An efficient algorithm for regularization of Laplace transform inversion in real case

We address design of a numerical algorithm for solving the linear system arising in numerical inversion of Laplace transforms in real case [L. D’Amore, A. Murli, Regularization of a Fourier series method for the Laplace transform inversion with real data, Inverse Problems 18 (2002) 1185–1205]. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 210; H. 1; S. 84 - 98
Hauptverfasser: Campagna, R., D’Amore, L., Murli, A.
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 31.12.2007
Elsevier
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We address design of a numerical algorithm for solving the linear system arising in numerical inversion of Laplace transforms in real case [L. D’Amore, A. Murli, Regularization of a Fourier series method for the Laplace transform inversion with real data, Inverse Problems 18 (2002) 1185–1205]. The matrix has a condition number that grows almost exponentially and the singular values decay gradually towards zero. In such a case, because of this intrinsic strong instability, the main difficulty of any numerical computation is the ability of discovering at run time, only using data, what is the maximum attainable accuracy on the solution. In this paper, we use GMRES with the aim of relating the current residuals to the maximum attainable accuracy of the approximate solution by using a suitable stopping rule. We prove that GMRES stops after, at most, as many iterations as the number of the largest eigenvalues (compared to the machine epsilon). We use a split preconditioner that symmetrically precondition the initial system. By this way, the largest eigenvalue dynamically provides the estimate of the condition number of the matrix.
AbstractList We address design of a numerical algorithm for solving the linear system arising in numerical inversion of Laplace transforms in real case [L. D'Amore, A. Murli, Regularization of a Fourier series method for the Laplace transform inversion with real data, Inverse Problems 18 (2002) 1185-1205]. The matrix has a condition number that grows almost exponentially and the singular values decay gradually towards zero. In such a case, because of this intrinsic strong instability, the main difficulty of any numerical computation is the ability of discovering at run time, only using data, what is the maximum attainable accuracy on the solution. In this paper, we use GMRES with the aim of relating the current residuals to the maximum attainable accuracy of the approximate solution by using a suitable stopping rule. We prove that GMRES stops after, at most, as many iterations as the number of the largest eigenvalues (compared to the machine epsilon). We use a split preconditioner that symmetrically precondition the initial system. By this way, the largest eigenvalue dynamically provides the estimate of the condition number of the matrix.
We address design of a numerical algorithm for solving the linear system arising in numerical inversion of Laplace transforms in real case [L. D’Amore, A. Murli, Regularization of a Fourier series method for the Laplace transform inversion with real data, Inverse Problems 18 (2002) 1185–1205]. The matrix has a condition number that grows almost exponentially and the singular values decay gradually towards zero. In such a case, because of this intrinsic strong instability, the main difficulty of any numerical computation is the ability of discovering at run time, only using data, what is the maximum attainable accuracy on the solution. In this paper, we use GMRES with the aim of relating the current residuals to the maximum attainable accuracy of the approximate solution by using a suitable stopping rule. We prove that GMRES stops after, at most, as many iterations as the number of the largest eigenvalues (compared to the machine epsilon). We use a split preconditioner that symmetrically precondition the initial system. By this way, the largest eigenvalue dynamically provides the estimate of the condition number of the matrix.
Author Murli, A.
D’Amore, L.
Campagna, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Campagna
  fullname: Campagna, R.
  email: rosanna.campagna@dma.unina.it
– sequence: 2
  givenname: L.
  surname: D’Amore
  fullname: D’Amore, L.
  email: luisa.damore@dma.unina.it
– sequence: 3
  givenname: A.
  surname: Murli
  fullname: Murli, A.
  email: almerico.murli@dma.unina.it
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19190199$$DView record in Pascal Francis
BookMark eNqFkT1vHCEQhlFkSzl__IB0NEm3Fzj2lkWuLMuOI52UJq7ReHZwOLFwhj1L8a83m7NSuLArBDzPSPO-J-wopkiMfZFiKYXsvm-XCONyJURX70uh9Se2kL02jdS6P2ILobRuRLvSn9lJKVtRQSPbBbu7jJyc8-gpThzCQ8p--jNylzLP9LAPkP0zTD5FnhzfwC4AEp8yxFKRkfv4RLnM3z5WAQJHKHTGjh2EQuev5ym7u7n-fXXbbH79-Hl1uWlQ9WZqoCMpFCLerxRpPay7lcNOrpUBBWataYDBiEGrrgU9GCQQrtWDEr3QotNKnbJvh7m7nB73VCY7-oIUAkRK-2KVkLJTqv8QlGbdqlbJCn59BaEgBFcXRV_sLvsR8t_KSSOkMZXTBw5zKiWTs-infznVbHywUti5F7u1tRc79zI_1V6qKd-Y_4e_41wcHKphPnnKtsyFIQ0-E052SP4d-wVh3Ke6
CODEN JCAMDI
CitedBy_id crossref_primary_10_1016_j_cam_2010_12_008
crossref_primary_10_1002_mma_5188
crossref_primary_10_1016_j_jcp_2017_01_034
crossref_primary_10_1016_j_jsv_2023_118230
crossref_primary_10_1007_s10444_011_9202_7
crossref_primary_10_1007_s12044_020_00573_9
crossref_primary_10_1016_j_amc_2020_125376
crossref_primary_10_1145_2616971
crossref_primary_10_1007_s11587_013_0176_2
crossref_primary_10_1007_s10766_016_0460_3
Cites_doi 10.1007/s002110100339
10.1137/S106482759630526X
10.1088/0266-5611/18/4/315
10.1007/BF02149761
10.1016/S1570-579X(01)80025-2
ContentType Journal Article
Conference Proceeding
Copyright 2006 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
8FD
FR3
P64
RC3
7SC
7TB
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2006.10.077
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Genetics Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 98
ExternalDocumentID 19190199
10_1016_j_cam_2006_10_077
S0377042706006510
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
8FD
FR3
P64
RC3
7SC
7TB
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c389t-a6e103cccb23e77d562fc61539a3a957edad90d7364a7d9cea0f47d3080706733
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253510100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Sep 27 18:52:56 EDT 2025
Wed Oct 01 14:11:39 EDT 2025
Mon Jul 21 09:17:11 EDT 2025
Tue Nov 18 21:51:12 EST 2025
Sat Nov 29 06:07:25 EST 2025
Fri Feb 23 02:30:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 65R32
65F10
65F22
GMRES
Ill posed problem
Regularization
Automatic stopping rule
Laplace transform inversion
Numerical linear algebra
Singular value
Eigenvalue
Fourier analysis
Iteration
Fourier series
Algorithm
Inverse problem
Direct method
Regularization method
65F22; 65F10; 65R32
Numerical analysis
Linear system
Numerical computation
Laplace transform inversion; III posed problem; Regularization; GMRES; Automatic stopping rule
Matrix inversion
Applied mathematics
Condition number
Laplace transformation
Preconditioning
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MeetingName Proceedings of the Numerical Analysis Conference 2005, University of Calabria, Italy, 19-21 May 2005
MergedId FETCHMERGED-LOGICAL-c389t-a6e103cccb23e77d562fc61539a3a957edad90d7364a7d9cea0f47d3080706733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://dx.doi.org/10.1016/j.cam.2006.10.077
PQID 19543431
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_30116338
proquest_miscellaneous_19543431
pascalfrancis_primary_19190199
crossref_citationtrail_10_1016_j_cam_2006_10_077
crossref_primary_10_1016_j_cam_2006_10_077
elsevier_sciencedirect_doi_10_1016_j_cam_2006_10_077
PublicationCentury 2000
PublicationDate 2007-12-31
PublicationDateYYYYMMDD 2007-12-31
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-31
  day: 31
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References D’Amore, Murli (bib4) 2002; 18
P. Hansen, Regularization Tools. A Matlab package for analysis and solution of discrete ill-posed problems, Manual and Tutorial, Technical Report, Department of Mathematical Modelling, Technical University of Denmark, 1998, Numer. Algorithms 6 (1994) 1–35.
Calvetti, Lewis, Reichel (bib2) 2002; 91
T. Chan, E. Chow, Y. Saad, M.C. Yeung, Preserving symmetry in preconditioned Krylov subspace methods, Technical Report, 1996.
Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., 2000.
Golub, van Loan (bib5) 1996
Banoczi, Chiu, Cho, Ipsen (bib1) 1999; 20
10.1016/j.cam.2006.10.077_bib6
10.1016/j.cam.2006.10.077_bib7
10.1016/j.cam.2006.10.077_bib3
Golub (10.1016/j.cam.2006.10.077_bib5) 1996
Calvetti (10.1016/j.cam.2006.10.077_bib2) 2002; 91
D’Amore (10.1016/j.cam.2006.10.077_bib4) 2002; 18
Banoczi (10.1016/j.cam.2006.10.077_bib1) 1999; 20
References_xml – volume: 18
  start-page: 1185
  year: 2002
  end-page: 1205
  ident: bib4
  article-title: Regularization of a Fourier series method for the Laplace transform inversion with real data
  publication-title: Inverse Problems
– reference: T. Chan, E. Chow, Y. Saad, M.C. Yeung, Preserving symmetry in preconditioned Krylov subspace methods, Technical Report, 1996.
– volume: 91
  start-page: 605
  year: 2002
  end-page: 625
  ident: bib2
  article-title: On the regularizing properties of the GMRES method
  publication-title: Numer. Math.
– reference: Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., 2000.
– volume: 20
  start-page: 203
  year: 1999
  end-page: 227
  ident: bib1
  article-title: The lack of influence of the right-hand side on the accuracy of linear system solution
  publication-title: SIAM J. Sci. Comput.
– reference: P. Hansen, Regularization Tools. A Matlab package for analysis and solution of discrete ill-posed problems, Manual and Tutorial, Technical Report, Department of Mathematical Modelling, Technical University of Denmark, 1998, Numer. Algorithms 6 (1994) 1–35.
– year: 1996
  ident: bib5
  article-title: Matrix Computations
– volume: 91
  start-page: 605
  year: 2002
  ident: 10.1016/j.cam.2006.10.077_bib2
  article-title: On the regularizing properties of the GMRES method
  publication-title: Numer. Math.
  doi: 10.1007/s002110100339
– ident: 10.1016/j.cam.2006.10.077_bib3
– year: 1996
  ident: 10.1016/j.cam.2006.10.077_bib5
– volume: 20
  start-page: 203
  issue: 1
  year: 1999
  ident: 10.1016/j.cam.2006.10.077_bib1
  article-title: The lack of influence of the right-hand side on the accuracy of linear system solution
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S106482759630526X
– volume: 18
  start-page: 1185
  year: 2002
  ident: 10.1016/j.cam.2006.10.077_bib4
  article-title: Regularization of a Fourier series method for the Laplace transform inversion with real data
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/18/4/315
– ident: 10.1016/j.cam.2006.10.077_bib6
  doi: 10.1007/BF02149761
– ident: 10.1016/j.cam.2006.10.077_bib7
  doi: 10.1016/S1570-579X(01)80025-2
SSID ssj0006914
Score 1.8981446
Snippet We address design of a numerical algorithm for solving the linear system arising in numerical inversion of Laplace transforms in real case [L. D’Amore, A....
We address design of a numerical algorithm for solving the linear system arising in numerical inversion of Laplace transforms in real case [L. D'Amore, A....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Algebra
Algebraic geometry
Automatic stopping rule
Combinatorics
Combinatorics. Ordered structures
Designs and configurations
Exact sciences and technology
Fourier analysis
GMRES
Ill posed problem
Laplace transform inversion
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Regularization
Sciences and techniques of general use
Title An efficient algorithm for regularization of Laplace transform inversion in real case
URI https://dx.doi.org/10.1016/j.cam.2006.10.077
https://www.proquest.com/docview/19543431
https://www.proquest.com/docview/30116338
Volume 210
WOSCitedRecordID wos000253510100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgG0Ax9DlI_hA1yYIrVxFifHaBQYoqWaVqm3yLVjyNSmVdpVu-4_5zn-SLKyIQ4cEkVWEkd-v_g9P7_3fgi992nUl5Jxz2ci9AI5yzzGfOoJyoJZn_ejsC8qsgk6GkXTaTzudG5sLsx2Tosiur6OV_9V1NAGwlaps_8gbvdSaIBrEDqcQexw3hX8H_VPw8jkFWmDdfhVhVmN2blw9VrXTdgkhQrxyKs0yWM2_7ks882vRRWMWFa09aVJ3NSbC1VIl-KZ0NbvcV5stQNO58mo4iON7Z_TZDhOvoySVqDipw8-TYY_zgd1DoQCwOT8-1nta7V-CWqrH1pnmdHsjfmMUOopao_m5OuboNa8lQqpJ1PNHWfUsuaq3pnwte_hEhbzC72zpEL1DDFMq7j2LaXnQhFhvQomURw_QPs-CSNYv-8nZ4PpN6fOw1gXiLdfb7fGqyDBW93eZdwcrNgafjmpuVJ21H5ly1w8QYd1liceO_w8RZ2seIYeD2tcPEeTpMAODtjBAYOscRsOeCmxgQN2cMAODnCFFRywgsMhmnweXJx-9QwRh8fBnt14LMz6PcI5n_kko1SAzSy5WinEjLD4hGaCibgnKAkDRkXMM9aTARUEViNUESGRF2ivWBbZS4RDHtATPxRBIOFgkgkpVQiOKjQnBeVd1LMjmHJTpV6RpcxTG454mcKgK_bUUDXBoHfRR_fISpdoue_mwIolNTamth1TQNR9jx21RFh3ZODTRe-sTFOYoNWuGyuy5dU6VSUVCZjpd9-hdGxISPTqb528Ro_qP-0N2tuUV9lb9JBvN_m6PDLA_Q0tir1F
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+computational+and+applied+mathematics&rft.atitle=An+efficient+algorithm+for+regularization+of+Laplace+transform+inversion+in+real+case&rft.au=CAMPAGNA%2C+R&rft.au=D%27AMORE%2C+L&rft.au=MURLI%2C+A&rft.date=2007-12-31&rft.pub=Elsevier&rft.issn=0377-0427&rft.volume=210&rft.issue=1-2&rft.spage=84&rft.epage=98&rft_id=info:doi/10.1016%2Fj.cam.2006.10.077&rft.externalDBID=n%2Fa&rft.externalDocID=19190199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon