1109/CDC.2013.6760204
– ident: ref10
  doi: 10.1016/j.automatica.2018.01.020
– ident: ref31
  doi: 10.23919/ACC.2017.7963356
– ident: ref29
  doi: 10.1109/TCYB.2020.2989419
– ident: ref32
  doi: 10.1007/s12555-017-0635-8
– ident: ref24
  doi: 10.1561/2600000023
– ident: ref18
  doi: 10.1016/j.automatica.2013.11.008
– ident: ref20
  doi: 10.1002/rnc.2905
– ident: ref41
  doi: 10.1109/TAC.2016.2548662
– ident: ref11
  doi: 10.1002/rnc.2965
– ident: ref5
  doi: 10.1109/TAC.2011.2169618
– ident: ref16
  doi: 10.1016/0005-1098(95)00110-7
– ident: ref23
  doi: 10.1109/TNNLS.2017.2773458
– ident: ref15
  doi: 10.1016/0167-6911(93)90033-3
SSID ssj0000605649
Score 2.5251505
Snippet This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the...
SourceID swepub
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adaptive control systems
Adaptive dynamic programming
Adaptive dynamic programming (ADP)
Algorithms
Closed loops
Control strategies
Decentralised control
Decentralized control
Directed graphs
Dynamic programming
Eigenvalue and eigenfunctions
Eigenvalues and eigenfunctions
input saturation
Mathematical models
Multi agent systems
Multiagent systems
output regulation
Reference signals
Regulation
Regulator
Regulators
System dynamics
Title Semiglobal Suboptimal Output Regulation for Heterogeneous Multi-Agent Systems With Input Saturation via Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/9843950
https://www.ncbi.nlm.nih.gov/pubmed/35895655
https://www.proquest.com/docview/2933609682
https://www.proquest.com/docview/2695291792
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326670
Volume 35
WOSCitedRecordID wos000833063900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-2388
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_M4YMvbjo_6uaIIL5oXZu2afJ4cY4J4zq8c963kCYpK3rbsds78N0_3JOkLSJD8K2QpKQ9H_n9kpxzAF4rleaGoyEVFc_j3OQ2ViLXMTWa8grxBfN7updn5XzOl0txvgXvplgYa62_fGbfu0d_lm86vXFbZUeC4_LpCPq9sixDrNa0n5IgLmce7dKU0Zhm5XKMkUnE0cV8frZANkgpklRERKWrn5MVHNmBC_L7Y0nyNVbugpt_5RL168_Jzv_NfBceDjiTzIJiPIIt2z6GnbGGAxlMeg9-LeyqCVlBCDqRDj3ICh8_b3rsSL6ESvUoO4Lglpy6uzMdqpztNmviY3fjmYvNIkPic_Kt6a_Ip9aNXbiUoWHsbaPIzKhr51rJ8c9WrRpNzsPNsBWunU_g68nHiw-n8VCZIdYIcPpY1Ra5baJKhWjEFAU1lqLQU5PpwlS8EAqNW9W1qWqNDNigN04L9AyKcYFoXmVPYbvtWvsciK6NMK4-O62QmSW1YsYwq2qaZYg-rIggHYUj9ZC23FXP-CE9fUmE9LKVTrZykG0Eb6cx1yFpxz977zmBTT0HWUVwMOqAHOx6LREcOe1lnEbwampGi3THLMr_fUmZKCiyYIF9ngXdmd49qlwEb4IyTS0uzfdxczmTqDfye38lEVezMnlx9-T24QF-Qh4uwx3Adn-zsS_hvr7tm_XNIdrHkh96-_gN8eAMAg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkutFAegRaMhLhAaOI8fVy1VFuxhIpdyt4sx3bUCDaputlK3PnhjO0kQlWFxC2S7cjJPPx9tmcG4I0QYaxyNKSkzGM_VrH2BYulT5WkeYn4IrV7uuezrCjy5ZKdbcH7MRZGa20vn-kP5tGe5atWbsxW2SHLcfk0BP1OEsc0dNFa445KgMg8tXiXhin1aZQthyiZgB0uimI2Rz5IKdJUxESZqaATJTnyAxPm99eiZKus3AY4b2QTtSvQyc7_zX0XHvRIk0ycajyELd08gp2higPpjXoPfs_1qnZ5QQi6kRZ9yAofv2w67Ei-ulr1KD2C8JZMze2ZFpVOt5s1sdG7_sREZ5E-9Tn5XncX5LQxY-cmaagbe10LMlHi0jhXcvyrEatakjN3N2yFq-dj-HbycXE09fvaDL5EiNP5otLIbgORCcQjKkmo0hTFHqpIJqrMEybQvEVVqbKSyIEV-uMwQd8g0pwhnhfRE9hu2kY_AyIrxZSp0E5L5GZBJVKlUi0qGkWIPzTzIByEw2WfuNzUz_jJLYEJGLey5Ua2vJetB-_GMZcubcc_e-8ZgY09e1l5sD_oAO8te80RHhn9TXPqweuxGW3SHLQI-_c5TVlCkQcz7PPU6c747kHlPHjrlGlsMYm-j-vzCUe94T-6C47IOs2C57dP7hXcmy4-z_jstPj0Au7j58Tuatw-bHdXG30Ad-V1V6-vXlor-QOtTw5h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiglobal+Suboptimal+Output+Regulation+for+Heterogeneous+Multi-Agent+Systems+With+Input+Saturation+via+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+B.&rft.au=Xu%2C+L.&rft.au=Yi%2C+Xinlei&rft.au=Jia%2C+Y.&rft.date=2024-03-01&rft.issn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=3242&rft_id=info:doi/10.1109%2FTNNLS.2022.3191673&rft.externalDocID=oai_DiVA_org_kth_326670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon