Adaptive Morphological Reconstruction for Seeded Image Segmentation
Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 28; číslo 11; s. 5510 - 5523 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time. |
|---|---|
| AbstractList | Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time. Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time. Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed as it is able to filter seeds (regional minima) to reduce over-segmentation. However, MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. Firstly, AMR can adaptively filter useless seeds while preserving meaningful ones. Secondly, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that AMR is useful for improving algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time. |
| Author | Nandi, Asoke K. Tongliang Liu Shigang Liu Hongying Meng Xiaohong Jia Tao Lei |
| Author_xml | – sequence: 1 surname: Tao Lei fullname: Tao Lei email: leitao@sust.edu.cn organization: Sch. of Electron. Inf. & Artificial Intell., Shaanxi Univ. of Sci. & Technol., Xi'an, China – sequence: 2 surname: Xiaohong Jia fullname: Xiaohong Jia email: jiaxhsust@163.com organization: Sch. of Electr. & Control Eng., Shaanxi Univ. of Sci. & Technol., Xi'an, China – sequence: 3 surname: Tongliang Liu fullname: Tongliang Liu email: tongliang.liu@sydney.edu.au organization: Sch. of Comput. Sci., Univ. of Sydney, Sydney, NSW, Australia – sequence: 4 surname: Shigang Liu fullname: Shigang Liu email: shgliu@gmail.com organization: Sch. of Comput. Sci., Shaanxi Normal Univ., Xi'an, China – sequence: 5 surname: Hongying Meng fullname: Hongying Meng email: hongying.meng@brunel.ac.uk organization: Dept. of Electron. & Comput. Eng., Brunel Univ. London, Uxbridge, UK – sequence: 6 givenname: Asoke K. surname: Nandi fullname: Nandi, Asoke K. email: asoke.nandi@brunel.ac.uk organization: Dept. of Electron. & Comput. Eng., Brunel Univ. London, Uxbridge, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31180855$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1r3DAQhkVJaD7ae6FQDL3k4u3oy5KOYWmShZSUNj0LWRpvHWxrK9mF_vtq2U0POfQ0M8zzDjPzXpCTKU5IyDsKK0rBfHrcfF0xoGbFDANJxStyTo2gNYBgJyUHqWpFhTkjFzk_AVAhafOanHFKNWgpz8n6Orjd3P_G6ktMu59xiNveu6H6hj5OeU6Ln_s4VV1M1XfEgKHajG6LpdiOOM1u331DTjs3ZHx7jJfkx83nx_Vdff9wu1lf39eeazPXjrUstK7plOBacOAKmcTOUwe0Bc-CDh0w5gx474MQEKTpWpCyVSZQ2fFLcnWYu0vx14J5tmOfPQ6DmzAu2TKmqRYNVaqgH1-gT3FJU9muUEpzU561pz4cqaUdMdhd6keX_tjn9xSgOQA-xZwTdtb3h5vn5PrBUrB7H2zxwe59sEcfihBeCJ9n_0fy_iDpEfEfrhXnDBr-F6PqkU8 |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1007_s10044_024_01228_5 crossref_primary_10_3390_rs14153651 crossref_primary_10_1109_TFUZZ_2020_3029296 crossref_primary_10_1109_ACCESS_2020_3039742 crossref_primary_10_1016_j_engappai_2023_107212 crossref_primary_10_1016_j_engappai_2024_108104 crossref_primary_10_1109_ACCESS_2020_2980885 crossref_primary_10_3390_agriengineering5030088 crossref_primary_10_1016_j_dsp_2021_103036 crossref_primary_10_1109_TFUZZ_2019_2930030 crossref_primary_10_1109_TPAMI_2020_2974475 crossref_primary_10_1177_0954407020969502 crossref_primary_10_1007_s00530_024_01578_4 crossref_primary_10_1016_j_eswa_2024_125431 crossref_primary_10_1109_TAES_2022_3147435 crossref_primary_10_1038_s41598_024_73335_6 crossref_primary_10_3390_app14041649 crossref_primary_10_1016_j_measurement_2022_111665 crossref_primary_10_3390_s23020560 crossref_primary_10_1016_j_eswa_2022_118971 crossref_primary_10_1109_TFUZZ_2022_3220925 crossref_primary_10_1109_JAS_2020_1003420 crossref_primary_10_1007_s00034_024_02704_3 crossref_primary_10_1109_ACCESS_2022_3183901 crossref_primary_10_1080_10106049_2022_2038694 crossref_primary_10_1016_j_imavis_2021_104310 crossref_primary_10_1109_ACCESS_2024_3430973 crossref_primary_10_1007_s00500_023_08844_z crossref_primary_10_1109_JSTARS_2020_3046838 crossref_primary_10_1109_TGRS_2022_3168126 crossref_primary_10_1049_ipr2_12230 crossref_primary_10_1109_TFUZZ_2021_3099560 crossref_primary_10_3390_mi13040546 crossref_primary_10_1109_TIM_2025_3573369 crossref_primary_10_1002_jemt_24300 crossref_primary_10_1109_ACCESS_2020_3015270 crossref_primary_10_1016_j_future_2020_07_045 crossref_primary_10_1016_j_neucom_2022_12_003 crossref_primary_10_1109_TMM_2024_3360689 crossref_primary_10_3390_s23167309 crossref_primary_10_1016_j_jappgeo_2025_105690 crossref_primary_10_3390_electronics9030383 crossref_primary_10_1007_s11042_022_13259_3 crossref_primary_10_1109_LSP_2025_3559425 crossref_primary_10_1016_j_patcog_2023_110027 crossref_primary_10_1109_ACCESS_2020_3024718 crossref_primary_10_1109_TFUZZ_2020_3029285 crossref_primary_10_1016_j_neucom_2019_05_103 crossref_primary_10_1016_j_apacoust_2023_109341 crossref_primary_10_3389_fpls_2022_730190 crossref_primary_10_1007_s12145_025_01946_2 crossref_primary_10_1080_19392699_2022_2074409 crossref_primary_10_1007_s40815_025_02017_w crossref_primary_10_1016_j_eswa_2023_120419 crossref_primary_10_1007_s00500_023_09533_7 crossref_primary_10_1007_s00521_023_08279_5 crossref_primary_10_1109_TIM_2022_3192275 crossref_primary_10_1109_ACCESS_2020_3016895 crossref_primary_10_1109_TMM_2021_3053393 |
| Cites_doi | 10.1109/TIE.2017.2650873 10.1109/TGRS.2002.804618 10.1109/TIP.2015.2397313 10.1109/TIP.2011.2157512 10.1016/j.ins.2017.01.003 10.1109/TPAMI.2016.2544311 10.1109/TBME.2014.2325410 10.1109/CVPR.2016.46 10.1109/TBME.2010.2097599 10.1109/TPAMI.2016.2537320 10.1109/JSTARS.2015.2468593 10.1109/CVPR.2015.7298782 10.1007/s11263-006-7934-5 10.1109/TPAMI.2006.233 10.1109/JSTQE.2017.2649461 10.1109/JSTARS.2012.2190045 10.1109/TMI.2006.879955 10.1007/s11263-010-0400-4 10.1109/ICCV.2015.179 10.1109/34.1000236 10.1109/34.546254 10.1109/TIP.2016.2586658 10.1109/CVPR.2014.14 10.1109/TPAMI.2016.2554550 10.1109/TGRS.2018.2849443 10.1016/j.ymssp.2016.07.009 10.1109/TMI.2004.824224 10.1016/S0031-3203(97)00015-0 10.1109/CVPR.2005.332 10.1109/TPAMI.2012.120 10.1016/j.patcog.2016.12.027 10.1109/TFUZZ.2018.2796074 10.1109/TIP.2018.2836300 10.1109/TPAMI.2017.2699184 10.1109/TPAMI.2010.161 10.1109/TPAMI.2014.2377715 10.1007/978-3-319-46448-0_36 10.1016/j.patcog.2018.01.037 10.1109/TBME.2015.2403295 10.1109/TGRS.2015.2488280 10.1109/TPAMI.2010.200 10.1109/TIP.2011.2166558 10.1109/83.217222 10.1109/ICCV.2015.189 10.1109/TPAMI.2014.2303095 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00733 10.1109/CVPR.2014.56 10.1109/34.87344 10.1109/TITB.2010.2087030 10.1109/TBME.2008.2008635 10.1109/TIP.2017.2651389 10.1109/TPAMI.2012.237 10.1109/TIP.2017.2651395 10.1109/WACV.2018.00165 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2019.2920514 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1941-0042 |
| EndPage | 5523 |
| ExternalDocumentID | 31180855 10_1109_TIP_2019_2920514 8733206 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61461025; 61871259; 61811530325 funderid: 10.13039/501100001809 – fundername: Royal Society grantid: 61871260; 61672333; 61873155 funderid: 10.13039/501100000288 – fundername: National Key R&D Program of China grantid: 2017YFB1402102 – fundername: China Postdoctoral Science Foundation grantid: 2016M602856 funderid: 10.13039/501100002858 – fundername: Australian Research Council grantid: DP-180103424; DE-1901014738 funderid: 10.13039/501100000923 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c389t-a2b2dba6f743843037e25efc1a01b0c2d8df022a90cccd440d59fb055b79d15f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482600600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Mon Sep 29 05:42:41 EDT 2025 Mon Jun 30 10:13:30 EDT 2025 Thu Apr 03 07:02:52 EDT 2025 Sat Nov 29 03:21:10 EST 2025 Tue Nov 18 22:11:36 EST 2025 Wed Aug 27 08:34:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-a2b2dba6f743843037e25efc1a01b0c2d8df022a90cccd440d59fb055b79d15f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8836-1382 0000-0002-2104-9298 0000-0002-9640-6472 0000-0001-6248-2875 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8733206 |
| PMID | 31180855 |
| PQID | 2278395147 |
| PQPubID | 85429 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIP_2019_2920514 ieee_primary_8733206 pubmed_primary_31180855 crossref_primary_10_1109_TIP_2019_2920514 proquest_miscellaneous_2281846177 proquest_journals_2278395147 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 kim (ref39) 2013; 35 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref10 ref17 soille (ref25) 2013 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ng (ref20) 2002 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 ref24 ref23 ref26 ref22 ref28 ref27 serra (ref21) 1988; 2 ref29 bosch (ref14) 2018 |
| References_xml | – ident: ref28 doi: 10.1109/TIE.2017.2650873 – ident: ref23 doi: 10.1109/TGRS.2002.804618 – ident: ref55 doi: 10.1109/TIP.2015.2397313 – ident: ref13 doi: 10.1109/TIP.2011.2157512 – ident: ref11 doi: 10.1016/j.ins.2017.01.003 – ident: ref42 doi: 10.1109/TPAMI.2016.2544311 – ident: ref35 doi: 10.1109/TBME.2014.2325410 – ident: ref50 doi: 10.1109/CVPR.2016.46 – ident: ref27 doi: 10.1109/TBME.2010.2097599 – ident: ref49 doi: 10.1109/TPAMI.2016.2537320 – ident: ref32 doi: 10.1109/JSTARS.2015.2468593 – ident: ref17 doi: 10.1109/CVPR.2015.7298782 – ident: ref33 doi: 10.1007/s11263-006-7934-5 – ident: ref34 doi: 10.1109/TPAMI.2006.233 – volume: 2 year: 1988 ident: ref21 publication-title: Image Analysis and Mathematical Morphology Theoretical Advances – ident: ref2 doi: 10.1109/JSTQE.2017.2649461 – ident: ref4 doi: 10.1109/JSTARS.2012.2190045 – ident: ref38 doi: 10.1109/TMI.2006.879955 – ident: ref53 doi: 10.1007/s11263-010-0400-4 – ident: ref57 doi: 10.1109/ICCV.2015.179 – ident: ref19 doi: 10.1109/34.1000236 – ident: ref36 doi: 10.1109/34.546254 – ident: ref31 doi: 10.1109/TIP.2016.2586658 – year: 2013 ident: ref25 publication-title: Morphological Image Analysis Principles and Applications – ident: ref40 doi: 10.1109/CVPR.2014.14 – ident: ref47 doi: 10.1109/TPAMI.2016.2554550 – ident: ref41 doi: 10.1109/TGRS.2018.2849443 – ident: ref29 doi: 10.1016/j.ymssp.2016.07.009 – ident: ref37 doi: 10.1109/TMI.2004.824224 – ident: ref26 doi: 10.1016/S0031-3203(97)00015-0 – ident: ref52 doi: 10.1109/CVPR.2005.332 – ident: ref43 doi: 10.1109/TPAMI.2012.120 – ident: ref9 doi: 10.1016/j.patcog.2016.12.027 – year: 2018 ident: ref14 article-title: Improved image segmentation via cost minimization of multiple hypotheses publication-title: arXiv 1802 00088 – ident: ref10 doi: 10.1109/TFUZZ.2018.2796074 – ident: ref45 doi: 10.1109/TIP.2018.2836300 – ident: ref59 doi: 10.1109/TPAMI.2017.2699184 – ident: ref15 doi: 10.1109/TPAMI.2010.161 – ident: ref16 doi: 10.1109/TPAMI.2014.2377715 – ident: ref58 doi: 10.1007/978-3-319-46448-0_36 – ident: ref46 doi: 10.1016/j.patcog.2018.01.037 – ident: ref3 doi: 10.1109/TBME.2015.2403295 – ident: ref24 doi: 10.1109/TGRS.2015.2488280 – ident: ref8 doi: 10.1109/TPAMI.2010.200 – ident: ref30 doi: 10.1109/TIP.2011.2166558 – ident: ref1 doi: 10.1109/83.217222 – start-page: 849 year: 2002 ident: ref20 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref18 doi: 10.1109/ICCV.2015.189 – ident: ref54 doi: 10.1109/TPAMI.2014.2303095 – ident: ref56 doi: 10.1109/CVPR.2015.7298965 – ident: ref5 doi: 10.1109/CVPR.2018.00733 – ident: ref6 doi: 10.1109/CVPR.2014.56 – ident: ref7 doi: 10.1109/34.87344 – ident: ref22 doi: 10.1109/TITB.2010.2087030 – ident: ref12 doi: 10.1109/TBME.2008.2008635 – ident: ref44 doi: 10.1109/TIP.2017.2651389 – volume: 35 start-page: 1690 year: 2013 ident: ref39 article-title: Learning full pairwise affinities for spectral segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.237 – ident: ref48 doi: 10.1109/TIP.2017.2651395 – ident: ref51 doi: 10.1109/WACV.2018.00165 |
| SSID | ssj0014516 |
| Score | 2.575695 |
| Snippet | Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to... Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed as it is able to... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5510 |
| SubjectTerms | Algorithms Computer science Computing time Convergence Image edge detection Image reconstruction Image segmentation Mathematical morphology Morphology seeded segmentation Seeds spectral segmentation Transforms |
| Title | Adaptive Morphological Reconstruction for Seeded Image Segmentation |
| URI | https://ieeexplore.ieee.org/document/8733206 https://www.ncbi.nlm.nih.gov/pubmed/31180855 https://www.proquest.com/docview/2278395147 https://www.proquest.com/docview/2281846177 |
| Volume | 28 |
| WOSCitedRecordID | wos000482600600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RxAEOQHl1C0WpxAWJsI4fa-eIUFE5gJAK0t4ix4-qEmRRF_j9nUmcABIg9ZY4k8TxZ3s-ZzwzAAfI4usJMzEvHJO5jJbnNTLdvKiRHU-kDZzbNtmEvrw002l5tQBHgy9MCKHdfBaO6bC15fuZe6RfZWOjheAUX_uT1rrz1RosBpRwtrVsKp1rpP29SZKV4-vzK9rDVR5TZiZVyFcqqM2p8j69bNXM2dr_VXAdVhOdzE46_D_DQmg2YC1RyywN3DkW9dkb-rINWHkRinATTk-8vaepL7uYYdP3U2JGy9PnILMZUtzsFyo8fPj5HU5FePL7LrkvNVtwc_bj-vRnnhIs5A55ykNuec19bScRaYSRqMx04CpEV1hW1Mxxb3xEHW9L5pzzUjKvylgzpWpd-kJFsQ2LzawJXyCTRlFcqSiEFNLbaLEheCys8tEEJSYjGPdtXrkUfZySYNxW7SqElRWiVBFKVUJpBIfDHfdd5I0PZDcJjEEu4TCCvR7WKg3NeUW-vwJ5pdQj-D5cxkFFlhLbhNkjyeC3SCR3KLPTdYfh2YKC5hmlvr79zl1Yppp17op7sIgAhW-w5J4e_sz_7mPPnZr9tuf-Axgx6Aw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9EC9UHrd-nVlPwpdB4m_24JI8iFQ_1EHqCb2GzHyJoTrw7_35nkk200Bb6lmwmyWZnd-e3mZ35ARwjii8HLPNxYpiMpdc8LhHpxkmJ6HggteNc12QT6WiU3d3lNwvwo4uFcc7Vm8_cCR3Wvnw7MXP6VdbPUiE45ddeUlLypInW6nwGRDlb-zZVGqcI_FunJMv74-EN7eLKT4ibSSXyNyNUs6r8HWDWhuZ87f-q-AVWA6CMTpsesA4LrtqAtQAuozB0p1jU8je0ZRuw8iEZ4SacnVr9TJNfdD3Bxm8nxYgWqO9pZiMEudEvNHn48OETTkZ4cv8UApiqLbg9_zk-u4gDxUJsEKnMYs1Lbks98AgkMonmLHVcOW8SzZKSGW4z69HK65wZY6yUzKrcl0ypMs1torzYhsVqUrldiGSmKLOUF0IKabXX2BDcJ1pZnzklBj3ot21emJB_nGgwHot6HcLyArVUkJaKoKUefO_ueG5yb_xDdpOU0ckFPfTgoFVrEQbntKDoX4HIUqY9-NZdxmFFvhJducmcZPBbJMI7lNlpukP3bEFp8zKl9v78ziP4fDG-viquhqPLfVimWjbBiwewiMpyX-GTeZ09TF8O6_77BtZC6ms |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Morphological+Reconstruction+for+Seeded+Image+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Lei%2C+Tao&rft.au=Jia%2C+Xiaohong&rft.au=Liu%2C+Tongliang&rft.au=Liu%2C+Shigang&rft.date=2019-11-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=28&rft.issue=11&rft.spage=5510&rft.epage=5523&rft_id=info:doi/10.1109%2FTIP.2019.2920514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2019_2920514 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |