An SDP approach for multiperiod mixed 0–1 linear programming models with stochastic dominance constraints for risk management

In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multistage...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 58; s. 32 - 40
Hlavní autoři: Escudero, Laureano F., Monge, Juan Francisco, Romero Morales, Dolores
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.06.2015
Pergamon Press Inc
Témata:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multistage case and includes both the first-order and second-order constraints. We propose a stochastic dynamic programming (SDP) solution approach, where one has to overcome the negative impact of the cross-scenario constraints on the decomposability of the model. In our computational experience we compare our SDP approach against a commercial optimization package, in terms of solution accuracy and elapsed time. We use supply chain planning instances, where procurement, production, inventory, and distribution decisions need to be made under demand uncertainty. We confirm the hardness of the testbed, where the benchmark cannot find a feasible solution for half of the test instances while we always find one, and show the appealing tradeoff of SDP, in terms of solution accuracy and elapsed time, when solving medium-to-large instances.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2014.12.007