Semiglobal Suboptimal Output Regulation for Heterogeneous Multi-Agent Systems With Input Saturation via Adaptive Dynamic Programming
This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 35; no. 3; pp. 1 - 9 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example. |
|---|---|
| AbstractList | This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example. This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example.This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example. This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents’ dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent’s output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example. |
| Author | Wang, Bingjie Xu, Lei Yang, Tao Yi, Xinlei Jia, Yao |
| Author_xml | – sequence: 1 givenname: Bingjie surname: Wang fullname: Wang, Bingjie organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 2 givenname: Lei surname: Xu fullname: Xu, Lei organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 3 givenname: Xinlei orcidid: 0000-0003-4299-0471 surname: Yi fullname: Yi, Xinlei organization: School of Electrical Engineering and Computer Science, Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 4 givenname: Yao orcidid: 0000-0002-3401-7826 surname: Jia fullname: Jia, Yao organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 5 givenname: Tao orcidid: 0000-0003-4090-8497 surname: Yang fullname: Yang, Tao organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35895655$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326670$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) |
| BookMark | eNp9kUtv1DAUhSNUREvpHwAJWWLDJoMfsWMvRy3QSkOLSHnsLCdxpi5JHPwomj0_HM9kmEUXeONr6Tvn-t7zPDsa7aiz7CWCC4SgeHd7fb2qFhhivCBIIFaSJ9kJRgznmHB-dKjLH8fZmff3MB0GKSvEs-yYUC4oo_Qk-1Ppwax7W6seVLG2UzBDKm9imGIAX_Q69ioYO4LOOnCpg3Z2rUdtowefYh9MvkzPAKqND3rw4LsJd-Bq3GorFaKbtQ9GgWWrkveDBhebUQ2mAZ-Tk1PDYMb1i-xpp3qvz_b3afb1w_vb88t8dfPx6ny5yhvCRchVpxEhUJWK0qKlFLcaK1SgljS0rTkVCkKquq6tu4aTsi1YiSgvoWJclFgocprls6__radYy8mlYd1GWmXkhfm2lNat5c9wJwlmrISJfzvzk7O_ovZBDsY3uu_VbgMSM0GxQKXACX3zCL230Y1pGokFIQwKxrfU6z0V60G3hw_8yyMBeAYaZ713ujsgCMpt7nKXu9zmLve5JxF_JGpM2G0-OGX6_0tfzVKjtT70ErwggkLyFz9JvHE |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1002_acs_3898 crossref_primary_10_1016_j_automatica_2025_112535 crossref_primary_10_1109_TNNLS_2025_3563773 crossref_primary_10_1007_s11424_024_3429_0 crossref_primary_10_1109_JIOT_2025_3557790 crossref_primary_10_1109_TNNLS_2025_3563155 crossref_primary_10_1080_00207179_2024_2447570 crossref_primary_10_1109_TCYB_2025_3549821 crossref_primary_10_1007_s11071_025_11423_6 crossref_primary_10_1109_ACCESS_2025_3553850 crossref_primary_10_1109_TASE_2025_3556707 crossref_primary_10_1109_JIOT_2024_3497979 crossref_primary_10_1002_rnc_7961 crossref_primary_10_1109_TCNS_2024_3425659 |
| Cites_doi | 10.1109/TAC.1968.1098829 10.1109/TAC.2010.2076250 10.3182/20090924-3-IT-4005.00002 10.1109/TNNLS.2015.2499757 10.1016/j.automatica.2016.09.038 10.1109/TITS.2016.2597279 10.1016/j.automatica.2019.01.005 10.1016/j.isatra.2020.07.029 10.1016/j.automatica.2009.07.022 10.1002/rnc.4291 10.1049/iet-cta.2015.0627 10.1109/CDC40024.2019.9029829 10.1109/TSMC.2020.3042876 10.1049/iet-cta.2016.1571 10.1016/j.automatica.2016.01.040 10.1016/j.automatica.2019.02.002 10.1109/TIE.2016.2636810 10.1016/j.automatica.2014.01.003 10.1109/TAC.2013.2255973 10.1007/978-1-4757-2204-8_21 10.1109/TCSII.2021.3098095 10.1109/TNNLS.2017.2761718 10.1016/j.jfranklin.2021.07.049 10.1109/TNNLS.2018.2806347 10.1016/j.neunet.2018.06.007 10.1016/j.automatica.2012.06.081 10.1109/CDC.2013.6760204 10.1016/j.automatica.2018.01.020 10.23919/ACC.2017.7963356 10.1109/TCYB.2020.2989419 10.1007/s12555-017-0635-8 10.1561/2600000023 10.1016/j.automatica.2013.11.008 10.1002/rnc.2905 10.1109/TAC.2016.2548662 10.1002/rnc.2965 10.1109/TAC.2011.2169618 10.1016/0005-1098(95)00110-7 10.1109/TNNLS.2017.2773458 10.1016/0167-6911(93)90033-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTPV AOWAS D8V |
| DOI | 10.1109/TNNLS.2022.3191673 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 9 |
| ExternalDocumentID | oai_DiVA_org_kth_326670 35895655 10_1109_TNNLS_2022_3191673 9843950 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62133003; 61991403 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTPV AOWAS D8V |
| ID | FETCH-LOGICAL-c389t-afe1330a7a554d552de2a141d3c5db859a005affdbfc837d46715870a689729a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833063900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Tue Nov 04 16:51:09 EST 2025 Wed Oct 01 14:08:10 EDT 2025 Sun Nov 09 06:11:07 EST 2025 Sun Apr 06 01:21:16 EDT 2025 Sat Nov 29 01:40:21 EST 2025 Tue Nov 18 20:59:39 EST 2025 Wed Aug 27 02:17:13 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-afe1330a7a554d552de2a141d3c5db859a005affdbfc837d46715870a689729a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4299-0471 0000-0003-4090-8497 0000-0002-3401-7826 0000-0003-4753-4774 |
| PMID | 35895655 |
| PQID | 2933609682 |
| PQPubID | 85436 |
| PageCount | 9 |
| ParticipantIDs | pubmed_primary_35895655 proquest_miscellaneous_2695291792 swepub_primary_oai_DiVA_org_kth_326670 crossref_primary_10_1109_TNNLS_2022_3191673 ieee_primary_9843950 proquest_journals_2933609682 crossref_citationtrail_10_1109_TNNLS_2022_3191673 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Khalil (ref40) 2002 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref39 doi: 10.1109/TAC.1968.1098829 – ident: ref4 doi: 10.1109/TAC.2010.2076250 – ident: ref1 doi: 10.3182/20090924-3-IT-4005.00002 – volume-title: Nonlinear Systems year: 2002 ident: ref40 – ident: ref30 doi: 10.1109/TNNLS.2015.2499757 – ident: ref7 doi: 10.1016/j.automatica.2016.09.038 – ident: ref36 doi: 10.1109/TITS.2016.2597279 – ident: ref37 doi: 10.1016/j.automatica.2019.01.005 – ident: ref35 doi: 10.1016/j.isatra.2020.07.029 – ident: ref17 doi: 10.1016/j.automatica.2009.07.022 – ident: ref21 doi: 10.1002/rnc.4291 – ident: ref33 doi: 10.1049/iet-cta.2015.0627 – ident: ref27 doi: 10.1109/CDC40024.2019.9029829 – ident: ref25 doi: 10.1109/TSMC.2020.3042876 – ident: ref6 doi: 10.1049/iet-cta.2016.1571 – ident: ref14 doi: 10.1016/j.automatica.2016.01.040 – ident: ref19 doi: 10.1016/j.automatica.2019.02.002 – ident: ref3 doi: 10.1109/TIE.2016.2636810 – ident: ref2 doi: 10.1016/j.automatica.2014.01.003 – ident: ref12 doi: 10.1109/TAC.2013.2255973 – ident: ref38 doi: 10.1007/978-1-4757-2204-8_21 – ident: ref13 doi: 10.1109/TCSII.2021.3098095 – ident: ref26 doi: 10.1109/TNNLS.2017.2761718 – ident: ref22 doi: 10.1016/j.jfranklin.2021.07.049 – ident: ref28 doi: 10.1109/TNNLS.2018.2806347 – ident: ref34 doi: 10.1016/j.neunet.2018.06.007 – ident: ref8 doi: 10.1016/j.automatica.2012.06.081 – ident: ref9 doi: 10.1109/CDC.2013.6760204 – ident: ref10 doi: 10.1016/j.automatica.2018.01.020 – ident: ref31 doi: 10.23919/ACC.2017.7963356 – ident: ref29 doi: 10.1109/TCYB.2020.2989419 – ident: ref32 doi: 10.1007/s12555-017-0635-8 – ident: ref24 doi: 10.1561/2600000023 – ident: ref18 doi: 10.1016/j.automatica.2013.11.008 – ident: ref20 doi: 10.1002/rnc.2905 – ident: ref41 doi: 10.1109/TAC.2016.2548662 – ident: ref11 doi: 10.1002/rnc.2965 – ident: ref5 doi: 10.1109/TAC.2011.2169618 – ident: ref16 doi: 10.1016/0005-1098(95)00110-7 – ident: ref23 doi: 10.1109/TNNLS.2017.2773458 – ident: ref15 doi: 10.1016/0167-6911(93)90033-3 |
| SSID | ssj0000605649 |
| Score | 2.5251505 |
| Snippet | This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the... |
| SourceID | swepub proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive control systems Adaptive dynamic programming Adaptive dynamic programming (ADP) Algorithms Closed loops Control strategies Decentralised control Decentralized control Directed graphs Dynamic programming Eigenvalue and eigenfunctions Eigenvalues and eigenfunctions input saturation Mathematical models Multi agent systems Multiagent systems output regulation Reference signals Regulation Regulator Regulators System dynamics |
| Title | Semiglobal Suboptimal Output Regulation for Heterogeneous Multi-Agent Systems With Input Saturation via Adaptive Dynamic Programming |
| URI | https://ieeexplore.ieee.org/document/9843950 https://www.ncbi.nlm.nih.gov/pubmed/35895655 https://www.proquest.com/docview/2933609682 https://www.proquest.com/docview/2695291792 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326670 |
| Volume | 35 |
| WOSCitedRecordID | wos000833063900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-2388 databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_M4YMvbjo_6uaIIL5oXZu2afJ4cY4J4zq8c963kCYpK3rbsds78N0_3JOkLSJD8K2QpKQ9H_n9kpxzAF4rleaGoyEVFc_j3OQ2ViLXMTWa8grxBfN7updn5XzOl0txvgXvplgYa62_fGbfu0d_lm86vXFbZUeC4_LpCPq9sixDrNa0n5IgLmce7dKU0Zhm5XKMkUnE0cV8frZANkgpklRERKWrn5MVHNmBC_L7Y0nyNVbugpt_5RL168_Jzv_NfBceDjiTzIJiPIIt2z6GnbGGAxlMeg9-LeyqCVlBCDqRDj3ICh8_b3rsSL6ESvUoO4Lglpy6uzMdqpztNmviY3fjmYvNIkPic_Kt6a_Ip9aNXbiUoWHsbaPIzKhr51rJ8c9WrRpNzsPNsBWunU_g68nHiw-n8VCZIdYIcPpY1Ra5baJKhWjEFAU1lqLQU5PpwlS8EAqNW9W1qWqNDNigN04L9AyKcYFoXmVPYbvtWvsciK6NMK4-O62QmSW1YsYwq2qaZYg-rIggHYUj9ZC23FXP-CE9fUmE9LKVTrZykG0Eb6cx1yFpxz977zmBTT0HWUVwMOqAHOx6LREcOe1lnEbwampGi3THLMr_fUmZKCiyYIF9ngXdmd49qlwEb4IyTS0uzfdxczmTqDfye38lEVezMnlx9-T24QF-Qh4uwx3Adn-zsS_hvr7tm_XNIdrHkh96-_gN8eAMAg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkutFAegRaMhLhAaOI8fVy1VFuxhIpdyt4sx3bUCDaputlK3PnhjO0kQlWFxC2S7cjJPPx9tmcG4I0QYaxyNKSkzGM_VrH2BYulT5WkeYn4IrV7uuezrCjy5ZKdbcH7MRZGa20vn-kP5tGe5atWbsxW2SHLcfk0BP1OEsc0dNFa445KgMg8tXiXhin1aZQthyiZgB0uimI2Rz5IKdJUxESZqaATJTnyAxPm99eiZKus3AY4b2QTtSvQyc7_zX0XHvRIk0ycajyELd08gp2higPpjXoPfs_1qnZ5QQi6kRZ9yAofv2w67Ei-ulr1KD2C8JZMze2ZFpVOt5s1sdG7_sREZ5E-9Tn5XncX5LQxY-cmaagbe10LMlHi0jhXcvyrEatakjN3N2yFq-dj-HbycXE09fvaDL5EiNP5otLIbgORCcQjKkmo0hTFHqpIJqrMEybQvEVVqbKSyIEV-uMwQd8g0pwhnhfRE9hu2kY_AyIrxZSp0E5L5GZBJVKlUi0qGkWIPzTzIByEw2WfuNzUz_jJLYEJGLey5Ua2vJetB-_GMZcubcc_e-8ZgY09e1l5sD_oAO8te80RHhn9TXPqweuxGW3SHLQI-_c5TVlCkQcz7PPU6c747kHlPHjrlGlsMYm-j-vzCUe94T-6C47IOs2C57dP7hXcmy4-z_jstPj0Au7j58Tuatw-bHdXG30Ad-V1V6-vXlor-QOtTw5h |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiglobal+Suboptimal+Output+Regulation+for+Heterogeneous+Multi-Agent+Systems+With+Input+Saturation+via+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+B.&rft.au=Xu%2C+L.&rft.au=Yi%2C+Xinlei&rft.au=Jia%2C+Y.&rft.date=2024-03-01&rft.issn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=3242&rft_id=info:doi/10.1109%2FTNNLS.2022.3191673&rft.externalDocID=oai_DiVA_org_kth_326670 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |