Gastrin promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in gastric cancer
Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17...
Uložené v:
| Vydané v: | Gene Ročník 704; s. 42 - 48 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.07.2019
|
| Predmet: | |
| ISSN: | 0378-1119, 1879-0038, 1879-0038 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.
•Gastrin promotes proliferation of GC cells and angiogenesis under normoxic and hypoxic conditions.•Gastrin promotes angiogenesis through the β-catenin/VEGF pathway in the normoxic condition.•Gastrin promotes angiogenesis via the HIF-1α/β-catenin/VEGF pathway under hypoxia.•Gastrin promotes GC cell proliferation and angiogenesis during hypoxia in vivo. |
|---|---|
| AbstractList | Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.
•Gastrin promotes proliferation of GC cells and angiogenesis under normoxic and hypoxic conditions.•Gastrin promotes angiogenesis through the β-catenin/VEGF pathway in the normoxic condition.•Gastrin promotes angiogenesis via the HIF-1α/β-catenin/VEGF pathway under hypoxia.•Gastrin promotes GC cell proliferation and angiogenesis during hypoxia in vivo. Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC. Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC. |
| Author | Yan, Bin Liu, Tiemei Wang, Yongfeng Tang, E. |
| Author_xml | – sequence: 1 givenname: E. surname: Tang fullname: Tang, E. organization: Department of Gastroenterology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China – sequence: 2 givenname: Yongfeng surname: Wang fullname: Wang, Yongfeng organization: Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China – sequence: 3 givenname: Tiemei surname: Liu fullname: Liu, Tiemei email: liu.tiemei@qphospital.com organization: Department of Gastroenterology, Endoscopy Center, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China – sequence: 4 givenname: Bin surname: Yan fullname: Yan, Bin email: yan.bin@qphospital.com organization: Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30980943$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAURS1URKeFH2CBsmSTzLMdJ7bEBlWdaaVKbICt5TgvkUcZp9ieSv2s8iH9JpxOy4JF8eZtzr2Szz0jJ372SMhHChUF2qx31YgeKwZUVVBXwNQbsqKyVSUAlydkBbyVJaVUnZKzGHeQnxDsHTnloCSomq-I3pqYgvPFbZj3c8JYGD-6eSmOLhbdfWFscncmOT8WV9ebkj4-rB9_l9Yk9M6vf15uN0V0ozfTQuSi8anQFtZ4i-E9eTuYKeKH53tOfmwuv19clTffttcXX29Ky6VKpYS-UQa5slJZqDtmeDeYbhC9aCzSFlvRsK6mreRCSW7BUFRDK-QgTS1axc_J52Nv_sevA8ak9y5anCbjcT5EzTgI2rKmpv9HGagGWgEio5-e0UO3x17fBrc34V6_-MsAOwI2zDEGHP4iFPQykt7pxaVeRtJQ6zxSDsl_QtalbHj2KRg3vR79coxidnnnMOhoHWbRvQtok-5n91r8D5kOrSA |
| CitedBy_id | crossref_primary_10_1016_j_gene_2021_146177 crossref_primary_10_1155_2021_5590037 crossref_primary_10_1159_000514410 crossref_primary_10_1159_000517025 crossref_primary_10_1016_j_biopha_2020_110851 crossref_primary_10_3389_fonc_2024_1467850 crossref_primary_10_3390_molecules27154893 crossref_primary_10_1016_j_canlet_2024_216871 crossref_primary_10_1016_j_chmed_2020_12_005 crossref_primary_10_1016_j_peptides_2021_170507 crossref_primary_10_1080_1750743X_2025_2536458 crossref_primary_10_1002_jcla_24612 crossref_primary_10_1016_j_phymed_2021_153619 crossref_primary_10_1177_1934578X231167996 crossref_primary_10_1177_1934578X221142796 crossref_primary_10_1186_s10020_022_00468_7 crossref_primary_10_1016_j_cej_2023_145498 crossref_primary_10_1080_00032719_2021_1951750 crossref_primary_10_3390_biology11040585 crossref_primary_10_1007_s10863_025_10057_y crossref_primary_10_1007_s12328_020_01295_1 crossref_primary_10_3389_fphar_2020_00809 crossref_primary_10_2147_JIR_S461427 crossref_primary_10_1007_s42764_023_00103_7 crossref_primary_10_1038_s41598_021_95110_7 crossref_primary_10_1155_2022_5209607 crossref_primary_10_1016_j_seminoncol_2025_152396 crossref_primary_10_3389_fonc_2021_711207 crossref_primary_10_1177_1724600819877193 crossref_primary_10_1038_s41392_022_01190_w crossref_primary_10_1155_2022_1649605 crossref_primary_10_1007_s12032_025_02783_5 crossref_primary_10_4252_wjsc_v12_i12_1667 crossref_primary_10_1016_j_bbcan_2023_188884 |
| Cites_doi | 10.1016/j.canlet.2012.12.030 10.3892/or.2016.4943 10.1158/1078-0432.CCR-04-0343 10.1016/j.canlet.2013.12.021 10.1007/s10456-015-9475-4 10.1158/0008-5472.CAN-05-0280 10.1186/1476-4598-13-209 10.1158/1078-0432.CCR-10-1213 10.1002/cncr.29096 10.1056/NEJM197111182852108 10.1016/j.ccr.2011.08.016 10.1158/1078-0432.CCR-14-1979 10.1158/1078-0432.CCR-09-2610 10.2147/vhrm.2006.2.3.213 10.1016/j.cytogfr.2014.07.009 10.1200/JCO.2005.05.0245 10.1007/s10120-015-0483-2 10.3748/wjg.v12.i19.2979 10.1016/j.canlet.2017.05.013 10.1593/neo.05379 10.1016/S0065-230X(08)60403-0 10.1159/000485455 10.1146/annurev-nutr-071715-051004 10.1016/j.yexcr.2016.06.001 10.1038/cdd.2011.95 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.gene.2019.04.029 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Biology |
| EISSN | 1879-0038 |
| EndPage | 48 |
| ExternalDocumentID | 30980943 10_1016_j_gene_2019_04_029 S0378111919303804 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K WH7 ZA5 ~G- .55 .GJ 29H 53G 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM R2- SBG SEW VH1 WUQ X7M XOL XPP Y6R ZGI ~HD ~KM NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c389t-80d69ae39c89c04b2a3bfabf5d56ce17e7562b417835983c0a1e9f758f8a45793 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471086700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-1119 1879-0038 |
| IngestDate | Sun Nov 09 09:32:51 EST 2025 Thu Oct 02 11:17:10 EDT 2025 Thu Apr 03 07:03:49 EDT 2025 Sat Nov 29 07:22:10 EST 2025 Tue Nov 18 21:00:39 EST 2025 Fri Feb 23 02:27:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Angiogenesis COX-2 VEGF Gastrin β-Catenin GC G17 MTT Gastric cancer |
| Language | English |
| License | Copyright © 2019. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-80d69ae39c89c04b2a3bfabf5d56ce17e7562b417835983c0a1e9f758f8a45793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30980943 |
| PQID | 2209607505 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2305172641 proquest_miscellaneous_2209607505 pubmed_primary_30980943 crossref_primary_10_1016_j_gene_2019_04_029 crossref_citationtrail_10_1016_j_gene_2019_04_029 elsevier_sciencedirect_doi_10_1016_j_gene_2019_04_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Gene |
| PublicationTitleAlternate | Gene |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fernández, Rodríguez, Valenzuela, Calderon, Urzúa, Munroe, Rosas, Lemus, Díaz, Wright, Leyton, Tapia, Quest (bb0015) 2014; 13 Wang, Xin, Wang, He, Wei, Zhang, Shen (bb0105) 2016; 346 Zhang, Wei, Gong, Chiu, Lee, Colman, Huang, Xue, Liu, Wang, Sawaya, Xie, Yung, Medema, He, Huang (bb0120) 2011; 20 Lee, Bae, Noh, Song, Ye, Mao, Lee, Wu, Kim (bb0035) 2015; 21 Xu, Chen, Shao, Li, Xu, Zhang, Zhu, Zhou, He, Sun (bb0115) 2013; 332 Sui, Zhao, Zhou, Wen, Deng, Li, Ji, Liu, Feng, Chai, Zhang, Cai, Li (bb0090) 2017; 403 Lefranc, Mijatovic, Mathieu, Rorive, Decaestecker, Debeir, Brotchi, Van Ham, Salmon, Kiss (bb0040) 2004; 10 Smith, Hold, Tahara, El-Omar (bb0085) 2006; 12 Liu, Zhu, Wang, Shen, Qin, Ren, Sun, Tang (bb0045) 2010; 16 Ma, Patel, Babapoor-Farrokhran, Franklin, Semenza, Sodhi, Montaner (bb0050) 2015; 18 Friishansen, Sundler, Li, Gillespie, Saunders, Greenson, Owyang, Rehfeld, Samuelson (bb0025) 1998; 274 Nishida, Yano, Nishida, Kamura, Kojiro (bb0065) 2006; 2 Zhuang, Yan, Zhang, Zhang, Zhang, Han (bb0135) 2016; 36 Xu, Chen, Shao, Li, Xu, Zhang, Zhu, Zhou, He, Sun (bb0110) 2013; 332 Rehfeld, van Solinge (bb0080) 1994; 63 Moens, Goveia, Stapor, Cantelmo, Carmeliet (bb0060) 2014; 25 Zhi, Tao, Xie, Zhu, Li, Tang, Wang, Xu, Zhang, Xu (bb0130) 2014; 346 Zhuang, Yan, Zhang, Zhang, Zhang, Han (bb0140) 2016; 36 Mathieu, Mijatovic, van Damme, Kiss (bb0055) 2005; 7 Qiang, Wu, Zhang, Lu, Hu, Wang, Zhao, Chen, Wang, You, Guo (bb0070) 2012; 19 Folkman (bb0020) 1971; 285 Bhatia (bb0005) 2015; 121 Theodoratou, Timofeeva, Li, Meng, Ioannidis (bb0095) 2017; 37 Zhang, Wang, Li, Zhao, Wu, Du, Han (bb0125) 2017; 44 Clarke, Dickson, Harris, Grabowska, Watson (bb0010) 2006; 66 Wagner, Grothe, Haerting, Kleber, Grothey, Fleig (bb0100) 2006; 24 Ravichandran, Velmurugan, Gu, Singh, Agarwal (bb0075) 2010; 16 Kim, Yoon, Choi, Ashktorab, Smoot, Nam, Lee, Park (bb0030) 2016; 19 Lee (10.1016/j.gene.2019.04.029_bb0035) 2015; 21 Moens (10.1016/j.gene.2019.04.029_bb0060) 2014; 25 Theodoratou (10.1016/j.gene.2019.04.029_bb0095) 2017; 37 Xu (10.1016/j.gene.2019.04.029_bb0115) 2013; 332 Friishansen (10.1016/j.gene.2019.04.029_bb0025) 1998; 274 Wagner (10.1016/j.gene.2019.04.029_bb0100) 2006; 24 Rehfeld (10.1016/j.gene.2019.04.029_bb0080) 1994; 63 Ravichandran (10.1016/j.gene.2019.04.029_bb0075) 2010; 16 Zhang (10.1016/j.gene.2019.04.029_bb0120) 2011; 20 Liu (10.1016/j.gene.2019.04.029_bb0045) 2010; 16 Mathieu (10.1016/j.gene.2019.04.029_bb0055) 2005; 7 Zhi (10.1016/j.gene.2019.04.029_bb0130) 2014; 346 Clarke (10.1016/j.gene.2019.04.029_bb0010) 2006; 66 Zhuang (10.1016/j.gene.2019.04.029_bb0135) 2016; 36 Qiang (10.1016/j.gene.2019.04.029_bb0070) 2012; 19 Bhatia (10.1016/j.gene.2019.04.029_bb0005) 2015; 121 Fernández (10.1016/j.gene.2019.04.029_bb0015) 2014; 13 Folkman (10.1016/j.gene.2019.04.029_bb0020) 1971; 285 Ma (10.1016/j.gene.2019.04.029_bb0050) 2015; 18 Nishida (10.1016/j.gene.2019.04.029_bb0065) 2006; 2 Wang (10.1016/j.gene.2019.04.029_bb0105) 2016; 346 Smith (10.1016/j.gene.2019.04.029_bb0085) 2006; 12 Zhuang (10.1016/j.gene.2019.04.029_bb0140) 2016; 36 Kim (10.1016/j.gene.2019.04.029_bb0030) 2016; 19 Xu (10.1016/j.gene.2019.04.029_bb0110) 2013; 332 Sui (10.1016/j.gene.2019.04.029_bb0090) 2017; 403 Lefranc (10.1016/j.gene.2019.04.029_bb0040) 2004; 10 Zhang (10.1016/j.gene.2019.04.029_bb0125) 2017; 44 |
| References_xml | – volume: 19 start-page: 284 year: 2012 end-page: 294 ident: bb0070 article-title: HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway publication-title: Cell Death Differ. – volume: 24 start-page: 2903 year: 2006 end-page: 2909 ident: bb0100 article-title: Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data publication-title: J. Clin. Oncol. – volume: 10 start-page: 8250 year: 2004 end-page: 8265 ident: bb0040 article-title: Characterization of gastrin-induced proangiogenic effects in vivo in orthotopic U373 experimental human glioblastomas and in vitro in human umbilical vein endothelial cells publication-title: Clin. Cancer Res. – volume: 36 start-page: 1369 year: 2016 end-page: 1376 ident: bb0140 article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway publication-title: Oncol. Rep. – volume: 16 start-page: 2740 year: 2010 end-page: 2750 ident: bb0045 article-title: Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis publication-title: Clin. Cancer Res. – volume: 2 start-page: 213 year: 2006 end-page: 219 ident: bb0065 article-title: Angiogenesis in cancer publication-title: Vasc. Health Risk Manag. – volume: 63 start-page: 295 year: 1994 end-page: 347 ident: bb0080 article-title: The tumor biology of gastrin and cholecystokinin publication-title: Adv. Cancer Res. – volume: 66 start-page: 3504 year: 2006 end-page: 3512 ident: bb0010 article-title: Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor publication-title: Cancer Res. – volume: 332 start-page: 11 year: 2013 end-page: 18 ident: bb0115 article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells publication-title: Cancer Lett. – volume: 25 start-page: 473 year: 2014 end-page: 482 ident: bb0060 article-title: The multifaceted activity of VEGF in angiogenesis - implications for therapy responses publication-title: Cytokine Growth Factor Rev. – volume: 403 start-page: 86 year: 2017 end-page: 97 ident: bb0090 article-title: Tanshinone IIA inhibits beta-catenin/VEGF-mediated angiogenesis by targeting TGF-beta1 in normoxic and HIF-1alpha in hypoxic microenvironments in human colorectal cancer publication-title: Cancer Lett. – volume: 346 start-page: 104 year: 2014 end-page: 113 ident: bb0130 article-title: MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer publication-title: Cancer Lett. – volume: 16 start-page: 4595 year: 2010 end-page: 4606 ident: bb0075 article-title: Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice publication-title: Clin. Cancer Res. – volume: 37 start-page: 293 year: 2017 end-page: 320 ident: bb0095 article-title: Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer publication-title: Annu. Rev. Nutr. – volume: 18 start-page: 477 year: 2015 end-page: 488 ident: bb0050 article-title: KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma publication-title: Angiogenesis – volume: 20 start-page: 427 year: 2011 end-page: 442 ident: bb0120 article-title: FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis publication-title: Cancer Cell – volume: 121 start-page: 648 year: 2015 end-page: 663 ident: bb0005 article-title: Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors publication-title: Cancer – volume: 332 start-page: 11 year: 2013 end-page: 18 ident: bb0110 article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells publication-title: Cancer Lett. – volume: 44 start-page: 1251 year: 2017 end-page: 1262 ident: bb0125 article-title: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating Wnt/β-catenin axis in breast cancer cells publication-title: Cell. Physiol. Biochem. – volume: 274 start-page: 561 year: 1998 end-page: 568 ident: bb0025 article-title: Impaired gastric acid secretion in gastrin-deficient mice publication-title: Am. J. Phys. – volume: 19 start-page: 381 year: 2016 end-page: 391 ident: bb0030 article-title: Gastrokine 1 inhibits gastrin-induced cell proliferation publication-title: Gastric Cancer – volume: 346 start-page: 74 year: 2016 end-page: 84 ident: bb0105 article-title: Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-kappaB signaling publication-title: Exp. Cell Res. – volume: 13 start-page: 209 year: 2014 ident: bb0015 article-title: Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription publication-title: Mol. Cancer – volume: 12 start-page: 2979 year: 2006 end-page: 2990 ident: bb0085 article-title: Cellular and molecular aspects of gastric cancer publication-title: World J. Gastroenterol. – volume: 36 start-page: 1369 year: 2016 ident: bb0135 article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway publication-title: Oncol. Rep. – volume: 285 start-page: 1182 year: 1971 ident: bb0020 article-title: Tumor angiogenesis: therapeutic implications publication-title: N. Engl. J. Med. – volume: 21 start-page: 1438 year: 2015 ident: bb0035 article-title: Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes publication-title: Clin. Cancer Res. – volume: 7 start-page: 930 year: 2005 end-page: 943 ident: bb0055 article-title: Gastrin exerts pleiotropic effects on human melanoma cell biology publication-title: Neoplasia – volume: 332 start-page: 11 year: 2013 ident: 10.1016/j.gene.2019.04.029_bb0110 article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.12.030 – volume: 36 start-page: 1369 year: 2016 ident: 10.1016/j.gene.2019.04.029_bb0135 article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway publication-title: Oncol. Rep. doi: 10.3892/or.2016.4943 – volume: 10 start-page: 8250 year: 2004 ident: 10.1016/j.gene.2019.04.029_bb0040 article-title: Characterization of gastrin-induced proangiogenic effects in vivo in orthotopic U373 experimental human glioblastomas and in vitro in human umbilical vein endothelial cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-04-0343 – volume: 346 start-page: 104 year: 2014 ident: 10.1016/j.gene.2019.04.029_bb0130 article-title: MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.12.021 – volume: 18 start-page: 477 year: 2015 ident: 10.1016/j.gene.2019.04.029_bb0050 article-title: KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma publication-title: Angiogenesis doi: 10.1007/s10456-015-9475-4 – volume: 66 start-page: 3504 year: 2006 ident: 10.1016/j.gene.2019.04.029_bb0010 article-title: Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0280 – volume: 13 start-page: 209 year: 2014 ident: 10.1016/j.gene.2019.04.029_bb0015 article-title: Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription publication-title: Mol. Cancer doi: 10.1186/1476-4598-13-209 – volume: 16 start-page: 4595 year: 2010 ident: 10.1016/j.gene.2019.04.029_bb0075 article-title: Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-1213 – volume: 121 start-page: 648 year: 2015 ident: 10.1016/j.gene.2019.04.029_bb0005 article-title: Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors publication-title: Cancer doi: 10.1002/cncr.29096 – volume: 285 start-page: 1182 year: 1971 ident: 10.1016/j.gene.2019.04.029_bb0020 article-title: Tumor angiogenesis: therapeutic implications publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197111182852108 – volume: 20 start-page: 427 year: 2011 ident: 10.1016/j.gene.2019.04.029_bb0120 article-title: FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.08.016 – volume: 21 start-page: 1438 year: 2015 ident: 10.1016/j.gene.2019.04.029_bb0035 article-title: Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1979 – volume: 16 start-page: 2740 year: 2010 ident: 10.1016/j.gene.2019.04.029_bb0045 article-title: Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-2610 – volume: 2 start-page: 213 year: 2006 ident: 10.1016/j.gene.2019.04.029_bb0065 article-title: Angiogenesis in cancer publication-title: Vasc. Health Risk Manag. doi: 10.2147/vhrm.2006.2.3.213 – volume: 25 start-page: 473 year: 2014 ident: 10.1016/j.gene.2019.04.029_bb0060 article-title: The multifaceted activity of VEGF in angiogenesis - implications for therapy responses publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2014.07.009 – volume: 332 start-page: 11 year: 2013 ident: 10.1016/j.gene.2019.04.029_bb0115 article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.12.030 – volume: 24 start-page: 2903 year: 2006 ident: 10.1016/j.gene.2019.04.029_bb0100 article-title: Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.05.0245 – volume: 274 start-page: 561 year: 1998 ident: 10.1016/j.gene.2019.04.029_bb0025 article-title: Impaired gastric acid secretion in gastrin-deficient mice publication-title: Am. J. Phys. – volume: 19 start-page: 381 year: 2016 ident: 10.1016/j.gene.2019.04.029_bb0030 article-title: Gastrokine 1 inhibits gastrin-induced cell proliferation publication-title: Gastric Cancer doi: 10.1007/s10120-015-0483-2 – volume: 12 start-page: 2979 year: 2006 ident: 10.1016/j.gene.2019.04.029_bb0085 article-title: Cellular and molecular aspects of gastric cancer publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v12.i19.2979 – volume: 36 start-page: 1369 year: 2016 ident: 10.1016/j.gene.2019.04.029_bb0140 article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway publication-title: Oncol. Rep. doi: 10.3892/or.2016.4943 – volume: 403 start-page: 86 year: 2017 ident: 10.1016/j.gene.2019.04.029_bb0090 article-title: Tanshinone IIA inhibits beta-catenin/VEGF-mediated angiogenesis by targeting TGF-beta1 in normoxic and HIF-1alpha in hypoxic microenvironments in human colorectal cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.05.013 – volume: 7 start-page: 930 year: 2005 ident: 10.1016/j.gene.2019.04.029_bb0055 article-title: Gastrin exerts pleiotropic effects on human melanoma cell biology publication-title: Neoplasia doi: 10.1593/neo.05379 – volume: 63 start-page: 295 year: 1994 ident: 10.1016/j.gene.2019.04.029_bb0080 article-title: The tumor biology of gastrin and cholecystokinin publication-title: Adv. Cancer Res. doi: 10.1016/S0065-230X(08)60403-0 – volume: 44 start-page: 1251 year: 2017 ident: 10.1016/j.gene.2019.04.029_bb0125 article-title: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating Wnt/β-catenin axis in breast cancer cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000485455 – volume: 37 start-page: 293 year: 2017 ident: 10.1016/j.gene.2019.04.029_bb0095 article-title: Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-071715-051004 – volume: 346 start-page: 74 year: 2016 ident: 10.1016/j.gene.2019.04.029_bb0105 article-title: Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-kappaB signaling publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2016.06.001 – volume: 19 start-page: 284 year: 2012 ident: 10.1016/j.gene.2019.04.029_bb0070 article-title: HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.95 |
| SSID | ssj0000552 |
| Score | 2.4639175 |
| Snippet | Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 42 |
| SubjectTerms | Angiogenesis beta catenin cell proliferation Gastric cancer Gastrin gastrins hypoxia hypoxia-inducible factor 1 in vivo studies metastasis neoplasm progression normoxia stomach neoplasms vascular endothelial growth factors VEGF β-Catenin |
| Title | Gastrin promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in gastric cancer |
| URI | https://dx.doi.org/10.1016/j.gene.2019.04.029 https://www.ncbi.nlm.nih.gov/pubmed/30980943 https://www.proquest.com/docview/2209607505 https://www.proquest.com/docview/2305172641 |
| Volume | 704 |
| WOSCitedRecordID | wos000471086700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-0038 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0000552 issn: 0378-1119 databaseCode: AIEXJ dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-0038 dateEnd: 20191230 omitProxy: false ssIdentifier: ssj0000552 issn: 0378-1119 databaseCode: AIEXJ dateStart: 19950111 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RFiQ4IGh5hEe1SLSXyK2ftfeYVElbVAUOKYTTar1eR6laJzQJan8W_JD-Jma8Y6eAGpUDOVjWxrt2PF9mZ2dnvmHsvZfliciz0FFZrp1QJZmDtOWOgk9uYArzXVtsIu71ksFAfKJY1WlZTiAuiuTyUkz-q6ihDYSNqbP_IO56UGiAcxA6HEHscLyT4A8UluIoI69ADAY5mIej8RB12miK1iamMqAjthg2D4-6jre139lqo0IrT3wHY6QK9Bd0P3cOuk2M8FBnlPoyLAfXGCumKa6XLFvkr164AawGqbMcvlDD13ExzA1NlhgGNJpbwJhzM6oVkPXJtokTnFwSZRZU5ZKgVCxcmnqkC0nNxm7YnOyEvmOZNUlhWmotmnrtN38pdetfOMUXi8SmnijJaclR8huDdu-j7J4cH8t-Z9DfnnxzsLgYbsJTpZUVtubHkQDlt9Y66gw-LKbsKLLbTfTclF1lAwH_vO1tFsxtK5TSUuk_YY9picFbFhpP2T1TrLONVqFm4_Mrvs3LoN9yN2WdPWhXZ49uMFNuMEko4hWK-E0U8fSKL1DESxRd_9i9_llhZxeRw2vkcBiIkMMtcp6xk26nv3_oUC0OR4NJOwNDJtsTygRCJ0K7YeqrIM1VmkdZtKeNF5sYDOk09NCRKJJAu8ozIofFaJ6oMIJJ4DlbLcaFeck4aAEf1H4YpTmYUFokYQ6Tjg5C7WowZ9MG86r3KzUR1WO9lDNZRSSeSvy5EmUi3VCCTBqsWfeZWJqWpVdHldgkGZrWgJQAuaX93lUylqCFcWtNFWY8n0rfR1cAWN_RkmsC5MODBYjXYC8sQOpnDVyRYIzvqzv0fs0eLv50b9jq7GJu3rL7-vtsNL3YZCvxINkkgP8CaeG7oQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gastrin+promotes+angiogenesis+by+activating+HIF-1%CE%B1%2F%CE%B2-catenin%2FVEGF+signaling+in+gastric+cancer&rft.jtitle=Gene&rft.au=Tang%2C+E&rft.au=Wang%2C+Yongfeng&rft.au=Liu%2C+Tiemei&rft.au=Yan%2C+Bin&rft.date=2019-07-01&rft.issn=0378-1119&rft.volume=704+p.42-48&rft.spage=42&rft.epage=48&rft_id=info:doi/10.1016%2Fj.gene.2019.04.029&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon |