Efficient high-resolution template matching with vector quantized nearest neighbour fields

Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking. Current methods rely on nearest-neighbour (NN) matching, where the query feature space is converted to NN space by representing each query pi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 151; s. 110386
Hlavní autori: Gupta, Ankit, Sintorn, Ida-Maria
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2024
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking. Current methods rely on nearest-neighbour (NN) matching, where the query feature space is converted to NN space by representing each query pixel with its NN in the template. NN-based methods have been shown to perform better in occlusions, appearance changes, and non-rigid transformations; however, they scale poorly with high-resolution data and high feature dimensions. We present an NN-based method that efficiently reduces the NN computations and introduces filtering in the NN fields (NNFs). A vector quantization step is introduced before the NN calculation to represent the template with k features, and the filter response over the NNFs is used to compare the template and query distributions over the features. We show that state-of-the-art performance is achieved in low-resolution data, and our method outperforms previous methods at higher resolution. •Existing methods scale poorly with high-resolution images and high-dimensional features.•Vector quantization in the template features is used to reduce nearest neighbour computations.•Filtering is introduced in the nearest neighbour space to encode spatial information.•State-of-the-art results are generated in runtime and performance for high-resolution datasets.
AbstractList Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking. Current methods rely on nearest-neighbour (NN) matching, where the query feature space is converted to NN space by representing each query pixel with its NN in the template. NN-based methods have been shown to perform better in occlusions, appearance changes, and non-rigid transformations; however, they scale poorly with high-resolution data and high feature dimensions. We present an NN-based method that efficiently reduces the NN computations and introduces filtering in the NN fields (NNFs). A vector quantization step is introduced before the NN calculation to represent the template with k features, and the filter response over the NNFs is used to compare the template and query distributions over the features. We show that state-of-the-art performance is achieved in low-resolution data, and our method outperforms previous methods at higher resolution. •Existing methods scale poorly with high-resolution images and high-dimensional features.•Vector quantization in the template features is used to reduce nearest neighbour computations.•Filtering is introduced in the nearest neighbour space to encode spatial information.•State-of-the-art results are generated in runtime and performance for high-resolution datasets.
Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking. Current methods rely on nearest-neighbour (NN) matching, where the query feature space is converted to NN space by representing each query pixel with its NN in the template. NN-based methods have been shown to perform better in occlusions, appearance changes, and non-rigid transformations; however, they scale poorly with high-resolution data and high feature dimensions. We present an NN-based method that efficiently reduces the NN computations and introduces filtering in the NN fields (NNFs). A vector quantization step is introduced before the NN calculation to represent the template with k features, and the filter response over the NNFs is used to compare the template and query distributions over the features. We show that state-of-the-art performance is achieved in low-resolution data, and our method outperforms previous methods at higher resolution.
ArticleNumber 110386
Author Sintorn, Ida-Maria
Gupta, Ankit
Author_xml – sequence: 1
  givenname: Ankit
  orcidid: 0000-0002-9961-1041
  surname: Gupta
  fullname: Gupta, Ankit
  email: ankit.gupta@it.uu.se
– sequence: 2
  givenname: Ida-Maria
  surname: Sintorn
  fullname: Sintorn, Ida-Maria
  email: ida.sintorn@it.uu.se
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-513842$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkL1OwzAUhT0UibbwBgx5AFKu7TQ_DEhVKT9SJRZgYLEc57p1lcbFdlrB05MqsDDAdJbznav7jcigsQ0SckFhQoGmV5vJTgZlVxMGLJlQCjxPB2QIwGnMGfBTMvJ-A0AzmrAheVtobZTBJkRrs1rHDr2t22BsEwXc7moZMNp2g2vTrKKDCetojypYF723sgnmE6uoQdlRoctuoLSti7TBuvJn5ETL2uP5d47Jy93ief4QL5_uH-ezZax4XoQ4Z5SqFCiUU62rEukUFeO6yArIeFbmCgqVAKRyyjTVoNMc87LiZcZUogvK-Zhc9rv-gLu2FDtnttJ9CCuNuDWvM2HdSrStmFKeJ6yrX_d15az3DrVQJsjjx8FJUwsK4ihSbEQvUhxFil5kBye_4J9r_2A3PYadh71BJ_zRucLKuE6nqKz5e-ALDF-Vaw
CitedBy_id crossref_primary_10_20525_ijrbs_v14i5_4086
crossref_primary_10_3390_buildings14113537
Cites_doi 10.7554/eLife.68946
10.1016/j.measurement.2021.109506
10.1109/TGRS.2019.2924684
10.3390/s22176658
10.1109/CVPR.2018.00188
10.1007/978-3-030-01249-6_25
10.1049/el.2016.1331
10.1109/CVPR.2013.312
10.1109/CVPR.2018.00759
10.1186/s12859-020-3363-7
10.1109/CVPR.2013.302
10.1016/j.patcog.2020.107337
10.1109/CVPR.2016.90
10.1109/CVPR.2019.01182
10.1145/2766983
10.1016/j.neucom.2015.03.024
10.1109/CVPR.2015.7299160
10.1109/CVPR.2015.7298813
10.1109/ACCESS.2019.2901943
10.1109/TPAMI.2011.106
10.1109/CVPR.2018.00283
10.1109/TIM.2021.3134326
10.1016/j.patcog.2019.107029
10.1016/j.is.2019.02.006
10.1109/TPAMI.2012.120
10.1145/1531326.1531330
10.1049/ipr2.12521
10.1049/ipr2.12716
10.1109/CVPR.2013.316
10.1016/j.measurement.2020.108362
10.1109/TIP.2019.2893743
10.1109/CVPR.2017.144
10.1109/JBHI.2022.3177602
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.patcog.2024.110386
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID oai_DiVA_org_uu_513842
10_1016_j_patcog_2024_110386
S0031320324001377
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c389t-8211c6010b5ffdbe15ec23f9790737b8c09c4006a52f1f0f68e8bd3b72c4f9133
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207003800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
1873-5142
IngestDate Tue Nov 04 17:02:05 EST 2025
Sat Nov 29 07:57:28 EST 2025
Tue Nov 18 22:17:21 EST 2025
Sat May 03 15:56:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vector quantized nearest neighbour field (VQ-NNF)
Template matching
Object detection
High-resolution template matching
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-8211c6010b5ffdbe15ec23f9790737b8c09c4006a52f1f0f68e8bd3b72c4f9133
ORCID 0000-0002-9961-1041
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-513842
ParticipantIDs swepub_primary_oai_DiVA_org_uu_513842
crossref_citationtrail_10_1016_j_patcog_2024_110386
crossref_primary_10_1016_j_patcog_2024_110386
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110386
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Wang, Zhou, Liu, Dai, Du, Wahab (b3) 2021; 169
Lucas, Himes, Xue, Grant, Mahamid, Grigorieff (b1) 2021; 10
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b37) 2019
Sun, Mao, Hong, Xu, Gui (b5) 2019; 7
Lan, Wu, Li (b9) 2021; 71
Zhou, Lu, Lv, Di, Zhao, Zhang (b10) 2015; 165
Aumüller, Bernhardsson, Faithfull (b39) 2020; 87
J. Cheng, Y. Wu, W. AbdAlmageed, P. Natarajan, QATM: Quality-aware template matching for deep learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11553–11562.
Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, T.S. Huang, Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7268–7277.
Jamriška, Fišer, Asente, Lu, Shechtman, Sỳkora (b28) 2015; 34
S. Korman, D. Reichman, G. Tsur, S. Avidan, Fast-match: Fast affine template matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2331–2338.
Gupta, Sabirsh, Wählby, Sintorn (b7) 2022; 26
Barnes, Shechtman, Finkelstein, Goldman (b13) 2009; 28
Yang, Huang, Wang, Song, Yin (b22) 2019; 28
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b23) 2012; 34
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
T. Dekel, S. Oron, M. Rubinstein, S. Avidan, W.T. Freeman, Best-buddies similarity for robust template matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2021–2029.
Z. Chen, H. Jin, Z. Lin, S. Cohen, Y. Wu, Large displacement optical flow from nearest neighbor fields, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2443–2450.
Xu, Zhang, Brownjohn (b4) 2021; 179
Moudgil, Gandhi (b36) 2018
Zhang, Zhang, Akashi (b31) 2022; 16
Gao, Spratling (b25) 2022; 22
Y. Wu, J. Lim, M.-H. Yang, Online object tracking: A benchmark, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2411–2418.
Zhao, He, Lei, Zhu (b27) 2023; 17
Viola, Jones (b32) 2001; Vol. 1
Khan, Smith (b16) 2005
Zhang, Yang, Jia (b30) 2020; 70
Lai, Lei, Deng, Yan, Ruan, Jinyun (b29) 2020; 98
Ye, Bruzzone, Shan, Bovolo, Zhu (b6) 2019; 57
S. Korman, M. Milam, S. Soatto, OATM: Occlusion aware template matching by consensus set maximization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2675–2683.
R. Kat, R. Jevnisek, S. Avidan, Matching pixels using co-occurrence statistics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1751–1759.
I. Talmi, R. Mechrez, L. Zelnik-Manor, Template matching with deformable diversity similarity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 175–183.
Jia, Cao, Song, Tang, Zhu (b19) 2016; 52
Spratling (b24) 2020; 104
Thomas, Gehrig (b2) 2020; 21
N. Ben-Zrihem, L. Zelnik-Manor, Approximate nearest neighbor fields in video, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5233–5242.
Ouyang, Tombari, Mattoccia, Di Stefano, Cham (b17) 2011; 34
L. Talker, Y. Moses, I. Shimshoni, Efficient sliding window computation for NN-based template matching, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 404–418.
Yu, Koltun (b33) 2015
Zhang (10.1016/j.patcog.2024.110386_b30) 2020; 70
Moudgil (10.1016/j.patcog.2024.110386_b36) 2018
Lan (10.1016/j.patcog.2024.110386_b9) 2021; 71
Achanta (10.1016/j.patcog.2024.110386_b23) 2012; 34
Paszke (10.1016/j.patcog.2024.110386_b37) 2019
10.1016/j.patcog.2024.110386_b20
Gao (10.1016/j.patcog.2024.110386_b25) 2022; 22
10.1016/j.patcog.2024.110386_b8
10.1016/j.patcog.2024.110386_b21
Jamriška (10.1016/j.patcog.2024.110386_b28) 2015; 34
Thomas (10.1016/j.patcog.2024.110386_b2) 2020; 21
Yang (10.1016/j.patcog.2024.110386_b22) 2019; 28
10.1016/j.patcog.2024.110386_b15
Zhou (10.1016/j.patcog.2024.110386_b10) 2015; 165
10.1016/j.patcog.2024.110386_b38
10.1016/j.patcog.2024.110386_b18
Aumüller (10.1016/j.patcog.2024.110386_b39) 2020; 87
Lai (10.1016/j.patcog.2024.110386_b29) 2020; 98
Khan (10.1016/j.patcog.2024.110386_b16) 2005
Lucas (10.1016/j.patcog.2024.110386_b1) 2021; 10
10.1016/j.patcog.2024.110386_b11
10.1016/j.patcog.2024.110386_b12
Ouyang (10.1016/j.patcog.2024.110386_b17) 2011; 34
10.1016/j.patcog.2024.110386_b34
Wang (10.1016/j.patcog.2024.110386_b3) 2021; 169
10.1016/j.patcog.2024.110386_b35
10.1016/j.patcog.2024.110386_b14
Sun (10.1016/j.patcog.2024.110386_b5) 2019; 7
Zhao (10.1016/j.patcog.2024.110386_b27) 2023; 17
Ye (10.1016/j.patcog.2024.110386_b6) 2019; 57
Gupta (10.1016/j.patcog.2024.110386_b7) 2022; 26
Zhang (10.1016/j.patcog.2024.110386_b31) 2022; 16
Xu (10.1016/j.patcog.2024.110386_b4) 2021; 179
Spratling (10.1016/j.patcog.2024.110386_b24) 2020; 104
10.1016/j.patcog.2024.110386_b26
Barnes (10.1016/j.patcog.2024.110386_b13) 2009; 28
Jia (10.1016/j.patcog.2024.110386_b19) 2016; 52
Yu (10.1016/j.patcog.2024.110386_b33) 2015
Viola (10.1016/j.patcog.2024.110386_b32) 2001; Vol. 1
References_xml – volume: 57
  start-page: 9059
  year: 2019
  end-page: 9070
  ident: b6
  article-title: Fast and robust matching for multimodal remote sensing image registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 71
  start-page: 1
  year: 2021
  end-page: 13
  ident: b9
  article-title: GAD: A global-aware diversity-based template matching method
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 52
  start-page: 1220
  year: 2016
  end-page: 1221
  ident: b19
  article-title: Colour FAST (CFAST) match: fast affine template matching for colour images
  publication-title: Electron. Lett.
– volume: 34
  start-page: 127
  year: 2011
  end-page: 143
  ident: b17
  article-title: Performance evaluation of full search equivalent pattern matching algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 169
  year: 2021
  ident: b3
  article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching
  publication-title: Measurement
– volume: Vol. 1
  start-page: I
  year: 2001
  ident: b32
  article-title: Rapid object detection using a boosted cascade of simple features
  publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: Y. Wu, J. Lim, M.-H. Yang, Online object tracking: A benchmark, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2411–2418.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 8
  ident: b2
  article-title: Multi-template matching: a versatile tool for object-localization in microscopy images
  publication-title: BMC Bioinform.
– volume: 104
  year: 2020
  ident: b24
  article-title: Explaining away results in accurate and tolerant template matching
  publication-title: Pattern Recognit.
– volume: 22
  start-page: 6658
  year: 2022
  ident: b25
  article-title: Shape–texture debiased training for robust template matching
  publication-title: Sensors
– volume: 16
  start-page: 2738
  year: 2022
  end-page: 2751
  ident: b31
  article-title: DS-SRI: Diversity similarity measure against scaling, rotation, and illumination change for robust template matching
  publication-title: IET Image Process.
– volume: 98
  year: 2020
  ident: b29
  article-title: Fast and robust template matching with majority neighbour similarity and annulus projection transformation
  publication-title: Pattern Recognit.
– year: 2015
  ident: b33
  article-title: Multi-scale context aggregation by dilated convolutions
– reference: Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, T.S. Huang, Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7268–7277.
– volume: 34
  start-page: 1
  year: 2015
  end-page: 10
  ident: b28
  article-title: LazyFluids: Appearance transfer for fluid animations
  publication-title: ACM Trans. Graph.
– reference: T. Dekel, S. Oron, M. Rubinstein, S. Avidan, W.T. Freeman, Best-buddies similarity for robust template matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2021–2029.
– reference: L. Talker, Y. Moses, I. Shimshoni, Efficient sliding window computation for NN-based template matching, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 404–418.
– volume: 7
  start-page: 28392
  year: 2019
  end-page: 28401
  ident: b5
  article-title: Template matching-based method for intelligent invoice information identification
  publication-title: IEEE Access
– volume: 28
  start-page: 24
  year: 2009
  ident: b13
  article-title: PatchMatch: A randomized correspondence algorithm for structural image editing
  publication-title: ACM Trans. Graph.
– start-page: 673
  year: 2005
  end-page: 688
  ident: b16
  article-title: 5.3 - Fundamentals of vector quantization
  publication-title: Handbook of Image and Video Processing
– volume: 165
  start-page: 350
  year: 2015
  end-page: 360
  ident: b10
  article-title: Abrupt motion tracking via nearest neighbor field driven stochastic sampling
  publication-title: Neurocomputing
– reference: J. Cheng, Y. Wu, W. AbdAlmageed, P. Natarajan, QATM: Quality-aware template matching for deep learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11553–11562.
– volume: 17
  start-page: 1346
  year: 2023
  end-page: 1354
  ident: b27
  article-title: Template matching via bipartite graph and graph attention mechanism
  publication-title: IET Image Process.
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: b37
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems 32
– volume: 10
  year: 2021
  ident: b1
  article-title: Locating macromolecular assemblies in cells by 2D template matching with cisTEM
  publication-title: Elife
– reference: N. Ben-Zrihem, L. Zelnik-Manor, Approximate nearest neighbor fields in video, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5233–5242.
– volume: 70
  start-page: 1
  year: 2020
  end-page: 9
  ident: b30
  article-title: Scale-adaptive NN-based similarity for robust template matching
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 629
  year: 2018
  end-page: 645
  ident: b36
  article-title: Long-term visual object tracking benchmark
  publication-title: Asian Conference on Computer Vision
– volume: 179
  year: 2021
  ident: b4
  article-title: An accurate and distraction-free vision-based structural displacement measurement method integrating siamese network based tracker and correlation-based template matching
  publication-title: Measurement
– reference: I. Talmi, R. Mechrez, L. Zelnik-Manor, Template matching with deformable diversity similarity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 175–183.
– reference: Z. Chen, H. Jin, Z. Lin, S. Cohen, Y. Wu, Large displacement optical flow from nearest neighbor fields, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2443–2450.
– volume: 26
  start-page: 4079
  year: 2022
  end-page: 4089
  ident: b7
  article-title: Simsearch: A human-in-the-loop learning framework for fast detection of regions of interest in microscopy images
  publication-title: IEEE J. Biomed. Health Inform.
– reference: R. Kat, R. Jevnisek, S. Avidan, Matching pixels using co-occurrence statistics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1751–1759.
– reference: S. Korman, D. Reichman, G. Tsur, S. Avidan, Fast-match: Fast affine template matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2331–2338.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b23
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Korman, M. Milam, S. Soatto, OATM: Occlusion aware template matching by consensus set maximization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2675–2683.
– volume: 28
  start-page: 3061
  year: 2019
  end-page: 3074
  ident: b22
  article-title: Robust semantic template matching using a superpixel region binary descriptor
  publication-title: IEEE Trans. Image Process.
– volume: 87
  year: 2020
  ident: b39
  article-title: ANN-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms
  publication-title: Inf. Syst.
– volume: 10
  year: 2021
  ident: 10.1016/j.patcog.2024.110386_b1
  article-title: Locating macromolecular assemblies in cells by 2D template matching with cisTEM
  publication-title: Elife
  doi: 10.7554/eLife.68946
– volume: 179
  year: 2021
  ident: 10.1016/j.patcog.2024.110386_b4
  article-title: An accurate and distraction-free vision-based structural displacement measurement method integrating siamese network based tracker and correlation-based template matching
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109506
– volume: 57
  start-page: 9059
  issue: 11
  year: 2019
  ident: 10.1016/j.patcog.2024.110386_b6
  article-title: Fast and robust matching for multimodal remote sensing image registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2924684
– volume: 22
  start-page: 6658
  issue: 17
  year: 2022
  ident: 10.1016/j.patcog.2024.110386_b25
  article-title: Shape–texture debiased training for robust template matching
  publication-title: Sensors
  doi: 10.3390/s22176658
– ident: 10.1016/j.patcog.2024.110386_b20
  doi: 10.1109/CVPR.2018.00188
– start-page: 673
  year: 2005
  ident: 10.1016/j.patcog.2024.110386_b16
  article-title: 5.3 - Fundamentals of vector quantization
– volume: Vol. 1
  start-page: I
  year: 2001
  ident: 10.1016/j.patcog.2024.110386_b32
  article-title: Rapid object detection using a boosted cascade of simple features
– ident: 10.1016/j.patcog.2024.110386_b8
  doi: 10.1007/978-3-030-01249-6_25
– volume: 52
  start-page: 1220
  issue: 14
  year: 2016
  ident: 10.1016/j.patcog.2024.110386_b19
  article-title: Colour FAST (CFAST) match: fast affine template matching for colour images
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.1331
– ident: 10.1016/j.patcog.2024.110386_b35
  doi: 10.1109/CVPR.2013.312
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2024.110386_b30
  article-title: Scale-adaptive NN-based similarity for robust template matching
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.patcog.2024.110386_b34
  doi: 10.1109/CVPR.2018.00759
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2024.110386_b2
  article-title: Multi-template matching: a versatile tool for object-localization in microscopy images
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-3363-7
– ident: 10.1016/j.patcog.2024.110386_b18
  doi: 10.1109/CVPR.2013.302
– volume: 104
  year: 2020
  ident: 10.1016/j.patcog.2024.110386_b24
  article-title: Explaining away results in accurate and tolerant template matching
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107337
– ident: 10.1016/j.patcog.2024.110386_b38
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.patcog.2024.110386_b26
  doi: 10.1109/CVPR.2019.01182
– volume: 34
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.patcog.2024.110386_b28
  article-title: LazyFluids: Appearance transfer for fluid animations
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2766983
– year: 2015
  ident: 10.1016/j.patcog.2024.110386_b33
– volume: 165
  start-page: 350
  year: 2015
  ident: 10.1016/j.patcog.2024.110386_b10
  article-title: Abrupt motion tracking via nearest neighbor field driven stochastic sampling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.024
– ident: 10.1016/j.patcog.2024.110386_b11
  doi: 10.1109/CVPR.2015.7299160
– start-page: 629
  year: 2018
  ident: 10.1016/j.patcog.2024.110386_b36
  article-title: Long-term visual object tracking benchmark
– ident: 10.1016/j.patcog.2024.110386_b14
  doi: 10.1109/CVPR.2015.7298813
– volume: 7
  start-page: 28392
  year: 2019
  ident: 10.1016/j.patcog.2024.110386_b5
  article-title: Template matching-based method for intelligent invoice information identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901943
– volume: 34
  start-page: 127
  issue: 1
  year: 2011
  ident: 10.1016/j.patcog.2024.110386_b17
  article-title: Performance evaluation of full search equivalent pattern matching algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.106
– ident: 10.1016/j.patcog.2024.110386_b21
  doi: 10.1109/CVPR.2018.00283
– volume: 71
  start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2024.110386_b9
  article-title: GAD: A global-aware diversity-based template matching method
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3134326
– volume: 98
  year: 2020
  ident: 10.1016/j.patcog.2024.110386_b29
  article-title: Fast and robust template matching with majority neighbour similarity and annulus projection transformation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107029
– volume: 87
  year: 2020
  ident: 10.1016/j.patcog.2024.110386_b39
  article-title: ANN-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2019.02.006
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.patcog.2024.110386_b23
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 28
  start-page: 24
  issue: 3
  year: 2009
  ident: 10.1016/j.patcog.2024.110386_b13
  article-title: PatchMatch: A randomized correspondence algorithm for structural image editing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1531326.1531330
– volume: 16
  start-page: 2738
  issue: 10
  year: 2022
  ident: 10.1016/j.patcog.2024.110386_b31
  article-title: DS-SRI: Diversity similarity measure against scaling, rotation, and illumination change for robust template matching
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12521
– volume: 17
  start-page: 1346
  issue: 5
  year: 2023
  ident: 10.1016/j.patcog.2024.110386_b27
  article-title: Template matching via bipartite graph and graph attention mechanism
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12716
– ident: 10.1016/j.patcog.2024.110386_b12
  doi: 10.1109/CVPR.2013.316
– volume: 169
  year: 2021
  ident: 10.1016/j.patcog.2024.110386_b3
  article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108362
– volume: 28
  start-page: 3061
  issue: 6
  year: 2019
  ident: 10.1016/j.patcog.2024.110386_b22
  article-title: Robust semantic template matching using a superpixel region binary descriptor
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2893743
– ident: 10.1016/j.patcog.2024.110386_b15
  doi: 10.1109/CVPR.2017.144
– volume: 26
  start-page: 4079
  issue: 8
  year: 2022
  ident: 10.1016/j.patcog.2024.110386_b7
  article-title: Simsearch: A human-in-the-loop learning framework for fast detection of regions of interest in microscopy images
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3177602
– start-page: 8024
  year: 2019
  ident: 10.1016/j.patcog.2024.110386_b37
  article-title: Pytorch: An imperative style, high-performance deep learning library
SSID ssj0017142
Score 2.4580517
Snippet Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking....
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110386
SubjectTerms Computerized Image Processing
Datoriserad bildbehandling
High-resolution template matching
Object detection
Template matching
Vector quantized nearest neighbour field (VQ-NNF)
Title Efficient high-resolution template matching with vector quantized nearest neighbour fields
URI https://dx.doi.org/10.1016/j.patcog.2024.110386
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-513842
Volume 151
WOSCitedRecordID wos001207003800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvjE9tDJAf4Kly1cRJ7TxWUD7FNImBKl4sxx9TRpVWbVpN_PWcY8fdxsfYAy9pFSVnp_fr5e589zNCL1QqcwWvAUK5zklGlSGcGklybSCeMKUutWo3m2BHR3w6LY57vY9dL8xmxuqan58Xi_-qajgHynatszdQdxQKJ-A7KB2OoHY4_pPiJy0phFvid1TEBMLpMFzf0VDNwLfsg5fqSyjbLOymTdy79sq6qX64cgDHa7tq4BMEuKxnv61zW110ZI9bXk7XCxMKkLbL-W_XC--SjuvvVayq-VzVMIrvM9OSfJK-vjmmHNIslqdGM0oTQtMhvWRGA3GsN4SJI14f_dZG-3TB2WABzzo_HbgBBtvLL1NiX3lVxQLCrjbtTHgpwkkRXsottJuyvAArvTt-P5l-iItKLMk8eXyYfddJ2Zb7_TqbP3oqFyllWzfk5B66G-IHPPZ6v496pn6A9rq9OXAw1Q_RtwgDfAUGuIMB7mCAHQywhwGOMMABBjjCAHsYPEJf3kxOXr0jYR8NosAdbQiHIF-5wLvMrdWlSXKjUmoLVoB9ZyVXw0KBKR_JPLWJHdoRN7zUtGSpymyRUPoY7dTz2uwjbMGD1EbKZFTwTCeyVJJLyZm2I5mmzB4g2v1mQgWSebfXyUz8TWMHiMS7Fp5k5ZrrWacOERxF7wAKwNg1d7702ovjOHr119XXsZgvT8V6LfKE8ix9csMZHaI72z_KU7TTLNfmGbqtNk21Wj4PQPwJA7edmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+high-resolution+template+matching+with+vector+quantized+nearest+neighbour+fields&rft.jtitle=Pattern+recognition&rft.au=Gupta%2C+Ankit&rft.au=Sintorn%2C+Ida-Maria&rft.date=2024-07-01&rft.issn=0031-3203&rft.volume=151&rft.spage=110386&rft_id=info:doi/10.1016%2Fj.patcog.2024.110386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2024_110386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon