Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE o...
Uložené v:
| Vydané v: | Computers & operations research Ročník 67; s. 155 - 173 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.03.2016
Pergamon Press Inc |
| Predmet: | |
| ISSN: | 0305-0548, 1873-765X, 0305-0548 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally.
•Three novel mutation strategies are run in three sub-populations respectively.•A novel adaptive strategy is presented to tune the systemic parameters.•A simple replacement strategy is designed to remain good solutions. |
|---|---|
| AbstractList | Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally.
•Three novel mutation strategies are run in three sub-populations respectively.•A novel adaptive strategy is presented to tune the systemic parameters.•A simple replacement strategy is designed to remain good solutions. Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally. |
| Author | Cui, Laizhong Lu, Nan Li, Genghui Chen, Jianyong Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Laizhong orcidid: 0000-0003-1991-290X surname: Cui fullname: Cui, Laizhong – sequence: 2 givenname: Genghui surname: Li fullname: Li, Genghui – sequence: 3 givenname: Qiuzhen surname: Lin fullname: Lin, Qiuzhen email: qiuzhlin@szu.edu.cn – sequence: 4 givenname: Jianyong surname: Chen fullname: Chen, Jianyong – sequence: 5 givenname: Nan surname: Lu fullname: Lu, Nan |
| BookMark | eNp9kE1rHSEUhqUk0JuPH9DdQDfdzPSc-dAZugqhaQuBblrIThznmHrx6lSdW_rva3K7yiIuFPR5D6_PBTvzwRNj7xAaBOQf940OsWkBhwamBoC_YTscRVcLPjycsR10MNQw9ONbdpHSHsoSLe7YcrOoNdsjVYs1hiL5bJWr6Bjclm3wlXKPIdr861D9KXvlw5Fcddiyen5NOapMj5ZSZX25dtmujqq0zfUa1s09U-mKnRvlEl3_Py_Zz7vPP26_1vffv3y7vbmvdTdOuZ5Q9IbPwmA_tq3paRgmpH5BTWKeZw4a2gVL76UH1IrrcUYhlBKGmxmHrrtkH05z1xh-b5SyPNikyTnlKWxJ4oi8fBxhLOj7F-g-bNGXdrK0EF3H-QSFwhOlY0gpkpFrtAcV_0oE-eRd7mXxLp-8S5hk8V4y4kVG25Ot4sq6V5OfTkkqjo6Wokzakte02Eg6yyXYV9L_AMXIoRs |
| CODEN | CMORAP |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2024_101481 crossref_primary_10_1007_s13042_017_0669_5 crossref_primary_10_1016_j_engappai_2023_106008 crossref_primary_10_1063_5_0166967 crossref_primary_10_1016_j_eswa_2024_123214 crossref_primary_10_1109_ACCESS_2021_3077242 crossref_primary_10_1016_j_swevo_2023_101361 crossref_primary_10_1007_s00500_022_07727_z crossref_primary_10_1016_j_eswa_2019_112949 crossref_primary_10_1016_j_swevo_2018_08_015 crossref_primary_10_1109_JAS_2021_1004048 crossref_primary_10_1016_j_ins_2016_12_024 crossref_primary_10_1007_s00366_021_01347_1 crossref_primary_10_1002_2050_7038_12175 crossref_primary_10_1016_j_eswa_2023_121674 crossref_primary_10_1016_j_asoc_2022_108640 crossref_primary_10_1016_j_asoc_2017_05_005 crossref_primary_10_1007_s00500_018_3015_2 crossref_primary_10_1007_s13042_019_01002_8 crossref_primary_10_1016_j_ins_2022_11_131 crossref_primary_10_1088_1742_6596_2595_1_012010 crossref_primary_10_1016_j_future_2018_06_054 crossref_primary_10_1016_j_eswa_2020_113897 crossref_primary_10_1016_j_knosys_2022_108209 crossref_primary_10_1007_s00366_020_00962_8 crossref_primary_10_1007_s13042_018_00917_y crossref_primary_10_1016_j_asoc_2025_113440 crossref_primary_10_1016_j_jestch_2019_11_007 crossref_primary_10_1007_s11053_024_10443_0 crossref_primary_10_1016_j_ijepes_2021_107617 crossref_primary_10_1016_j_asoc_2017_06_039 crossref_primary_10_1016_j_ins_2017_07_011 crossref_primary_10_1016_j_ins_2017_09_002 crossref_primary_10_1186_s13638_019_1481_6 crossref_primary_10_1016_j_eswa_2023_122931 crossref_primary_10_1109_TMM_2016_2635589 crossref_primary_10_1007_s11047_018_9692_z crossref_primary_10_1016_j_asoc_2024_112605 crossref_primary_10_1109_ACCESS_2021_3132617 crossref_primary_10_1109_ACCESS_2021_3051264 crossref_primary_10_1109_ACCESS_2021_3112906 crossref_primary_10_1007_s12293_019_00279_0 crossref_primary_10_1016_j_swevo_2017_12_010 crossref_primary_10_33889_IJMEMS_2025_10_4_051 crossref_primary_10_1016_j_eswa_2024_123634 crossref_primary_10_1155_2021_6648650 crossref_primary_10_1016_j_ins_2019_11_046 crossref_primary_10_1016_j_eswa_2020_114353 crossref_primary_10_1016_j_asoc_2017_06_029 crossref_primary_10_1016_j_eswa_2025_126908 crossref_primary_10_1016_j_asoc_2025_113764 crossref_primary_10_1016_j_eswa_2023_122108 crossref_primary_10_1155_2020_3482463 crossref_primary_10_1007_s00500_020_05554_8 crossref_primary_10_1109_TSMC_2024_3447051 crossref_primary_10_1155_2019_4182148 crossref_primary_10_1016_j_asoc_2021_107494 crossref_primary_10_3390_a12040071 crossref_primary_10_1016_j_advengsoft_2021_102977 crossref_primary_10_1016_j_eswa_2023_121251 crossref_primary_10_1016_j_swevo_2023_101378 crossref_primary_10_1007_s12652_021_03269_8 crossref_primary_10_2166_hydro_2023_208 crossref_primary_10_1016_j_asoc_2018_08_020 crossref_primary_10_1016_j_eswa_2016_02_036 crossref_primary_10_1155_2017_8469103 crossref_primary_10_1007_s00521_021_06216_y crossref_primary_10_3390_electronics11244087 crossref_primary_10_1007_s00170_020_05020_7 crossref_primary_10_1007_s00521_018_3563_5 crossref_primary_10_1016_j_asoc_2017_11_043 crossref_primary_10_1016_j_eswa_2019_07_037 crossref_primary_10_1080_0305215X_2019_1595611 crossref_primary_10_1016_j_eswa_2022_117667 crossref_primary_10_1007_s11227_019_03044_9 crossref_primary_10_1016_j_compstruc_2019_06_004 crossref_primary_10_1016_j_asoc_2020_106393 crossref_primary_10_1007_s00500_017_2740_2 crossref_primary_10_1016_j_asoc_2021_107389 crossref_primary_10_1016_j_micpro_2022_104668 crossref_primary_10_1007_s00500_017_2685_5 crossref_primary_10_3390_math11163569 crossref_primary_10_1016_j_bspc_2023_104592 crossref_primary_10_1007_s11277_019_07001_w crossref_primary_10_1109_TCYB_2021_3061420 crossref_primary_10_1007_s00500_019_04621_z crossref_primary_10_1016_j_knosys_2019_105008 crossref_primary_10_1007_s00500_020_04750_w crossref_primary_10_1016_j_rcim_2021_102165 crossref_primary_10_3390_app10186146 crossref_primary_10_1177_0020294020964241 crossref_primary_10_1016_j_physrep_2016_07_002 crossref_primary_10_1016_j_ins_2025_122586 crossref_primary_10_1007_s00500_023_08509_x crossref_primary_10_1007_s00158_024_03780_4 crossref_primary_10_1109_ACCESS_2020_2981656 crossref_primary_10_1007_s10489_023_05179_y crossref_primary_10_1016_j_ins_2018_12_065 crossref_primary_10_1016_j_swevo_2018_05_002 crossref_primary_10_3390_e23070874 crossref_primary_10_1007_s00500_023_09025_8 crossref_primary_10_1007_s00521_025_11155_z crossref_primary_10_1007_s11771_018_3808_6 crossref_primary_10_1371_journal_pone_0222103 crossref_primary_10_1007_s40747_022_00734_5 crossref_primary_10_1016_j_asoc_2018_03_036 crossref_primary_10_1016_j_asoc_2017_08_021 crossref_primary_10_1109_ACCESS_2023_3247954 crossref_primary_10_1016_j_asoc_2016_06_011 crossref_primary_10_1109_ACCESS_2021_3119616 crossref_primary_10_1016_j_asoc_2020_106527 crossref_primary_10_1016_j_compbiomed_2025_110495 crossref_primary_10_1016_j_eswa_2022_118571 crossref_primary_10_1016_j_asoc_2019_04_004 crossref_primary_10_1016_j_swevo_2018_03_007 crossref_primary_10_1016_j_swevo_2020_100696 crossref_primary_10_1109_TEVC_2022_3141819 crossref_primary_10_1007_s00500_017_2833_y crossref_primary_10_1007_s13042_021_01285_w crossref_primary_10_1016_j_swevo_2024_101705 crossref_primary_10_1109_ACCESS_2020_2979738 crossref_primary_10_1016_j_swevo_2023_101322 crossref_primary_10_1016_j_asoc_2019_105726 crossref_primary_10_1016_j_eswa_2025_128158 crossref_primary_10_1177_1550147717739831 crossref_primary_10_1016_j_ins_2021_02_061 crossref_primary_10_3390_a9040078 crossref_primary_10_1016_j_asoc_2020_106531 crossref_primary_10_1016_j_asoc_2022_109762 crossref_primary_10_1016_j_eswa_2024_124245 crossref_primary_10_1080_0305215X_2021_1872558 crossref_primary_10_1109_TCYB_2017_2780274 crossref_primary_10_1016_j_eswa_2025_126425 crossref_primary_10_1016_j_ejco_2021_100012 crossref_primary_10_1109_ACCESS_2018_2864324 crossref_primary_10_1007_s00500_016_2453_y crossref_primary_10_1155_2022_7275088 crossref_primary_10_1016_j_asoc_2016_12_017 crossref_primary_10_1038_s41598_021_90847_7 crossref_primary_10_1016_j_asoc_2017_11_012 crossref_primary_10_1016_j_engappai_2020_103479 crossref_primary_10_1007_s00500_019_04245_3 crossref_primary_10_1109_ACCESS_2024_3506716 crossref_primary_10_1016_j_ins_2016_07_022 crossref_primary_10_1007_s10462_017_9562_6 crossref_primary_10_1177_0361198120983008 crossref_primary_10_1007_s00500_016_2062_9 crossref_primary_10_1007_s13042_020_01186_4 crossref_primary_10_1016_j_eswa_2019_01_035 crossref_primary_10_1016_j_asoc_2018_01_044 crossref_primary_10_1109_ACCESS_2020_3012885 crossref_primary_10_1109_ACCESS_2019_2945831 crossref_primary_10_1016_j_asoc_2022_108725 crossref_primary_10_1016_j_jksuci_2022_07_022 crossref_primary_10_1016_j_swevo_2025_102081 crossref_primary_10_1007_s13042_019_00979_6 crossref_primary_10_1155_2020_9767282 crossref_primary_10_3233_JIFS_211408 crossref_primary_10_1109_ACCESS_2019_2914963 crossref_primary_10_1016_j_ins_2017_05_044 crossref_primary_10_1080_00207543_2017_1338781 crossref_primary_10_1016_j_jpdc_2016_10_014 crossref_primary_10_3233_JIFS_202098 crossref_primary_10_1007_s13042_019_01030_4 crossref_primary_10_1016_j_ins_2016_01_046 crossref_primary_10_1016_j_eswa_2023_120530 crossref_primary_10_3390_s19194112 crossref_primary_10_1007_s10462_019_09786_5 crossref_primary_10_3390_biomimetics8060494 crossref_primary_10_1016_j_swevo_2024_101521 |
| Cites_doi | 10.1016/j.cor.2013.09.019 10.1109/CEC.2013.6557555 10.1016/j.ins.2013.01.005 10.1109/TCYB.2013.2239988 10.1007/978-3-642-17563-3_9 10.1109/TEVC.2010.2083670 10.1007/11596448_28 10.1109/CEC.2014.6900380 10.1109/TEVC.2010.2093582 10.1007/s10589-007-9014-3 10.1007/s00500-004-0363-x 10.1007/s00500-010-0645-4 10.1109/TMAG.2013.2285980 10.1109/CEC.2011.5949801 10.1016/j.cor.2007.02.019 10.1109/TCYB.2013.2245501 10.1109/TEVC.2010.2059031 10.1007/978-3-540-30549-1_74 10.1016/j.cor.2013.06.012 10.1109/TSMCB.2011.2167966 10.1016/j.camwa.2011.01.029 10.1016/j.cor.2013.12.009 10.1109/LGRS.2014.2306263 10.1145/1143997.1144086 10.1109/TCYB.2013.2279211 10.1109/TEVC.2013.2293776 10.1109/TSMCB.2012.2217491 10.1016/j.compchemeng.2006.09.015 10.1016/j.cor.2011.11.011 10.1109/TEVC.2008.2009457 10.1023/A:1008202821328 10.1109/TEVC.2006.872133 10.1109/TEVC.2009.2014613 10.1109/TEVC.2008.927706 10.1016/j.asoc.2010.04.024 10.1145/1276958.1277221 10.1109/ACC.2014.6858721 10.1109/TSMCB.2012.2213808 10.1109/TEVC.2010.2087271 10.1109/TCYB.2014.2339495 10.1023/A:1024653025686 10.1109/CEC.2011.5949732 10.1016/j.asoc.2014.11.003 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Copyright Pergamon Press Inc. Mar 2016 |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Mar 2016 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cor.2015.09.006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1873-765X 0305-0548 |
| EndPage | 173 |
| ExternalDocumentID | 3890472711 10_1016_j_cor_2015_09_006 S0305054815002166 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c389t-9174f6b7f14822f4e5591e4d1ce7bbb60c02d1072d401ca6c8b177aa7f6fb1533 |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367483900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Thu Oct 02 14:12:04 EDT 2025 Sun Nov 09 05:47:33 EST 2025 Tue Nov 18 22:33:27 EST 2025 Sat Nov 29 03:23:39 EST 2025 Fri Feb 23 02:33:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution Multiple sub-populations Global optimization Adaptive parameter control Replacement strategy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-9174f6b7f14822f4e5591e4d1ce7bbb60c02d1072d401ca6c8b177aa7f6fb1533 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1991-290X |
| PQID | 1747336690 |
| PQPubID | 45870 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1816000108 proquest_journals_1747336690 crossref_primary_10_1016_j_cor_2015_09_006 crossref_citationtrail_10_1016_j_cor_2015_09_006 elsevier_sciencedirect_doi_10_1016_j_cor_2015_09_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Sha, Hsu (bib9) 2008; 35 Mallipeddi, Suganthan, Pan, Tasgetiren (bib31) 2011; 11 Liu, Lampinen (bib36) 2005; 9 Sutton AM, Lunacek M, Whitley LD. Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of the 9th annual conference on genetic and evolutionary computation; 2007. p. 1428–35. Draa, Bouzoubia, Boukhalfa (bib42) 2015; 27 Wang, Rahnamayan, Sun, Omran (bib29) 2013; 43 Das, Suganthan (bib32) 2011; 15 R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC); 2013. p.71–8. Elsayed, Saber M., Sarker Ruhul A., and Essam Daryl L. Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64. Zhang, Sanderson (bib6) 2009; 13 Kovacevic, Mladenovic, Petrovic, Milosevic (bib11) 2014; 52 Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA. A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation; 2006. p. 485–92. Islam, Das, Ghosh, Roy, Suganthan (bib7) 2012; 42 Angira, Santosh (bib33) 2007; 31 R. Mallipeddi, P. N. Suganthan. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Swarm, evolutionary, and memetic computing; 2010. p. 71–8. Epitropakis, Tasoulis, Pavlidis, Plagianakos, Vrahatis (bib35) 2011; 15 M. G. Omran, A. Salman, A. P. Engelbrecht. Self-adaptive differential evolution. In: Proceedings of the computational intelligence and security; 2005. p. 192–9. Li, Zhang, Kwong, Li, Wang (bib14) 2014; 18 Gämperle, Müller, Koumoutsakos (bib20) 2002; 10 A. W. Iorio, X. Li. Solving rotated multi-objective optimization problems using differential evolution. In: Proceedings of the AI 2004 advances in artificial intelligence; 2005. p. 861–72. Das, Abraham, Chakraborty, Konar (bib34) 2009; 13 R. Mallipeddi, P. N. Suganthan, Ensemble Differential Evolution Algorithm for CEC2011 problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64. Wang, Cai, Zhang (bib8) 2011; 15 Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report. Singapore:Nanyang Technological University; China: Zhenzhou University; 2013. [Online].Available at Yu, Shen, Chen, Zhan, Gong, Lin (bib24) 2014; 44 Brest, Greiner, Boskovic, Mernik, Zumer (bib5) 2006; 10 Halder, Das, Maity (bib15) 2013; 43 Zou, Liu, Gao, Li. (bib38) 2011; 61 Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005005; 2005. Tenaglia, Lebensztajn (bib18) 2014; 50 Jin, Hao, Hamiez (bib2) 2014; 43 Wang, Cai (bib12) 2012; 16 Lin, Chen (bib10) 2013; 40 Q. Zheng, D. Simon, H. Richter, Z. Gao. Differential particle swarm evolution for robot control tuning. In: Proceedings of the American Control Conference (ACC); 2014. p. 5276–81. Abdul-Rahman, Munetomo, Akama (bib1) 2013; 233 Storn, Price (bib3) 1997; 11 Cai, Wang (bib26) 2013; 43 Gao, Pan, Gao (bib16) 2014; 11 Qin, Huang, Suganthan (bib4) 2009; 13 Fan, Lampinen. (bib25) 2003; 27 . R. Tanabe, A. Fukunaga, Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC); 2014. p. 1658–65. Das, Suganthan (bib40) 2010 Gong, Cai (bib27) 2013; 43 Tsai, Fang, Chou (bib19) 2013; 40 Kaelo, Ali (bib28) 2007; 37 Yang, Li, Cai, Guan (bib44) 2015; 45 Zhao, Suganthan, Das (bib13) 2011; 15 Zou (10.1016/j.cor.2015.09.006_bib38) 2011; 61 Storn (10.1016/j.cor.2015.09.006_bib3) 1997; 11 Kovacevic (10.1016/j.cor.2015.09.006_bib11) 2014; 52 Fan (10.1016/j.cor.2015.09.006_bib25) 2003; 27 10.1016/j.cor.2015.09.006_bib41 Das (10.1016/j.cor.2015.09.006_bib32) 2011; 15 Kaelo (10.1016/j.cor.2015.09.006_bib28) 2007; 37 10.1016/j.cor.2015.09.006_bib47 Tenaglia (10.1016/j.cor.2015.09.006_bib18) 2014; 50 10.1016/j.cor.2015.09.006_bib22 10.1016/j.cor.2015.09.006_bib21 10.1016/j.cor.2015.09.006_bib43 Angira (10.1016/j.cor.2015.09.006_bib33) 2007; 31 10.1016/j.cor.2015.09.006_bib46 Qin (10.1016/j.cor.2015.09.006_bib4) 2009; 13 10.1016/j.cor.2015.09.006_bib23 10.1016/j.cor.2015.09.006_bib45 Das (10.1016/j.cor.2015.09.006_bib34) 2009; 13 Cai (10.1016/j.cor.2015.09.006_bib26) 2013; 43 Epitropakis (10.1016/j.cor.2015.09.006_bib35) 2011; 15 Sha (10.1016/j.cor.2015.09.006_bib9) 2008; 35 Gao (10.1016/j.cor.2015.09.006_bib16) 2014; 11 Zhang (10.1016/j.cor.2015.09.006_bib6) 2009; 13 Zhao (10.1016/j.cor.2015.09.006_bib13) 2011; 15 Gong (10.1016/j.cor.2015.09.006_bib27) 2013; 43 Yang (10.1016/j.cor.2015.09.006_bib44) 2015; 45 Abdul-Rahman (10.1016/j.cor.2015.09.006_bib1) 2013; 233 Wang (10.1016/j.cor.2015.09.006_bib29) 2013; 43 Tsai (10.1016/j.cor.2015.09.006_bib19) 2013; 40 Yu (10.1016/j.cor.2015.09.006_bib24) 2014; 44 Halder (10.1016/j.cor.2015.09.006_bib15) 2013; 43 Jin (10.1016/j.cor.2015.09.006_bib2) 2014; 43 Draa (10.1016/j.cor.2015.09.006_bib42) 2015; 27 10.1016/j.cor.2015.09.006_bib30 Li (10.1016/j.cor.2015.09.006_bib14) 2014; 18 Wang (10.1016/j.cor.2015.09.006_bib12) 2012; 16 Liu (10.1016/j.cor.2015.09.006_bib36) 2005; 9 Gämperle (10.1016/j.cor.2015.09.006_bib20) 2002; 10 10.1016/j.cor.2015.09.006_bib37 10.1016/j.cor.2015.09.006_bib17 10.1016/j.cor.2015.09.006_bib39 Mallipeddi (10.1016/j.cor.2015.09.006_bib31) 2011; 11 Wang (10.1016/j.cor.2015.09.006_bib8) 2011; 15 Das (10.1016/j.cor.2015.09.006_bib40) 2010 Brest (10.1016/j.cor.2015.09.006_bib5) 2006; 10 Islam (10.1016/j.cor.2015.09.006_bib7) 2012; 42 Lin (10.1016/j.cor.2015.09.006_bib10) 2013; 40 |
| References_xml | – volume: 9 start-page: 448 year: 2005 end-page: 462 ident: bib36 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput – volume: 15 start-page: 99 year: 2011 end-page: 119 ident: bib35 article-title: Enhancing differential evolution utilizing proximity based mutation operators publication-title: IEEE Trans Evolut Comput – volume: 18 start-page: 909 year: 2014 end-page: 923 ident: bib14 article-title: Stable matching based selection in evolutionary multiobjective optimization publication-title: IEEE Trans Evolut Comput – volume: 31 start-page: 1055 year: 2007 end-page: 1063 ident: bib33 article-title: Optimization of dynamic systems: a trigonometric differential evolution approach publication-title: Comput Chem Eng – volume: 43 start-page: 2202 year: 2013 end-page: 2215 ident: bib26 article-title: Differential evolution with neighborhood and direction information for numerical optimization publication-title: IEEE Trans Cybern – reference: M. G. Omran, A. Salman, A. P. Engelbrecht. Self-adaptive differential evolution. In: Proceedings of the computational intelligence and security; 2005. p. 192–9. – reference: R. Tanabe, A. Fukunaga, Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC); 2014. p. 1658–65. – volume: 11 start-page: 1702 year: 2014 end-page: 1706 ident: bib16 article-title: A new highly efficient differential evolution scheme and its application to waveform inversion publication-title: IEEE Geosci Remote Sens Lett – volume: 37 start-page: 231 year: 2007 end-page: 246 ident: bib28 article-title: Differential evolution algorithms using hybrid mutation publication-title: Comput Optim Appl – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib4 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans Evolut Comput – volume: 15 start-page: 2175 year: 2011 end-page: 2185 ident: bib13 article-title: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization publication-title: Soft Comput – volume: 10 start-page: 293 year: 2002 end-page: 298 ident: bib20 article-title: A parameter study for differential evolution. Advances in intelligent systems, fuzzy systems publication-title: Evolut Comput – volume: 43 start-page: 2066 year: 2013 end-page: 2081 ident: bib27 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Trans Cybern – reference: Elsayed, Saber M., Sarker Ruhul A., and Essam Daryl L. Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64. – reference: Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005005; 2005. – reference: Sutton AM, Lunacek M, Whitley LD. Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of the 9th annual conference on genetic and evolutionary computation; 2007. p. 1428–35. – volume: 16 start-page: 117 year: 2012 end-page: 134 ident: bib12 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Trans Evolut Comput – reference: Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA. A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation; 2006. p. 485–92. – year: 2010 ident: bib40 article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems – volume: 27 start-page: 99 year: 2015 end-page: 126 ident: bib42 article-title: A sinusoidal differential evolution algorithm for numerical optimisation publication-title: Appl Soft Comput – volume: 11 start-page: 1679 year: 2011 end-page: 1696 ident: bib31 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl Soft Comput – volume: 13 start-page: 526 year: 2009 end-page: 553 ident: bib34 article-title: Differential evolution using a neighborhood-based mutation operator publication-title: IEEE Trans Evolut Comput – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: bib6 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans Evolut Comput – volume: 40 start-page: 3045 year: 2013 end-page: 3055 ident: bib19 article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm publication-title: Comput Oper Res – volume: 15 start-page: 55 year: 2011 end-page: 66 ident: bib8 article-title: Differential evolution with composite trial vector generation strategies and control parameters publication-title: IEEE Trans Evolut Comput – volume: 35 start-page: 3243 year: 2008 end-page: 3261 ident: bib9 article-title: A new particle swarm optimization for the open shop scheduling problem publication-title: Comput Oper Res – reference: Q. Zheng, D. Simon, H. Richter, Z. Gao. Differential particle swarm evolution for robot control tuning. In: Proceedings of the American Control Conference (ACC); 2014. p. 5276–81. – reference: A. W. Iorio, X. Li. Solving rotated multi-objective optimization problems using differential evolution. In: Proceedings of the AI 2004 advances in artificial intelligence; 2005. p. 861–72. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib3 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim – reference: R. Mallipeddi, P. N. Suganthan, Ensemble Differential Evolution Algorithm for CEC2011 problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64. – volume: 61 start-page: 1608 year: 2011 end-page: 1623 ident: bib38 article-title: A novel modified differential evolution algorithm for constrained optimization problems publication-title: Comput Math Appl – reference: R. Mallipeddi, P. N. Suganthan. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Swarm, evolutionary, and memetic computing; 2010. p. 71–8. – volume: 43 start-page: 318 year: 2014 end-page: 327 ident: bib2 article-title: A memetic algorithm for the minimum sum coloring problem publication-title: Comput Oper Res – reference: . – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: bib5 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans Evolut Comput – volume: 27 start-page: 105 year: 2003 end-page: 129 ident: bib25 article-title: A trigonometric mutation operation to differential evolution publication-title: J Glob Optim – reference: Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report. Singapore:Nanyang Technological University; China: Zhenzhou University; 2013. [Online].Available at: – reference: R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC); 2013. p.71–8. – volume: 50 start-page: 625 year: 2014 end-page: 628 ident: bib18 article-title: A multiobjective approach of differential evolution optimization applied to electromagnetic problems publication-title: IEEE Trans Magn – volume: 233 start-page: 54 year: 2013 end-page: 86 ident: bib1 article-title: An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: performance analysis and estimation of optimal control parameters publication-title: Inf Sci – volume: 40 start-page: 1590 year: 2013 end-page: 1601 ident: bib10 article-title: A novel micro-population immune multiobjective optimization algorithm publication-title: Comput Oper Res – volume: 52 start-page: 157 year: 2014 end-page: 169 ident: bib11 article-title: DE-VNS: Self-adaptive Differential Evolution with crossover neighborhood search for continuous global optimization publication-title: Comput Oper Res – volume: 43 start-page: 881 year: 2013 end-page: 897 ident: bib15 article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments publication-title: IEEE Trans Cybern – volume: 43 start-page: 634 year: 2013 end-page: 647 ident: bib29 article-title: Gaussian bare-bones differential evolution publication-title: IEEE Trans Cybern – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: bib32 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans Evolut Comput – volume: 42 start-page: 482 year: 2012 end-page: 500 ident: bib7 article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization publication-title: IEEE Trans Syst Man Cybern Part B: Cybern – volume: 45 start-page: 302 year: 2015 end-page: 315 ident: bib44 article-title: Differential evolution with auto-enhanced population diversity publication-title: IEEE Trans Cybern – volume: 44 start-page: 1080 year: 2014 end-page: 1099 ident: bib24 article-title: Differential evolution with two-level parameter adaptation publication-title: IEEE Trans Cybern – volume: 43 start-page: 318 year: 2014 ident: 10.1016/j.cor.2015.09.006_bib2 article-title: A memetic algorithm for the minimum sum coloring problem publication-title: Comput Oper Res doi: 10.1016/j.cor.2013.09.019 – ident: 10.1016/j.cor.2015.09.006_bib45 doi: 10.1109/CEC.2013.6557555 – volume: 233 start-page: 54 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib1 article-title: An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: performance analysis and estimation of optimal control parameters publication-title: Inf Sci doi: 10.1016/j.ins.2013.01.005 – volume: 43 start-page: 2066 issue: 6 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib27 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2239988 – ident: 10.1016/j.cor.2015.09.006_bib30 doi: 10.1007/978-3-642-17563-3_9 – volume: 15 start-page: 99 issue: 1 year: 2011 ident: 10.1016/j.cor.2015.09.006_bib35 article-title: Enhancing differential evolution utilizing proximity based mutation operators publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2010.2083670 – ident: 10.1016/j.cor.2015.09.006_bib37 doi: 10.1007/11596448_28 – ident: 10.1016/j.cor.2015.09.006_bib43 – ident: 10.1016/j.cor.2015.09.006_bib46 doi: 10.1109/CEC.2014.6900380 – volume: 16 start-page: 117 issue: 1 year: 2012 ident: 10.1016/j.cor.2015.09.006_bib12 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2010.2093582 – ident: 10.1016/j.cor.2015.09.006_bib39 – volume: 37 start-page: 231 issue: 2 year: 2007 ident: 10.1016/j.cor.2015.09.006_bib28 article-title: Differential evolution algorithms using hybrid mutation publication-title: Comput Optim Appl doi: 10.1007/s10589-007-9014-3 – volume: 9 start-page: 448 issue: 6 year: 2005 ident: 10.1016/j.cor.2015.09.006_bib36 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput doi: 10.1007/s00500-004-0363-x – volume: 15 start-page: 2175 issue: 11 year: 2011 ident: 10.1016/j.cor.2015.09.006_bib13 article-title: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization publication-title: Soft Comput doi: 10.1007/s00500-010-0645-4 – volume: 50 start-page: 625 issue: 2 year: 2014 ident: 10.1016/j.cor.2015.09.006_bib18 article-title: A multiobjective approach of differential evolution optimization applied to electromagnetic problems publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2013.2285980 – ident: 10.1016/j.cor.2015.09.006_bib47 doi: 10.1109/CEC.2011.5949801 – volume: 35 start-page: 3243 issue: 10 year: 2008 ident: 10.1016/j.cor.2015.09.006_bib9 article-title: A new particle swarm optimization for the open shop scheduling problem publication-title: Comput Oper Res doi: 10.1016/j.cor.2007.02.019 – volume: 43 start-page: 2202 issue: 6 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib26 article-title: Differential evolution with neighborhood and direction information for numerical optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245501 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.cor.2015.09.006_bib32 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2010.2059031 – ident: 10.1016/j.cor.2015.09.006_bib21 doi: 10.1007/978-3-540-30549-1_74 – year: 2010 ident: 10.1016/j.cor.2015.09.006_bib40 – volume: 40 start-page: 3045 issue: 12 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib19 article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm publication-title: Comput Oper Res doi: 10.1016/j.cor.2013.06.012 – volume: 42 start-page: 482 issue: 2 year: 2012 ident: 10.1016/j.cor.2015.09.006_bib7 article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization publication-title: IEEE Trans Syst Man Cybern Part B: Cybern doi: 10.1109/TSMCB.2011.2167966 – volume: 61 start-page: 1608 issue: 6 year: 2011 ident: 10.1016/j.cor.2015.09.006_bib38 article-title: A novel modified differential evolution algorithm for constrained optimization problems publication-title: Comput Math Appl doi: 10.1016/j.camwa.2011.01.029 – volume: 52 start-page: 157 year: 2014 ident: 10.1016/j.cor.2015.09.006_bib11 article-title: DE-VNS: Self-adaptive Differential Evolution with crossover neighborhood search for continuous global optimization publication-title: Comput Oper Res doi: 10.1016/j.cor.2013.12.009 – volume: 11 start-page: 1702 issue: 10 year: 2014 ident: 10.1016/j.cor.2015.09.006_bib16 article-title: A new highly efficient differential evolution scheme and its application to waveform inversion publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2306263 – ident: 10.1016/j.cor.2015.09.006_bib22 doi: 10.1145/1143997.1144086 – volume: 44 start-page: 1080 issue: 7 year: 2014 ident: 10.1016/j.cor.2015.09.006_bib24 article-title: Differential evolution with two-level parameter adaptation publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2279211 – volume: 18 start-page: 909 issue: 6 year: 2014 ident: 10.1016/j.cor.2015.09.006_bib14 article-title: Stable matching based selection in evolutionary multiobjective optimization publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2013.2293776 – volume: 43 start-page: 881 issue: 3 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib15 article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2217491 – volume: 31 start-page: 1055 issue: 9 year: 2007 ident: 10.1016/j.cor.2015.09.006_bib33 article-title: Optimization of dynamic systems: a trigonometric differential evolution approach publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2006.09.015 – volume: 40 start-page: 1590 issue: 6 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib10 article-title: A novel micro-population immune multiobjective optimization algorithm publication-title: Comput Oper Res doi: 10.1016/j.cor.2011.11.011 – volume: 13 start-page: 526 issue: 3 year: 2009 ident: 10.1016/j.cor.2015.09.006_bib34 article-title: Differential evolution using a neighborhood-based mutation operator publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2008.2009457 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.cor.2015.09.006_bib3 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.cor.2015.09.006_bib5 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2006.872133 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.cor.2015.09.006_bib6 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2009.2014613 – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.cor.2015.09.006_bib4 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2008.927706 – volume: 11 start-page: 1679 issue: 2 year: 2011 ident: 10.1016/j.cor.2015.09.006_bib31 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.04.024 – volume: 10 start-page: 293 year: 2002 ident: 10.1016/j.cor.2015.09.006_bib20 article-title: A parameter study for differential evolution. Advances in intelligent systems, fuzzy systems publication-title: Evolut Comput – ident: 10.1016/j.cor.2015.09.006_bib23 doi: 10.1145/1276958.1277221 – ident: 10.1016/j.cor.2015.09.006_bib17 doi: 10.1109/ACC.2014.6858721 – volume: 43 start-page: 634 issue: 2 year: 2013 ident: 10.1016/j.cor.2015.09.006_bib29 article-title: Gaussian bare-bones differential evolution publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2213808 – volume: 15 start-page: 55 issue: 1 year: 2011 ident: 10.1016/j.cor.2015.09.006_bib8 article-title: Differential evolution with composite trial vector generation strategies and control parameters publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2010.2087271 – volume: 45 start-page: 302 issue: 2 year: 2015 ident: 10.1016/j.cor.2015.09.006_bib44 article-title: Differential evolution with auto-enhanced population diversity publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2339495 – volume: 27 start-page: 105 issue: 1 year: 2003 ident: 10.1016/j.cor.2015.09.006_bib25 article-title: A trigonometric mutation operation to differential evolution publication-title: J Glob Optim doi: 10.1023/A:1024653025686 – ident: 10.1016/j.cor.2015.09.006_bib41 doi: 10.1109/CEC.2011.5949732 – volume: 27 start-page: 99 year: 2015 ident: 10.1016/j.cor.2015.09.006_bib42 article-title: A sinusoidal differential evolution algorithm for numerical optimisation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.11.003 |
| SSID | ssj0000721 |
| Score | 2.5571005 |
| Snippet | Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 155 |
| SubjectTerms | Adaptive algorithms Adaptive parameter control Algorithms Benchmarks Differential evolution Evolutionary algorithms Genetic algorithms Global optimization Mathematical analysis Mathematical models Mathematical problems Multiple sub-populations Optimization Optimization techniques Replacement strategy Strategy Studies Vector space Vectors (mathematics) |
| Title | Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations |
| URI | https://dx.doi.org/10.1016/j.cor.2015.09.006 https://www.proquest.com/docview/1747336690 https://www.proquest.com/docview/1816000108 |
| Volume | 67 |
| WOSCitedRecordID | wos000367483900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-765X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5qV0QfvNQVq6uM4JNLJEmbmeSxlBUVWRRX6Nswk0y2WbpJaZKy7j_x33rmlpSKiwq-hJImmWHOlzmXnPMdhF4LAu8MWA5eJHLfUyrA4yQUnp8p9nQRJaHQhcKf6OlpvFgknweDH64WZruiZRlfXSXr_ypqOAfCVqWzfyHu7qFwAn6D0OEIYofjHwl-lvG1zgdyvU8aFRSXWzvoMV-dV5uiWV6aGGxZbeXq-LK1WYd147gjVCSkSzesW-Gtu15f9a5J6_pC1BpF1VpubHad5RHq4s3z1lZiF9fLyipMlQpUmNh8eb5si_6k3g2_FO31si9Wm7tSEsD0d_cIG7IISJ-zZeJorpamT1zS9VsqjTAyvJtvpdmOYzrxKIkWu_u1ad9hN9zAkPxa3R2Ytii_qAUTobgAqSoK2CDS1Lb-HgW3Vupf1TTULMBQBvOHkFvoIKRREg_RwezDyeJjr-apLurrpu0-mevkwb2Bfmf07Kl_bdOcPUT3rTOCZwZEj9BAliN0x9VCjNADJ1tsVcAI3dshsHyMMgc2vAs23IENd2DDCmxYgw07sOEebLgosQMb3gPbIfr27uRs_t6zfTu8FMzfBvQnneZE0FxxzIb5VILXGshpFqSSCiGIn_phFsD6ZeDcp5ykseJA45zmJBfK_3iChmVVyqcIg3rJ0iAHN4ZPlOcvMp5HIQUjPuGxIJMx8t3CstSS2qveKivmshcvGMiCKVkwP2EgizF6092yNowuN108ddJi1iQ1piYDaN1025GTLLNbQ81gVRT3KEn8MXrV_Q27ufpEx0tZtXBNHBDldvnxs38b-Tm6279xR2jYbFr5At1Ot01Rb15aDP8E0qrKUw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+differential+evolution+algorithm+with+novel+mutation+strategies+in+multiple+sub-populations&rft.jtitle=Computers+%26+operations+research&rft.au=Cui%2C+Laizhong&rft.au=Li%2C+Genghui&rft.au=Lin%2C+Qiuzhen&rft.au=Chen%2C+Jianyong&rft.date=2016-03-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=67&rft.spage=155&rft.epage=173&rft_id=info:doi/10.1016%2Fj.cor.2015.09.006&rft.externalDocID=S0305054815002166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |