Gastrin promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in gastric cancer

Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17...

Full description

Saved in:
Bibliographic Details
Published in:Gene Vol. 704; pp. 42 - 48
Main Authors: Tang, E., Wang, Yongfeng, Liu, Tiemei, Yan, Bin
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.07.2019
Subjects:
ISSN:0378-1119, 1879-0038, 1879-0038
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC. •Gastrin promotes proliferation of GC cells and angiogenesis under normoxic and hypoxic conditions.•Gastrin promotes angiogenesis through the β-catenin/VEGF pathway in the normoxic condition.•Gastrin promotes angiogenesis via the HIF-1α/β-catenin/VEGF pathway under hypoxia.•Gastrin promotes GC cell proliferation and angiogenesis during hypoxia in vivo.
AbstractList Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC. •Gastrin promotes proliferation of GC cells and angiogenesis under normoxic and hypoxic conditions.•Gastrin promotes angiogenesis through the β-catenin/VEGF pathway in the normoxic condition.•Gastrin promotes angiogenesis via the HIF-1α/β-catenin/VEGF pathway under hypoxia.•Gastrin promotes GC cell proliferation and angiogenesis during hypoxia in vivo.
Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.
Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.
Author Yan, Bin
Liu, Tiemei
Wang, Yongfeng
Tang, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Tang
  fullname: Tang, E.
  organization: Department of Gastroenterology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
– sequence: 2
  givenname: Yongfeng
  surname: Wang
  fullname: Wang, Yongfeng
  organization: Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
– sequence: 3
  givenname: Tiemei
  surname: Liu
  fullname: Liu, Tiemei
  email: liu.tiemei@qphospital.com
  organization: Department of Gastroenterology, Endoscopy Center, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
– sequence: 4
  givenname: Bin
  surname: Yan
  fullname: Yan, Bin
  email: yan.bin@qphospital.com
  organization: Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30980943$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFH2CBsmSTzLMdJ7bEBlWdaaVKbICt5TgvkUcZp9ieSv2s8iH9JpxOy4JF8eZtzr2Szz0jJ372SMhHChUF2qx31YgeKwZUVVBXwNQbsqKyVSUAlydkBbyVJaVUnZKzGHeQnxDsHTnloCSomq-I3pqYgvPFbZj3c8JYGD-6eSmOLhbdfWFscncmOT8WV9ebkj4-rB9_l9Yk9M6vf15uN0V0ozfTQuSi8anQFtZ4i-E9eTuYKeKH53tOfmwuv19clTffttcXX29Ky6VKpYS-UQa5slJZqDtmeDeYbhC9aCzSFlvRsK6mreRCSW7BUFRDK-QgTS1axc_J52Nv_sevA8ak9y5anCbjcT5EzTgI2rKmpv9HGagGWgEio5-e0UO3x17fBrc34V6_-MsAOwI2zDEGHP4iFPQykt7pxaVeRtJQ6zxSDsl_QtalbHj2KRg3vR79coxidnnnMOhoHWbRvQtok-5n91r8D5kOrSA
CitedBy_id crossref_primary_10_1016_j_gene_2021_146177
crossref_primary_10_1155_2021_5590037
crossref_primary_10_1159_000514410
crossref_primary_10_1159_000517025
crossref_primary_10_1016_j_biopha_2020_110851
crossref_primary_10_3389_fonc_2024_1467850
crossref_primary_10_3390_molecules27154893
crossref_primary_10_1016_j_canlet_2024_216871
crossref_primary_10_1016_j_chmed_2020_12_005
crossref_primary_10_1016_j_peptides_2021_170507
crossref_primary_10_1080_1750743X_2025_2536458
crossref_primary_10_1002_jcla_24612
crossref_primary_10_1016_j_phymed_2021_153619
crossref_primary_10_1177_1934578X231167996
crossref_primary_10_1177_1934578X221142796
crossref_primary_10_1186_s10020_022_00468_7
crossref_primary_10_1016_j_cej_2023_145498
crossref_primary_10_1080_00032719_2021_1951750
crossref_primary_10_3390_biology11040585
crossref_primary_10_1007_s10863_025_10057_y
crossref_primary_10_1007_s12328_020_01295_1
crossref_primary_10_3389_fphar_2020_00809
crossref_primary_10_2147_JIR_S461427
crossref_primary_10_1007_s42764_023_00103_7
crossref_primary_10_1038_s41598_021_95110_7
crossref_primary_10_1155_2022_5209607
crossref_primary_10_1016_j_seminoncol_2025_152396
crossref_primary_10_3389_fonc_2021_711207
crossref_primary_10_1177_1724600819877193
crossref_primary_10_1038_s41392_022_01190_w
crossref_primary_10_1155_2022_1649605
crossref_primary_10_1007_s12032_025_02783_5
crossref_primary_10_4252_wjsc_v12_i12_1667
crossref_primary_10_1016_j_bbcan_2023_188884
Cites_doi 10.1016/j.canlet.2012.12.030
10.3892/or.2016.4943
10.1158/1078-0432.CCR-04-0343
10.1016/j.canlet.2013.12.021
10.1007/s10456-015-9475-4
10.1158/0008-5472.CAN-05-0280
10.1186/1476-4598-13-209
10.1158/1078-0432.CCR-10-1213
10.1002/cncr.29096
10.1056/NEJM197111182852108
10.1016/j.ccr.2011.08.016
10.1158/1078-0432.CCR-14-1979
10.1158/1078-0432.CCR-09-2610
10.2147/vhrm.2006.2.3.213
10.1016/j.cytogfr.2014.07.009
10.1200/JCO.2005.05.0245
10.1007/s10120-015-0483-2
10.3748/wjg.v12.i19.2979
10.1016/j.canlet.2017.05.013
10.1593/neo.05379
10.1016/S0065-230X(08)60403-0
10.1159/000485455
10.1146/annurev-nutr-071715-051004
10.1016/j.yexcr.2016.06.001
10.1038/cdd.2011.95
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.gene.2019.04.029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1879-0038
EndPage 48
ExternalDocumentID 30980943
10_1016_j_gene_2019_04_029
S0378111919303804
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
WH7
ZA5
~G-
.55
.GJ
29H
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
R2-
SBG
SEW
VH1
WUQ
X7M
XOL
XPP
Y6R
ZGI
~HD
~KM
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-80d69ae39c89c04b2a3bfabf5d56ce17e7562b417835983c0a1e9f758f8a45793
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471086700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-1119
1879-0038
IngestDate Sun Nov 09 09:32:51 EST 2025
Thu Oct 02 11:17:10 EDT 2025
Thu Apr 03 07:03:49 EDT 2025
Sat Nov 29 07:22:10 EST 2025
Tue Nov 18 21:00:39 EST 2025
Fri Feb 23 02:27:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Angiogenesis
COX-2
VEGF
Gastrin
β-Catenin
GC
G17
MTT
Gastric cancer
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-80d69ae39c89c04b2a3bfabf5d56ce17e7562b417835983c0a1e9f758f8a45793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30980943
PQID 2209607505
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2305172641
proquest_miscellaneous_2209607505
pubmed_primary_30980943
crossref_primary_10_1016_j_gene_2019_04_029
crossref_citationtrail_10_1016_j_gene_2019_04_029
elsevier_sciencedirect_doi_10_1016_j_gene_2019_04_029
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Gene
PublicationTitleAlternate Gene
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fernández, Rodríguez, Valenzuela, Calderon, Urzúa, Munroe, Rosas, Lemus, Díaz, Wright, Leyton, Tapia, Quest (bb0015) 2014; 13
Wang, Xin, Wang, He, Wei, Zhang, Shen (bb0105) 2016; 346
Zhang, Wei, Gong, Chiu, Lee, Colman, Huang, Xue, Liu, Wang, Sawaya, Xie, Yung, Medema, He, Huang (bb0120) 2011; 20
Lee, Bae, Noh, Song, Ye, Mao, Lee, Wu, Kim (bb0035) 2015; 21
Xu, Chen, Shao, Li, Xu, Zhang, Zhu, Zhou, He, Sun (bb0115) 2013; 332
Sui, Zhao, Zhou, Wen, Deng, Li, Ji, Liu, Feng, Chai, Zhang, Cai, Li (bb0090) 2017; 403
Lefranc, Mijatovic, Mathieu, Rorive, Decaestecker, Debeir, Brotchi, Van Ham, Salmon, Kiss (bb0040) 2004; 10
Smith, Hold, Tahara, El-Omar (bb0085) 2006; 12
Liu, Zhu, Wang, Shen, Qin, Ren, Sun, Tang (bb0045) 2010; 16
Ma, Patel, Babapoor-Farrokhran, Franklin, Semenza, Sodhi, Montaner (bb0050) 2015; 18
Friishansen, Sundler, Li, Gillespie, Saunders, Greenson, Owyang, Rehfeld, Samuelson (bb0025) 1998; 274
Nishida, Yano, Nishida, Kamura, Kojiro (bb0065) 2006; 2
Zhuang, Yan, Zhang, Zhang, Zhang, Han (bb0135) 2016; 36
Xu, Chen, Shao, Li, Xu, Zhang, Zhu, Zhou, He, Sun (bb0110) 2013; 332
Rehfeld, van Solinge (bb0080) 1994; 63
Moens, Goveia, Stapor, Cantelmo, Carmeliet (bb0060) 2014; 25
Zhi, Tao, Xie, Zhu, Li, Tang, Wang, Xu, Zhang, Xu (bb0130) 2014; 346
Zhuang, Yan, Zhang, Zhang, Zhang, Han (bb0140) 2016; 36
Mathieu, Mijatovic, van Damme, Kiss (bb0055) 2005; 7
Qiang, Wu, Zhang, Lu, Hu, Wang, Zhao, Chen, Wang, You, Guo (bb0070) 2012; 19
Folkman (bb0020) 1971; 285
Bhatia (bb0005) 2015; 121
Theodoratou, Timofeeva, Li, Meng, Ioannidis (bb0095) 2017; 37
Zhang, Wang, Li, Zhao, Wu, Du, Han (bb0125) 2017; 44
Clarke, Dickson, Harris, Grabowska, Watson (bb0010) 2006; 66
Wagner, Grothe, Haerting, Kleber, Grothey, Fleig (bb0100) 2006; 24
Ravichandran, Velmurugan, Gu, Singh, Agarwal (bb0075) 2010; 16
Kim, Yoon, Choi, Ashktorab, Smoot, Nam, Lee, Park (bb0030) 2016; 19
Lee (10.1016/j.gene.2019.04.029_bb0035) 2015; 21
Moens (10.1016/j.gene.2019.04.029_bb0060) 2014; 25
Theodoratou (10.1016/j.gene.2019.04.029_bb0095) 2017; 37
Xu (10.1016/j.gene.2019.04.029_bb0115) 2013; 332
Friishansen (10.1016/j.gene.2019.04.029_bb0025) 1998; 274
Wagner (10.1016/j.gene.2019.04.029_bb0100) 2006; 24
Rehfeld (10.1016/j.gene.2019.04.029_bb0080) 1994; 63
Ravichandran (10.1016/j.gene.2019.04.029_bb0075) 2010; 16
Zhang (10.1016/j.gene.2019.04.029_bb0120) 2011; 20
Liu (10.1016/j.gene.2019.04.029_bb0045) 2010; 16
Mathieu (10.1016/j.gene.2019.04.029_bb0055) 2005; 7
Zhi (10.1016/j.gene.2019.04.029_bb0130) 2014; 346
Clarke (10.1016/j.gene.2019.04.029_bb0010) 2006; 66
Zhuang (10.1016/j.gene.2019.04.029_bb0135) 2016; 36
Qiang (10.1016/j.gene.2019.04.029_bb0070) 2012; 19
Bhatia (10.1016/j.gene.2019.04.029_bb0005) 2015; 121
Fernández (10.1016/j.gene.2019.04.029_bb0015) 2014; 13
Folkman (10.1016/j.gene.2019.04.029_bb0020) 1971; 285
Ma (10.1016/j.gene.2019.04.029_bb0050) 2015; 18
Nishida (10.1016/j.gene.2019.04.029_bb0065) 2006; 2
Wang (10.1016/j.gene.2019.04.029_bb0105) 2016; 346
Smith (10.1016/j.gene.2019.04.029_bb0085) 2006; 12
Zhuang (10.1016/j.gene.2019.04.029_bb0140) 2016; 36
Kim (10.1016/j.gene.2019.04.029_bb0030) 2016; 19
Xu (10.1016/j.gene.2019.04.029_bb0110) 2013; 332
Sui (10.1016/j.gene.2019.04.029_bb0090) 2017; 403
Lefranc (10.1016/j.gene.2019.04.029_bb0040) 2004; 10
Zhang (10.1016/j.gene.2019.04.029_bb0125) 2017; 44
References_xml – volume: 19
  start-page: 284
  year: 2012
  end-page: 294
  ident: bb0070
  article-title: HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway
  publication-title: Cell Death Differ.
– volume: 24
  start-page: 2903
  year: 2006
  end-page: 2909
  ident: bb0100
  article-title: Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data
  publication-title: J. Clin. Oncol.
– volume: 10
  start-page: 8250
  year: 2004
  end-page: 8265
  ident: bb0040
  article-title: Characterization of gastrin-induced proangiogenic effects in vivo in orthotopic U373 experimental human glioblastomas and in vitro in human umbilical vein endothelial cells
  publication-title: Clin. Cancer Res.
– volume: 36
  start-page: 1369
  year: 2016
  end-page: 1376
  ident: bb0140
  article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway
  publication-title: Oncol. Rep.
– volume: 16
  start-page: 2740
  year: 2010
  end-page: 2750
  ident: bb0045
  article-title: Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis
  publication-title: Clin. Cancer Res.
– volume: 2
  start-page: 213
  year: 2006
  end-page: 219
  ident: bb0065
  article-title: Angiogenesis in cancer
  publication-title: Vasc. Health Risk Manag.
– volume: 63
  start-page: 295
  year: 1994
  end-page: 347
  ident: bb0080
  article-title: The tumor biology of gastrin and cholecystokinin
  publication-title: Adv. Cancer Res.
– volume: 66
  start-page: 3504
  year: 2006
  end-page: 3512
  ident: bb0010
  article-title: Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor
  publication-title: Cancer Res.
– volume: 332
  start-page: 11
  year: 2013
  end-page: 18
  ident: bb0115
  article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells
  publication-title: Cancer Lett.
– volume: 25
  start-page: 473
  year: 2014
  end-page: 482
  ident: bb0060
  article-title: The multifaceted activity of VEGF in angiogenesis - implications for therapy responses
  publication-title: Cytokine Growth Factor Rev.
– volume: 403
  start-page: 86
  year: 2017
  end-page: 97
  ident: bb0090
  article-title: Tanshinone IIA inhibits beta-catenin/VEGF-mediated angiogenesis by targeting TGF-beta1 in normoxic and HIF-1alpha in hypoxic microenvironments in human colorectal cancer
  publication-title: Cancer Lett.
– volume: 346
  start-page: 104
  year: 2014
  end-page: 113
  ident: bb0130
  article-title: MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer
  publication-title: Cancer Lett.
– volume: 16
  start-page: 4595
  year: 2010
  end-page: 4606
  ident: bb0075
  article-title: Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice
  publication-title: Clin. Cancer Res.
– volume: 37
  start-page: 293
  year: 2017
  end-page: 320
  ident: bb0095
  article-title: Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer
  publication-title: Annu. Rev. Nutr.
– volume: 18
  start-page: 477
  year: 2015
  end-page: 488
  ident: bb0050
  article-title: KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma
  publication-title: Angiogenesis
– volume: 20
  start-page: 427
  year: 2011
  end-page: 442
  ident: bb0120
  article-title: FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis
  publication-title: Cancer Cell
– volume: 121
  start-page: 648
  year: 2015
  end-page: 663
  ident: bb0005
  article-title: Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors
  publication-title: Cancer
– volume: 332
  start-page: 11
  year: 2013
  end-page: 18
  ident: bb0110
  article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells
  publication-title: Cancer Lett.
– volume: 44
  start-page: 1251
  year: 2017
  end-page: 1262
  ident: bb0125
  article-title: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating Wnt/β-catenin axis in breast cancer cells
  publication-title: Cell. Physiol. Biochem.
– volume: 274
  start-page: 561
  year: 1998
  end-page: 568
  ident: bb0025
  article-title: Impaired gastric acid secretion in gastrin-deficient mice
  publication-title: Am. J. Phys.
– volume: 19
  start-page: 381
  year: 2016
  end-page: 391
  ident: bb0030
  article-title: Gastrokine 1 inhibits gastrin-induced cell proliferation
  publication-title: Gastric Cancer
– volume: 346
  start-page: 74
  year: 2016
  end-page: 84
  ident: bb0105
  article-title: Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-kappaB signaling
  publication-title: Exp. Cell Res.
– volume: 13
  start-page: 209
  year: 2014
  ident: bb0015
  article-title: Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription
  publication-title: Mol. Cancer
– volume: 12
  start-page: 2979
  year: 2006
  end-page: 2990
  ident: bb0085
  article-title: Cellular and molecular aspects of gastric cancer
  publication-title: World J. Gastroenterol.
– volume: 36
  start-page: 1369
  year: 2016
  ident: bb0135
  article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway
  publication-title: Oncol. Rep.
– volume: 285
  start-page: 1182
  year: 1971
  ident: bb0020
  article-title: Tumor angiogenesis: therapeutic implications
  publication-title: N. Engl. J. Med.
– volume: 21
  start-page: 1438
  year: 2015
  ident: bb0035
  article-title: Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes
  publication-title: Clin. Cancer Res.
– volume: 7
  start-page: 930
  year: 2005
  end-page: 943
  ident: bb0055
  article-title: Gastrin exerts pleiotropic effects on human melanoma cell biology
  publication-title: Neoplasia
– volume: 332
  start-page: 11
  year: 2013
  ident: 10.1016/j.gene.2019.04.029_bb0110
  article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2012.12.030
– volume: 36
  start-page: 1369
  year: 2016
  ident: 10.1016/j.gene.2019.04.029_bb0135
  article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4943
– volume: 10
  start-page: 8250
  year: 2004
  ident: 10.1016/j.gene.2019.04.029_bb0040
  article-title: Characterization of gastrin-induced proangiogenic effects in vivo in orthotopic U373 experimental human glioblastomas and in vitro in human umbilical vein endothelial cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-0343
– volume: 346
  start-page: 104
  year: 2014
  ident: 10.1016/j.gene.2019.04.029_bb0130
  article-title: MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.12.021
– volume: 18
  start-page: 477
  year: 2015
  ident: 10.1016/j.gene.2019.04.029_bb0050
  article-title: KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma
  publication-title: Angiogenesis
  doi: 10.1007/s10456-015-9475-4
– volume: 66
  start-page: 3504
  year: 2006
  ident: 10.1016/j.gene.2019.04.029_bb0010
  article-title: Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0280
– volume: 13
  start-page: 209
  year: 2014
  ident: 10.1016/j.gene.2019.04.029_bb0015
  article-title: Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-13-209
– volume: 16
  start-page: 4595
  year: 2010
  ident: 10.1016/j.gene.2019.04.029_bb0075
  article-title: Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-1213
– volume: 121
  start-page: 648
  year: 2015
  ident: 10.1016/j.gene.2019.04.029_bb0005
  article-title: Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors
  publication-title: Cancer
  doi: 10.1002/cncr.29096
– volume: 285
  start-page: 1182
  year: 1971
  ident: 10.1016/j.gene.2019.04.029_bb0020
  article-title: Tumor angiogenesis: therapeutic implications
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197111182852108
– volume: 20
  start-page: 427
  year: 2011
  ident: 10.1016/j.gene.2019.04.029_bb0120
  article-title: FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.08.016
– volume: 21
  start-page: 1438
  year: 2015
  ident: 10.1016/j.gene.2019.04.029_bb0035
  article-title: Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-1979
– volume: 16
  start-page: 2740
  year: 2010
  ident: 10.1016/j.gene.2019.04.029_bb0045
  article-title: Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-2610
– volume: 2
  start-page: 213
  year: 2006
  ident: 10.1016/j.gene.2019.04.029_bb0065
  article-title: Angiogenesis in cancer
  publication-title: Vasc. Health Risk Manag.
  doi: 10.2147/vhrm.2006.2.3.213
– volume: 25
  start-page: 473
  year: 2014
  ident: 10.1016/j.gene.2019.04.029_bb0060
  article-title: The multifaceted activity of VEGF in angiogenesis - implications for therapy responses
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2014.07.009
– volume: 332
  start-page: 11
  year: 2013
  ident: 10.1016/j.gene.2019.04.029_bb0115
  article-title: Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2012.12.030
– volume: 24
  start-page: 2903
  year: 2006
  ident: 10.1016/j.gene.2019.04.029_bb0100
  article-title: Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.05.0245
– volume: 274
  start-page: 561
  year: 1998
  ident: 10.1016/j.gene.2019.04.029_bb0025
  article-title: Impaired gastric acid secretion in gastrin-deficient mice
  publication-title: Am. J. Phys.
– volume: 19
  start-page: 381
  year: 2016
  ident: 10.1016/j.gene.2019.04.029_bb0030
  article-title: Gastrokine 1 inhibits gastrin-induced cell proliferation
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-015-0483-2
– volume: 12
  start-page: 2979
  year: 2006
  ident: 10.1016/j.gene.2019.04.029_bb0085
  article-title: Cellular and molecular aspects of gastric cancer
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v12.i19.2979
– volume: 36
  start-page: 1369
  year: 2016
  ident: 10.1016/j.gene.2019.04.029_bb0140
  article-title: Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4943
– volume: 403
  start-page: 86
  year: 2017
  ident: 10.1016/j.gene.2019.04.029_bb0090
  article-title: Tanshinone IIA inhibits beta-catenin/VEGF-mediated angiogenesis by targeting TGF-beta1 in normoxic and HIF-1alpha in hypoxic microenvironments in human colorectal cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.05.013
– volume: 7
  start-page: 930
  year: 2005
  ident: 10.1016/j.gene.2019.04.029_bb0055
  article-title: Gastrin exerts pleiotropic effects on human melanoma cell biology
  publication-title: Neoplasia
  doi: 10.1593/neo.05379
– volume: 63
  start-page: 295
  year: 1994
  ident: 10.1016/j.gene.2019.04.029_bb0080
  article-title: The tumor biology of gastrin and cholecystokinin
  publication-title: Adv. Cancer Res.
  doi: 10.1016/S0065-230X(08)60403-0
– volume: 44
  start-page: 1251
  year: 2017
  ident: 10.1016/j.gene.2019.04.029_bb0125
  article-title: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating Wnt/β-catenin axis in breast cancer cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000485455
– volume: 37
  start-page: 293
  year: 2017
  ident: 10.1016/j.gene.2019.04.029_bb0095
  article-title: Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071715-051004
– volume: 346
  start-page: 74
  year: 2016
  ident: 10.1016/j.gene.2019.04.029_bb0105
  article-title: Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-kappaB signaling
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2016.06.001
– volume: 19
  start-page: 284
  year: 2012
  ident: 10.1016/j.gene.2019.04.029_bb0070
  article-title: HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2011.95
SSID ssj0000552
Score 2.4639175
Snippet Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Angiogenesis
beta catenin
cell proliferation
Gastric cancer
Gastrin
gastrins
hypoxia
hypoxia-inducible factor 1
in vivo studies
metastasis
neoplasm progression
normoxia
stomach neoplasms
vascular endothelial growth factors
VEGF
β-Catenin
Title Gastrin promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in gastric cancer
URI https://dx.doi.org/10.1016/j.gene.2019.04.029
https://www.ncbi.nlm.nih.gov/pubmed/30980943
https://www.proquest.com/docview/2209607505
https://www.proquest.com/docview/2305172641
Volume 704
WOSCitedRecordID wos000471086700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0038
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0000552
  issn: 0378-1119
  databaseCode: AIEXJ
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0038
  dateEnd: 20191230
  omitProxy: false
  ssIdentifier: ssj0000552
  issn: 0378-1119
  databaseCode: AIEXJ
  dateStart: 19950111
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhI8INi4lMtkJMZLFZZrEz-2U7sNoQmJMZUny3adKFOXTms7bfwr-CH7TZxjO21hWgVIvESRlThuzteTz8fnfCbkbS6DYS5E7A1l3vbiJI08mKswT0YsZ1qmKjKiPscf08PDbDBgnxqNb3UtzMUorars8pKd_VdTQxsYG0tn_8Lc806hAc7B6HAEs8Pxjwy_J3ArDpN5BWbQqMFclOMCfVo5QbaJpQwYiK2K1v5B3wu2d3vbXXRo5iT0MEeqwnhB_7i3129hhocYudKXwnSuMFdMubxex2xRv3oRBrAepPd-Ea-3LV_HVZFr97XEPKByZhGjT3U590A2KNt1ouAuJmHKoJZjEjeLZWyBFk5YA-chtfW3WQo3-1bgpXbIqR8vuVQrvuU-zlaV84bbtxGIE3z1KH0aMCNf60Ipv8ppf8Zh4CiAucJzUUp2PUwTBh5xvXPQG3xYfMeTxK5BuWG7kiubHfj7k26jNbdNWwx9OXpEHrp5B-1YvDwmDV1tkM1OJabj0yv6jppMYLPEskHudeuzB0tylZuEO2jRGlp0GVpUXtEFtKiB1vX3nesfNaB2EE50DicKHTk4UQunJ-RLv3e0u--5DTo8BTx3Cuxm2GZCR0xlTPmxDEUkcyHzZJi0lQ5SnQK7lnGA0UWWRcoXgWY5zFDzTIBbYNFTslaNK_2cUCCaqI4I9FEmwPCVEMhNgXvKUEJL1iRB_X65cur1uInKiNdpiiccfy5Hm3A_5mCTJmnN7zmz2i0rr05qs3HHPi2r5ICylfe9qW3MwTXjepuo9Hg24WGI8QGg5MmKayIUyYNZSdAkzyxA5mONfJZh4u-LfxzZS3J_8ed8Rdam5zP9mtxVF9Nycr5F7qSDbMuB_ieK7sWu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gastrin+promotes+angiogenesis+by+activating+HIF-1%CE%B1%2F%CE%B2-catenin%2FVEGF+signaling+in+gastric+cancer&rft.jtitle=Gene&rft.au=Tang%2C+E.&rft.au=Wang%2C+Yongfeng&rft.au=Liu%2C+Tiemei&rft.au=Yan%2C+Bin&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0378-1119&rft.eissn=1879-0038&rft.volume=704&rft.spage=42&rft.epage=48&rft_id=info:doi/10.1016%2Fj.gene.2019.04.029&rft.externalDocID=S0378111919303804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon