A Scalable Hybrid Autoencoder–Extreme Learning Machine Framework for Adaptive Intrusion Detection in High-Dimensional Networks

The rapid expansion of network environments has introduced significant cybersecurity challenges, particularly in handling high-dimensional traffic and detecting sophisticated threats. This study presents a novel, scalable Hybrid Autoencoder–Extreme Learning Machine (AE–ELM) framework for Intrusion D...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future internet Ročník 17; číslo 5; s. 221
Hlavní autoři: Kumar, Anubhav, Radhakrishnan, Rajamani, Sumithra, Mani, Kaliyaperumal, Prabu, Balusamy, Balamurugan, Benedetto, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2025
Témata:
ISSN:1999-5903, 1999-5903
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The rapid expansion of network environments has introduced significant cybersecurity challenges, particularly in handling high-dimensional traffic and detecting sophisticated threats. This study presents a novel, scalable Hybrid Autoencoder–Extreme Learning Machine (AE–ELM) framework for Intrusion Detection Systems (IDS), specifically designed to operate effectively in dynamic, cloud-supported IoT environments. The scientific novelty lies in the integration of an Autoencoder for deep feature compression with an Extreme Learning Machine for rapid and accurate classification, enhanced through adaptive thresholding techniques. Evaluated on the CSE-CIC-IDS2018 dataset, the proposed method demonstrates a high detection accuracy of 98.52%, outperforming conventional models in terms of precision, recall, and scalability. Additionally, the framework exhibits strong adaptability to emerging threats and reduced computational overhead, making it a practical solution for real-time, scalable IDS in next-generation network infrastructures.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-5903
1999-5903
DOI:10.3390/fi17050221