Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations

Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & operations research Ročník 67; s. 155 - 173
Hlavní autori: Cui, Laizhong, Li, Genghui, Lin, Qiuzhen, Chen, Jianyong, Lu, Nan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.03.2016
Pergamon Press Inc
Predmet:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally. •Three novel mutation strategies are run in three sub-populations respectively.•A novel adaptive strategy is presented to tune the systemic parameters.•A simple replacement strategy is designed to remain good solutions.
AbstractList Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally. •Three novel mutation strategies are run in three sub-populations respectively.•A novel adaptive strategy is presented to tune the systemic parameters.•A simple replacement strategy is designed to remain good solutions.
Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which attracts a great attention of scientific researchers. Generally, most of DE algorithms only evolve one population by using certain kind of DE operators. However, as observed in nature, the working efficiency can be improved by using the concept of work specialization, in which the entire group should be divided into several sub-groups that are responsible for different tasks according to their capabilities. Inspired by this phenomenon, a novel adaptive multiple sub-populations based DE algorithm is designed in this paper, named MPADE, in which the parent population is split into three sub-populations based on the fitness values and then three novel DE strategies are respectively performed to take on the responsibility for either exploitation or exploration. Furthermore, a simple yet effective adaptive approach is designed for parameter adjustment in the three DE strategies and a replacement strategy is put forward to fully exploit the useful information from the trial vectors and target vectors, which enhance the optimization performance. In order to validate the effectiveness of MPADE, it is tested on 55 benchmark functions and 15 real world problems. When compared with other DE variants, MPADE performs better in most of benchmark problems and real-world problems. Moreover, the impacts of the MPADE components and their parameter sensitivity are also analyzed experimentally.
Author Cui, Laizhong
Lu, Nan
Li, Genghui
Chen, Jianyong
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Laizhong
  orcidid: 0000-0003-1991-290X
  surname: Cui
  fullname: Cui, Laizhong
– sequence: 2
  givenname: Genghui
  surname: Li
  fullname: Li, Genghui
– sequence: 3
  givenname: Qiuzhen
  surname: Lin
  fullname: Lin, Qiuzhen
  email: qiuzhlin@szu.edu.cn
– sequence: 4
  givenname: Jianyong
  surname: Chen
  fullname: Chen, Jianyong
– sequence: 5
  givenname: Nan
  surname: Lu
  fullname: Lu, Nan
BookMark eNp9kE1rHSEUhqUk0JuPH9DdQDfdzPSc-dAZugqhaQuBblrIThznmHrx6lSdW_rva3K7yiIuFPR5D6_PBTvzwRNj7xAaBOQf940OsWkBhwamBoC_YTscRVcLPjycsR10MNQw9ONbdpHSHsoSLe7YcrOoNdsjVYs1hiL5bJWr6Bjclm3wlXKPIdr861D9KXvlw5Fcddiyen5NOapMj5ZSZX25dtmujqq0zfUa1s09U-mKnRvlEl3_Py_Zz7vPP26_1vffv3y7vbmvdTdOuZ5Q9IbPwmA_tq3paRgmpH5BTWKeZw4a2gVL76UH1IrrcUYhlBKGmxmHrrtkH05z1xh-b5SyPNikyTnlKWxJ4oi8fBxhLOj7F-g-bNGXdrK0EF3H-QSFwhOlY0gpkpFrtAcV_0oE-eRd7mXxLp-8S5hk8V4y4kVG25Ot4sq6V5OfTkkqjo6Wokzakte02Eg6yyXYV9L_AMXIoRs
CODEN CMORAP
CitedBy_id crossref_primary_10_1016_j_swevo_2024_101481
crossref_primary_10_1007_s13042_017_0669_5
crossref_primary_10_1016_j_engappai_2023_106008
crossref_primary_10_1063_5_0166967
crossref_primary_10_1016_j_eswa_2024_123214
crossref_primary_10_1109_ACCESS_2021_3077242
crossref_primary_10_1016_j_swevo_2023_101361
crossref_primary_10_1007_s00500_022_07727_z
crossref_primary_10_1016_j_eswa_2019_112949
crossref_primary_10_1016_j_swevo_2018_08_015
crossref_primary_10_1109_JAS_2021_1004048
crossref_primary_10_1016_j_ins_2016_12_024
crossref_primary_10_1007_s00366_021_01347_1
crossref_primary_10_1002_2050_7038_12175
crossref_primary_10_1016_j_eswa_2023_121674
crossref_primary_10_1016_j_asoc_2022_108640
crossref_primary_10_1016_j_asoc_2017_05_005
crossref_primary_10_1007_s00500_018_3015_2
crossref_primary_10_1007_s13042_019_01002_8
crossref_primary_10_1016_j_ins_2022_11_131
crossref_primary_10_1088_1742_6596_2595_1_012010
crossref_primary_10_1016_j_future_2018_06_054
crossref_primary_10_1016_j_eswa_2020_113897
crossref_primary_10_1016_j_knosys_2022_108209
crossref_primary_10_1007_s00366_020_00962_8
crossref_primary_10_1007_s13042_018_00917_y
crossref_primary_10_1016_j_asoc_2025_113440
crossref_primary_10_1016_j_jestch_2019_11_007
crossref_primary_10_1007_s11053_024_10443_0
crossref_primary_10_1016_j_ijepes_2021_107617
crossref_primary_10_1016_j_asoc_2017_06_039
crossref_primary_10_1016_j_ins_2017_07_011
crossref_primary_10_1016_j_ins_2017_09_002
crossref_primary_10_1186_s13638_019_1481_6
crossref_primary_10_1016_j_eswa_2023_122931
crossref_primary_10_1109_TMM_2016_2635589
crossref_primary_10_1007_s11047_018_9692_z
crossref_primary_10_1016_j_asoc_2024_112605
crossref_primary_10_1109_ACCESS_2021_3132617
crossref_primary_10_1109_ACCESS_2021_3051264
crossref_primary_10_1109_ACCESS_2021_3112906
crossref_primary_10_1007_s12293_019_00279_0
crossref_primary_10_1016_j_swevo_2017_12_010
crossref_primary_10_33889_IJMEMS_2025_10_4_051
crossref_primary_10_1016_j_eswa_2024_123634
crossref_primary_10_1155_2021_6648650
crossref_primary_10_1016_j_ins_2019_11_046
crossref_primary_10_1016_j_eswa_2020_114353
crossref_primary_10_1016_j_asoc_2017_06_029
crossref_primary_10_1016_j_eswa_2025_126908
crossref_primary_10_1016_j_asoc_2025_113764
crossref_primary_10_1016_j_eswa_2023_122108
crossref_primary_10_1155_2020_3482463
crossref_primary_10_1007_s00500_020_05554_8
crossref_primary_10_1109_TSMC_2024_3447051
crossref_primary_10_1155_2019_4182148
crossref_primary_10_1016_j_asoc_2021_107494
crossref_primary_10_3390_a12040071
crossref_primary_10_1016_j_advengsoft_2021_102977
crossref_primary_10_1016_j_eswa_2023_121251
crossref_primary_10_1016_j_swevo_2023_101378
crossref_primary_10_1007_s12652_021_03269_8
crossref_primary_10_2166_hydro_2023_208
crossref_primary_10_1016_j_asoc_2018_08_020
crossref_primary_10_1016_j_eswa_2016_02_036
crossref_primary_10_1155_2017_8469103
crossref_primary_10_1007_s00521_021_06216_y
crossref_primary_10_3390_electronics11244087
crossref_primary_10_1007_s00170_020_05020_7
crossref_primary_10_1007_s00521_018_3563_5
crossref_primary_10_1016_j_asoc_2017_11_043
crossref_primary_10_1016_j_eswa_2019_07_037
crossref_primary_10_1080_0305215X_2019_1595611
crossref_primary_10_1016_j_eswa_2022_117667
crossref_primary_10_1007_s11227_019_03044_9
crossref_primary_10_1016_j_compstruc_2019_06_004
crossref_primary_10_1016_j_asoc_2020_106393
crossref_primary_10_1007_s00500_017_2740_2
crossref_primary_10_1016_j_asoc_2021_107389
crossref_primary_10_1016_j_micpro_2022_104668
crossref_primary_10_1007_s00500_017_2685_5
crossref_primary_10_3390_math11163569
crossref_primary_10_1016_j_bspc_2023_104592
crossref_primary_10_1007_s11277_019_07001_w
crossref_primary_10_1109_TCYB_2021_3061420
crossref_primary_10_1007_s00500_019_04621_z
crossref_primary_10_1016_j_knosys_2019_105008
crossref_primary_10_1007_s00500_020_04750_w
crossref_primary_10_1016_j_rcim_2021_102165
crossref_primary_10_3390_app10186146
crossref_primary_10_1177_0020294020964241
crossref_primary_10_1016_j_physrep_2016_07_002
crossref_primary_10_1016_j_ins_2025_122586
crossref_primary_10_1007_s00500_023_08509_x
crossref_primary_10_1007_s00158_024_03780_4
crossref_primary_10_1109_ACCESS_2020_2981656
crossref_primary_10_1007_s10489_023_05179_y
crossref_primary_10_1016_j_ins_2018_12_065
crossref_primary_10_1016_j_swevo_2018_05_002
crossref_primary_10_3390_e23070874
crossref_primary_10_1007_s00500_023_09025_8
crossref_primary_10_1007_s00521_025_11155_z
crossref_primary_10_1007_s11771_018_3808_6
crossref_primary_10_1371_journal_pone_0222103
crossref_primary_10_1007_s40747_022_00734_5
crossref_primary_10_1016_j_asoc_2018_03_036
crossref_primary_10_1016_j_asoc_2017_08_021
crossref_primary_10_1109_ACCESS_2023_3247954
crossref_primary_10_1016_j_asoc_2016_06_011
crossref_primary_10_1109_ACCESS_2021_3119616
crossref_primary_10_1016_j_asoc_2020_106527
crossref_primary_10_1016_j_compbiomed_2025_110495
crossref_primary_10_1016_j_eswa_2022_118571
crossref_primary_10_1016_j_asoc_2019_04_004
crossref_primary_10_1016_j_swevo_2018_03_007
crossref_primary_10_1016_j_swevo_2020_100696
crossref_primary_10_1109_TEVC_2022_3141819
crossref_primary_10_1007_s00500_017_2833_y
crossref_primary_10_1007_s13042_021_01285_w
crossref_primary_10_1016_j_swevo_2024_101705
crossref_primary_10_1109_ACCESS_2020_2979738
crossref_primary_10_1016_j_swevo_2023_101322
crossref_primary_10_1016_j_asoc_2019_105726
crossref_primary_10_1016_j_eswa_2025_128158
crossref_primary_10_1177_1550147717739831
crossref_primary_10_1016_j_ins_2021_02_061
crossref_primary_10_3390_a9040078
crossref_primary_10_1016_j_asoc_2020_106531
crossref_primary_10_1016_j_asoc_2022_109762
crossref_primary_10_1016_j_eswa_2024_124245
crossref_primary_10_1080_0305215X_2021_1872558
crossref_primary_10_1109_TCYB_2017_2780274
crossref_primary_10_1016_j_eswa_2025_126425
crossref_primary_10_1016_j_ejco_2021_100012
crossref_primary_10_1109_ACCESS_2018_2864324
crossref_primary_10_1007_s00500_016_2453_y
crossref_primary_10_1155_2022_7275088
crossref_primary_10_1016_j_asoc_2016_12_017
crossref_primary_10_1038_s41598_021_90847_7
crossref_primary_10_1016_j_asoc_2017_11_012
crossref_primary_10_1016_j_engappai_2020_103479
crossref_primary_10_1007_s00500_019_04245_3
crossref_primary_10_1109_ACCESS_2024_3506716
crossref_primary_10_1016_j_ins_2016_07_022
crossref_primary_10_1007_s10462_017_9562_6
crossref_primary_10_1177_0361198120983008
crossref_primary_10_1007_s00500_016_2062_9
crossref_primary_10_1007_s13042_020_01186_4
crossref_primary_10_1016_j_eswa_2019_01_035
crossref_primary_10_1016_j_asoc_2018_01_044
crossref_primary_10_1109_ACCESS_2020_3012885
crossref_primary_10_1109_ACCESS_2019_2945831
crossref_primary_10_1016_j_asoc_2022_108725
crossref_primary_10_1016_j_jksuci_2022_07_022
crossref_primary_10_1016_j_swevo_2025_102081
crossref_primary_10_1007_s13042_019_00979_6
crossref_primary_10_1155_2020_9767282
crossref_primary_10_3233_JIFS_211408
crossref_primary_10_1109_ACCESS_2019_2914963
crossref_primary_10_1016_j_ins_2017_05_044
crossref_primary_10_1080_00207543_2017_1338781
crossref_primary_10_1016_j_jpdc_2016_10_014
crossref_primary_10_3233_JIFS_202098
crossref_primary_10_1007_s13042_019_01030_4
crossref_primary_10_1016_j_ins_2016_01_046
crossref_primary_10_1016_j_eswa_2023_120530
crossref_primary_10_3390_s19194112
crossref_primary_10_1007_s10462_019_09786_5
crossref_primary_10_3390_biomimetics8060494
crossref_primary_10_1016_j_swevo_2024_101521
Cites_doi 10.1016/j.cor.2013.09.019
10.1109/CEC.2013.6557555
10.1016/j.ins.2013.01.005
10.1109/TCYB.2013.2239988
10.1007/978-3-642-17563-3_9
10.1109/TEVC.2010.2083670
10.1007/11596448_28
10.1109/CEC.2014.6900380
10.1109/TEVC.2010.2093582
10.1007/s10589-007-9014-3
10.1007/s00500-004-0363-x
10.1007/s00500-010-0645-4
10.1109/TMAG.2013.2285980
10.1109/CEC.2011.5949801
10.1016/j.cor.2007.02.019
10.1109/TCYB.2013.2245501
10.1109/TEVC.2010.2059031
10.1007/978-3-540-30549-1_74
10.1016/j.cor.2013.06.012
10.1109/TSMCB.2011.2167966
10.1016/j.camwa.2011.01.029
10.1016/j.cor.2013.12.009
10.1109/LGRS.2014.2306263
10.1145/1143997.1144086
10.1109/TCYB.2013.2279211
10.1109/TEVC.2013.2293776
10.1109/TSMCB.2012.2217491
10.1016/j.compchemeng.2006.09.015
10.1016/j.cor.2011.11.011
10.1109/TEVC.2008.2009457
10.1023/A:1008202821328
10.1109/TEVC.2006.872133
10.1109/TEVC.2009.2014613
10.1109/TEVC.2008.927706
10.1016/j.asoc.2010.04.024
10.1145/1276958.1277221
10.1109/ACC.2014.6858721
10.1109/TSMCB.2012.2213808
10.1109/TEVC.2010.2087271
10.1109/TCYB.2014.2339495
10.1023/A:1024653025686
10.1109/CEC.2011.5949732
10.1016/j.asoc.2014.11.003
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright Pergamon Press Inc. Mar 2016
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Mar 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2015.09.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
EndPage 173
ExternalDocumentID 3890472711
10_1016_j_cor_2015_09_006
S0305054815002166
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c389t-9174f6b7f14822f4e5591e4d1ce7bbb60c02d1072d401ca6c8b177aa7f6fb1533
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367483900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Thu Oct 02 14:12:04 EDT 2025
Sun Nov 09 05:47:33 EST 2025
Tue Nov 18 22:33:27 EST 2025
Sat Nov 29 03:23:39 EST 2025
Fri Feb 23 02:33:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Multiple sub-populations
Global optimization
Adaptive parameter control
Replacement strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-9174f6b7f14822f4e5591e4d1ce7bbb60c02d1072d401ca6c8b177aa7f6fb1533
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1991-290X
PQID 1747336690
PQPubID 45870
PageCount 19
ParticipantIDs proquest_miscellaneous_1816000108
proquest_journals_1747336690
crossref_primary_10_1016_j_cor_2015_09_006
crossref_citationtrail_10_1016_j_cor_2015_09_006
elsevier_sciencedirect_doi_10_1016_j_cor_2015_09_006
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2016
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Sha, Hsu (bib9) 2008; 35
Mallipeddi, Suganthan, Pan, Tasgetiren (bib31) 2011; 11
Liu, Lampinen (bib36) 2005; 9
Sutton AM, Lunacek M, Whitley LD. Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of the 9th annual conference on genetic and evolutionary computation; 2007. p. 1428–35.
Draa, Bouzoubia, Boukhalfa (bib42) 2015; 27
Wang, Rahnamayan, Sun, Omran (bib29) 2013; 43
Das, Suganthan (bib32) 2011; 15
R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC); 2013. p.71–8.
Elsayed, Saber M., Sarker Ruhul A., and Essam Daryl L. Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64.
Zhang, Sanderson (bib6) 2009; 13
Kovacevic, Mladenovic, Petrovic, Milosevic (bib11) 2014; 52
Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA. A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation; 2006. p. 485–92.
Islam, Das, Ghosh, Roy, Suganthan (bib7) 2012; 42
Angira, Santosh (bib33) 2007; 31
R. Mallipeddi, P. N. Suganthan. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Swarm, evolutionary, and memetic computing; 2010. p. 71–8.
Epitropakis, Tasoulis, Pavlidis, Plagianakos, Vrahatis (bib35) 2011; 15
M. G. Omran, A. Salman, A. P. Engelbrecht. Self-adaptive differential evolution. In: Proceedings of the computational intelligence and security; 2005. p. 192–9.
Li, Zhang, Kwong, Li, Wang (bib14) 2014; 18
Gämperle, Müller, Koumoutsakos (bib20) 2002; 10
A. W. Iorio, X. Li. Solving rotated multi-objective optimization problems using differential evolution. In: Proceedings of the AI 2004 advances in artificial intelligence; 2005. p. 861–72.
Das, Abraham, Chakraborty, Konar (bib34) 2009; 13
R. Mallipeddi, P. N. Suganthan, Ensemble Differential Evolution Algorithm for CEC2011 problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64.
Wang, Cai, Zhang (bib8) 2011; 15
Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report. Singapore:Nanyang Technological University; China: Zhenzhou University; 2013. [Online].Available at
Yu, Shen, Chen, Zhan, Gong, Lin (bib24) 2014; 44
Brest, Greiner, Boskovic, Mernik, Zumer (bib5) 2006; 10
Halder, Das, Maity (bib15) 2013; 43
Zou, Liu, Gao, Li. (bib38) 2011; 61
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005005; 2005.
Tenaglia, Lebensztajn (bib18) 2014; 50
Jin, Hao, Hamiez (bib2) 2014; 43
Wang, Cai (bib12) 2012; 16
Lin, Chen (bib10) 2013; 40
Q. Zheng, D. Simon, H. Richter, Z. Gao. Differential particle swarm evolution for robot control tuning. In: Proceedings of the American Control Conference (ACC); 2014. p. 5276–81.
Abdul-Rahman, Munetomo, Akama (bib1) 2013; 233
Storn, Price (bib3) 1997; 11
Cai, Wang (bib26) 2013; 43
Gao, Pan, Gao (bib16) 2014; 11
Qin, Huang, Suganthan (bib4) 2009; 13
Fan, Lampinen. (bib25) 2003; 27
.
R. Tanabe, A. Fukunaga, Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC); 2014. p. 1658–65.
Das, Suganthan (bib40) 2010
Gong, Cai (bib27) 2013; 43
Tsai, Fang, Chou (bib19) 2013; 40
Kaelo, Ali (bib28) 2007; 37
Yang, Li, Cai, Guan (bib44) 2015; 45
Zhao, Suganthan, Das (bib13) 2011; 15
Zou (10.1016/j.cor.2015.09.006_bib38) 2011; 61
Storn (10.1016/j.cor.2015.09.006_bib3) 1997; 11
Kovacevic (10.1016/j.cor.2015.09.006_bib11) 2014; 52
Fan (10.1016/j.cor.2015.09.006_bib25) 2003; 27
10.1016/j.cor.2015.09.006_bib41
Das (10.1016/j.cor.2015.09.006_bib32) 2011; 15
Kaelo (10.1016/j.cor.2015.09.006_bib28) 2007; 37
10.1016/j.cor.2015.09.006_bib47
Tenaglia (10.1016/j.cor.2015.09.006_bib18) 2014; 50
10.1016/j.cor.2015.09.006_bib22
10.1016/j.cor.2015.09.006_bib21
10.1016/j.cor.2015.09.006_bib43
Angira (10.1016/j.cor.2015.09.006_bib33) 2007; 31
10.1016/j.cor.2015.09.006_bib46
Qin (10.1016/j.cor.2015.09.006_bib4) 2009; 13
10.1016/j.cor.2015.09.006_bib23
10.1016/j.cor.2015.09.006_bib45
Das (10.1016/j.cor.2015.09.006_bib34) 2009; 13
Cai (10.1016/j.cor.2015.09.006_bib26) 2013; 43
Epitropakis (10.1016/j.cor.2015.09.006_bib35) 2011; 15
Sha (10.1016/j.cor.2015.09.006_bib9) 2008; 35
Gao (10.1016/j.cor.2015.09.006_bib16) 2014; 11
Zhang (10.1016/j.cor.2015.09.006_bib6) 2009; 13
Zhao (10.1016/j.cor.2015.09.006_bib13) 2011; 15
Gong (10.1016/j.cor.2015.09.006_bib27) 2013; 43
Yang (10.1016/j.cor.2015.09.006_bib44) 2015; 45
Abdul-Rahman (10.1016/j.cor.2015.09.006_bib1) 2013; 233
Wang (10.1016/j.cor.2015.09.006_bib29) 2013; 43
Tsai (10.1016/j.cor.2015.09.006_bib19) 2013; 40
Yu (10.1016/j.cor.2015.09.006_bib24) 2014; 44
Halder (10.1016/j.cor.2015.09.006_bib15) 2013; 43
Jin (10.1016/j.cor.2015.09.006_bib2) 2014; 43
Draa (10.1016/j.cor.2015.09.006_bib42) 2015; 27
10.1016/j.cor.2015.09.006_bib30
Li (10.1016/j.cor.2015.09.006_bib14) 2014; 18
Wang (10.1016/j.cor.2015.09.006_bib12) 2012; 16
Liu (10.1016/j.cor.2015.09.006_bib36) 2005; 9
Gämperle (10.1016/j.cor.2015.09.006_bib20) 2002; 10
10.1016/j.cor.2015.09.006_bib37
10.1016/j.cor.2015.09.006_bib17
10.1016/j.cor.2015.09.006_bib39
Mallipeddi (10.1016/j.cor.2015.09.006_bib31) 2011; 11
Wang (10.1016/j.cor.2015.09.006_bib8) 2011; 15
Das (10.1016/j.cor.2015.09.006_bib40) 2010
Brest (10.1016/j.cor.2015.09.006_bib5) 2006; 10
Islam (10.1016/j.cor.2015.09.006_bib7) 2012; 42
Lin (10.1016/j.cor.2015.09.006_bib10) 2013; 40
References_xml – volume: 9
  start-page: 448
  year: 2005
  end-page: 462
  ident: bib36
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput
– volume: 15
  start-page: 99
  year: 2011
  end-page: 119
  ident: bib35
  article-title: Enhancing differential evolution utilizing proximity based mutation operators
  publication-title: IEEE Trans Evolut Comput
– volume: 18
  start-page: 909
  year: 2014
  end-page: 923
  ident: bib14
  article-title: Stable matching based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evolut Comput
– volume: 31
  start-page: 1055
  year: 2007
  end-page: 1063
  ident: bib33
  article-title: Optimization of dynamic systems: a trigonometric differential evolution approach
  publication-title: Comput Chem Eng
– volume: 43
  start-page: 2202
  year: 2013
  end-page: 2215
  ident: bib26
  article-title: Differential evolution with neighborhood and direction information for numerical optimization
  publication-title: IEEE Trans Cybern
– reference: M. G. Omran, A. Salman, A. P. Engelbrecht. Self-adaptive differential evolution. In: Proceedings of the computational intelligence and security; 2005. p. 192–9.
– reference: R. Tanabe, A. Fukunaga, Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC); 2014. p. 1658–65.
– volume: 11
  start-page: 1702
  year: 2014
  end-page: 1706
  ident: bib16
  article-title: A new highly efficient differential evolution scheme and its application to waveform inversion
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 37
  start-page: 231
  year: 2007
  end-page: 246
  ident: bib28
  article-title: Differential evolution algorithms using hybrid mutation
  publication-title: Comput Optim Appl
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib4
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evolut Comput
– volume: 15
  start-page: 2175
  year: 2011
  end-page: 2185
  ident: bib13
  article-title: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
  publication-title: Soft Comput
– volume: 10
  start-page: 293
  year: 2002
  end-page: 298
  ident: bib20
  article-title: A parameter study for differential evolution. Advances in intelligent systems, fuzzy systems
  publication-title: Evolut Comput
– volume: 43
  start-page: 2066
  year: 2013
  end-page: 2081
  ident: bib27
  article-title: Differential evolution with ranking-based mutation operators
  publication-title: IEEE Trans Cybern
– reference: Elsayed, Saber M., Sarker Ruhul A., and Essam Daryl L. Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64.
– reference: Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005005; 2005.
– reference: Sutton AM, Lunacek M, Whitley LD. Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of the 9th annual conference on genetic and evolutionary computation; 2007. p. 1428–35.
– volume: 16
  start-page: 117
  year: 2012
  end-page: 134
  ident: bib12
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans Evolut Comput
– reference: Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA. A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation; 2006. p. 485–92.
– year: 2010
  ident: bib40
  article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems
– volume: 27
  start-page: 99
  year: 2015
  end-page: 126
  ident: bib42
  article-title: A sinusoidal differential evolution algorithm for numerical optimisation
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 1679
  year: 2011
  end-page: 1696
  ident: bib31
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl Soft Comput
– volume: 13
  start-page: 526
  year: 2009
  end-page: 553
  ident: bib34
  article-title: Differential evolution using a neighborhood-based mutation operator
  publication-title: IEEE Trans Evolut Comput
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: bib6
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans Evolut Comput
– volume: 40
  start-page: 3045
  year: 2013
  end-page: 3055
  ident: bib19
  article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
  publication-title: Comput Oper Res
– volume: 15
  start-page: 55
  year: 2011
  end-page: 66
  ident: bib8
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans Evolut Comput
– volume: 35
  start-page: 3243
  year: 2008
  end-page: 3261
  ident: bib9
  article-title: A new particle swarm optimization for the open shop scheduling problem
  publication-title: Comput Oper Res
– reference: Q. Zheng, D. Simon, H. Richter, Z. Gao. Differential particle swarm evolution for robot control tuning. In: Proceedings of the American Control Conference (ACC); 2014. p. 5276–81.
– reference: A. W. Iorio, X. Li. Solving rotated multi-objective optimization problems using differential evolution. In: Proceedings of the AI 2004 advances in artificial intelligence; 2005. p. 861–72.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib3
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
– reference: R. Mallipeddi, P. N. Suganthan, Ensemble Differential Evolution Algorithm for CEC2011 problems. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC); 2011. p. 1557–64.
– volume: 61
  start-page: 1608
  year: 2011
  end-page: 1623
  ident: bib38
  article-title: A novel modified differential evolution algorithm for constrained optimization problems
  publication-title: Comput Math Appl
– reference: R. Mallipeddi, P. N. Suganthan. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Swarm, evolutionary, and memetic computing; 2010. p. 71–8.
– volume: 43
  start-page: 318
  year: 2014
  end-page: 327
  ident: bib2
  article-title: A memetic algorithm for the minimum sum coloring problem
  publication-title: Comput Oper Res
– reference: .
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: bib5
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans Evolut Comput
– volume: 27
  start-page: 105
  year: 2003
  end-page: 129
  ident: bib25
  article-title: A trigonometric mutation operation to differential evolution
  publication-title: J Glob Optim
– reference: Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report. Singapore:Nanyang Technological University; China: Zhenzhou University; 2013. [Online].Available at:
– reference: R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC); 2013. p.71–8.
– volume: 50
  start-page: 625
  year: 2014
  end-page: 628
  ident: bib18
  article-title: A multiobjective approach of differential evolution optimization applied to electromagnetic problems
  publication-title: IEEE Trans Magn
– volume: 233
  start-page: 54
  year: 2013
  end-page: 86
  ident: bib1
  article-title: An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: performance analysis and estimation of optimal control parameters
  publication-title: Inf Sci
– volume: 40
  start-page: 1590
  year: 2013
  end-page: 1601
  ident: bib10
  article-title: A novel micro-population immune multiobjective optimization algorithm
  publication-title: Comput Oper Res
– volume: 52
  start-page: 157
  year: 2014
  end-page: 169
  ident: bib11
  article-title: DE-VNS: Self-adaptive Differential Evolution with crossover neighborhood search for continuous global optimization
  publication-title: Comput Oper Res
– volume: 43
  start-page: 881
  year: 2013
  end-page: 897
  ident: bib15
  article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments
  publication-title: IEEE Trans Cybern
– volume: 43
  start-page: 634
  year: 2013
  end-page: 647
  ident: bib29
  article-title: Gaussian bare-bones differential evolution
  publication-title: IEEE Trans Cybern
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib32
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans Evolut Comput
– volume: 42
  start-page: 482
  year: 2012
  end-page: 500
  ident: bib7
  article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
  publication-title: IEEE Trans Syst Man Cybern Part B: Cybern
– volume: 45
  start-page: 302
  year: 2015
  end-page: 315
  ident: bib44
  article-title: Differential evolution with auto-enhanced population diversity
  publication-title: IEEE Trans Cybern
– volume: 44
  start-page: 1080
  year: 2014
  end-page: 1099
  ident: bib24
  article-title: Differential evolution with two-level parameter adaptation
  publication-title: IEEE Trans Cybern
– volume: 43
  start-page: 318
  year: 2014
  ident: 10.1016/j.cor.2015.09.006_bib2
  article-title: A memetic algorithm for the minimum sum coloring problem
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2013.09.019
– ident: 10.1016/j.cor.2015.09.006_bib45
  doi: 10.1109/CEC.2013.6557555
– volume: 233
  start-page: 54
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib1
  article-title: An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: performance analysis and estimation of optimal control parameters
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.01.005
– volume: 43
  start-page: 2066
  issue: 6
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib27
  article-title: Differential evolution with ranking-based mutation operators
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2239988
– ident: 10.1016/j.cor.2015.09.006_bib30
  doi: 10.1007/978-3-642-17563-3_9
– volume: 15
  start-page: 99
  issue: 1
  year: 2011
  ident: 10.1016/j.cor.2015.09.006_bib35
  article-title: Enhancing differential evolution utilizing proximity based mutation operators
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2010.2083670
– ident: 10.1016/j.cor.2015.09.006_bib37
  doi: 10.1007/11596448_28
– ident: 10.1016/j.cor.2015.09.006_bib43
– ident: 10.1016/j.cor.2015.09.006_bib46
  doi: 10.1109/CEC.2014.6900380
– volume: 16
  start-page: 117
  issue: 1
  year: 2012
  ident: 10.1016/j.cor.2015.09.006_bib12
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2010.2093582
– ident: 10.1016/j.cor.2015.09.006_bib39
– volume: 37
  start-page: 231
  issue: 2
  year: 2007
  ident: 10.1016/j.cor.2015.09.006_bib28
  article-title: Differential evolution algorithms using hybrid mutation
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-007-9014-3
– volume: 9
  start-page: 448
  issue: 6
  year: 2005
  ident: 10.1016/j.cor.2015.09.006_bib36
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-004-0363-x
– volume: 15
  start-page: 2175
  issue: 11
  year: 2011
  ident: 10.1016/j.cor.2015.09.006_bib13
  article-title: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
  publication-title: Soft Comput
  doi: 10.1007/s00500-010-0645-4
– volume: 50
  start-page: 625
  issue: 2
  year: 2014
  ident: 10.1016/j.cor.2015.09.006_bib18
  article-title: A multiobjective approach of differential evolution optimization applied to electromagnetic problems
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2013.2285980
– ident: 10.1016/j.cor.2015.09.006_bib47
  doi: 10.1109/CEC.2011.5949801
– volume: 35
  start-page: 3243
  issue: 10
  year: 2008
  ident: 10.1016/j.cor.2015.09.006_bib9
  article-title: A new particle swarm optimization for the open shop scheduling problem
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2007.02.019
– volume: 43
  start-page: 2202
  issue: 6
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib26
  article-title: Differential evolution with neighborhood and direction information for numerical optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245501
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.cor.2015.09.006_bib32
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2010.2059031
– ident: 10.1016/j.cor.2015.09.006_bib21
  doi: 10.1007/978-3-540-30549-1_74
– year: 2010
  ident: 10.1016/j.cor.2015.09.006_bib40
– volume: 40
  start-page: 3045
  issue: 12
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib19
  article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2013.06.012
– volume: 42
  start-page: 482
  issue: 2
  year: 2012
  ident: 10.1016/j.cor.2015.09.006_bib7
  article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
  publication-title: IEEE Trans Syst Man Cybern Part B: Cybern
  doi: 10.1109/TSMCB.2011.2167966
– volume: 61
  start-page: 1608
  issue: 6
  year: 2011
  ident: 10.1016/j.cor.2015.09.006_bib38
  article-title: A novel modified differential evolution algorithm for constrained optimization problems
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.01.029
– volume: 52
  start-page: 157
  year: 2014
  ident: 10.1016/j.cor.2015.09.006_bib11
  article-title: DE-VNS: Self-adaptive Differential Evolution with crossover neighborhood search for continuous global optimization
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2013.12.009
– volume: 11
  start-page: 1702
  issue: 10
  year: 2014
  ident: 10.1016/j.cor.2015.09.006_bib16
  article-title: A new highly efficient differential evolution scheme and its application to waveform inversion
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2306263
– ident: 10.1016/j.cor.2015.09.006_bib22
  doi: 10.1145/1143997.1144086
– volume: 44
  start-page: 1080
  issue: 7
  year: 2014
  ident: 10.1016/j.cor.2015.09.006_bib24
  article-title: Differential evolution with two-level parameter adaptation
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2279211
– volume: 18
  start-page: 909
  issue: 6
  year: 2014
  ident: 10.1016/j.cor.2015.09.006_bib14
  article-title: Stable matching based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2013.2293776
– volume: 43
  start-page: 881
  issue: 3
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib15
  article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2217491
– volume: 31
  start-page: 1055
  issue: 9
  year: 2007
  ident: 10.1016/j.cor.2015.09.006_bib33
  article-title: Optimization of dynamic systems: a trigonometric differential evolution approach
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2006.09.015
– volume: 40
  start-page: 1590
  issue: 6
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib10
  article-title: A novel micro-population immune multiobjective optimization algorithm
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2011.11.011
– volume: 13
  start-page: 526
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2015.09.006_bib34
  article-title: Differential evolution using a neighborhood-based mutation operator
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2008.2009457
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.cor.2015.09.006_bib3
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.cor.2015.09.006_bib5
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2006.872133
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.cor.2015.09.006_bib6
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2009.2014613
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.cor.2015.09.006_bib4
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2008.927706
– volume: 11
  start-page: 1679
  issue: 2
  year: 2011
  ident: 10.1016/j.cor.2015.09.006_bib31
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.04.024
– volume: 10
  start-page: 293
  year: 2002
  ident: 10.1016/j.cor.2015.09.006_bib20
  article-title: A parameter study for differential evolution. Advances in intelligent systems, fuzzy systems
  publication-title: Evolut Comput
– ident: 10.1016/j.cor.2015.09.006_bib23
  doi: 10.1145/1276958.1277221
– ident: 10.1016/j.cor.2015.09.006_bib17
  doi: 10.1109/ACC.2014.6858721
– volume: 43
  start-page: 634
  issue: 2
  year: 2013
  ident: 10.1016/j.cor.2015.09.006_bib29
  article-title: Gaussian bare-bones differential evolution
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2213808
– volume: 15
  start-page: 55
  issue: 1
  year: 2011
  ident: 10.1016/j.cor.2015.09.006_bib8
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2010.2087271
– volume: 45
  start-page: 302
  issue: 2
  year: 2015
  ident: 10.1016/j.cor.2015.09.006_bib44
  article-title: Differential evolution with auto-enhanced population diversity
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2339495
– volume: 27
  start-page: 105
  issue: 1
  year: 2003
  ident: 10.1016/j.cor.2015.09.006_bib25
  article-title: A trigonometric mutation operation to differential evolution
  publication-title: J Glob Optim
  doi: 10.1023/A:1024653025686
– ident: 10.1016/j.cor.2015.09.006_bib41
  doi: 10.1109/CEC.2011.5949732
– volume: 27
  start-page: 99
  year: 2015
  ident: 10.1016/j.cor.2015.09.006_bib42
  article-title: A sinusoidal differential evolution algorithm for numerical optimisation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.11.003
SSID ssj0000721
Score 2.5571005
Snippet Differential evolution (DE) algorithm has been shown to be a very effective and efficient approach for solving global numerical optimization problems, which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Adaptive algorithms
Adaptive parameter control
Algorithms
Benchmarks
Differential evolution
Evolutionary algorithms
Genetic algorithms
Global optimization
Mathematical analysis
Mathematical models
Mathematical problems
Multiple sub-populations
Optimization
Optimization techniques
Replacement strategy
Strategy
Studies
Vector space
Vectors (mathematics)
Title Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
URI https://dx.doi.org/10.1016/j.cor.2015.09.006
https://www.proquest.com/docview/1747336690
https://www.proquest.com/docview/1816000108
Volume 67
WOSCitedRecordID wos000367483900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5qV0QfvNQVq6uM4JNLJEmbmeSxlBUVWRRX6Nswk0y2WbpJaZKy7j_x33rmlpSKiwq-hJImmWHOlzmXnPMdhF4LAu8MWA5eJHLfUyrA4yQUnp8p9nQRJaHQhcKf6OlpvFgknweDH64WZruiZRlfXSXr_ypqOAfCVqWzfyHu7qFwAn6D0OEIYofjHwl-lvG1zgdyvU8aFRSXWzvoMV-dV5uiWV6aGGxZbeXq-LK1WYd147gjVCSkSzesW-Gtu15f9a5J6_pC1BpF1VpubHad5RHq4s3z1lZiF9fLyipMlQpUmNh8eb5si_6k3g2_FO31si9Wm7tSEsD0d_cIG7IISJ-zZeJorpamT1zS9VsqjTAyvJtvpdmOYzrxKIkWu_u1ad9hN9zAkPxa3R2Ytii_qAUTobgAqSoK2CDS1Lb-HgW3Vupf1TTULMBQBvOHkFvoIKRREg_RwezDyeJjr-apLurrpu0-mevkwb2Bfmf07Kl_bdOcPUT3rTOCZwZEj9BAliN0x9VCjNADJ1tsVcAI3dshsHyMMgc2vAs23IENd2DDCmxYgw07sOEebLgosQMb3gPbIfr27uRs_t6zfTu8FMzfBvQnneZE0FxxzIb5VILXGshpFqSSCiGIn_phFsD6ZeDcp5ykseJA45zmJBfK_3iChmVVyqcIg3rJ0iAHN4ZPlOcvMp5HIQUjPuGxIJMx8t3CstSS2qveKivmshcvGMiCKVkwP2EgizF6092yNowuN108ddJi1iQ1piYDaN1025GTLLNbQ81gVRT3KEn8MXrV_Q27ufpEx0tZtXBNHBDldvnxs38b-Tm6279xR2jYbFr5At1Ot01Rb15aDP8E0qrKUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+differential+evolution+algorithm+with+novel+mutation+strategies+in+multiple+sub-populations&rft.jtitle=Computers+%26+operations+research&rft.au=Cui%2C+Laizhong&rft.au=Li%2C+Genghui&rft.au=Lin%2C+Qiuzhen&rft.au=Chen%2C+Jianyong&rft.date=2016-03-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=67&rft.spage=155&rft.epage=173&rft_id=info:doi/10.1016%2Fj.cor.2015.09.006&rft.externalDocID=S0305054815002166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon