Predictability of real temporal networks

Abstract Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:National science review Ročník 7; číslo 5; s. 929 - 937
Hlavní autori: Tang, Disheng, Du, Wenbo, Shekhtman, Louis, Wang, Yijie, Havlin, Shlomo, Cao, Xianbin, Yan, Gang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford University Press 01.05.2020
Predmet:
ISSN:2095-5138, 2053-714X, 2053-714X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological–temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological–temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological–temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes. An entropy-based framework solved the long standing problem of quantifying the regularities in any temporal network whose links change over time, and unraveled the limit of predictability for 18 real temporal networks in diverse fields.
AbstractList Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological–temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological–temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological–temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes. An entropy-based framework solved the long standing problem of quantifying the regularities in any temporal network whose links change over time, and unraveled the limit of predictability for 18 real temporal networks in diverse fields.
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological-temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological-temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological-temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological-temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological-temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological-temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.
Abstract Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological–temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological–temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological–temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes. An entropy-based framework solved the long standing problem of quantifying the regularities in any temporal network whose links change over time, and unraveled the limit of predictability for 18 real temporal networks in diverse fields.
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological–temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological–temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological–temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.
Author Du, Wenbo
Shekhtman, Louis
Havlin, Shlomo
Cao, Xianbin
Tang, Disheng
Wang, Yijie
Yan, Gang
AuthorAffiliation 5 Department of Physics, Bar Ilan University , Ramat Gan 5290002, Israel
1 School of Electronic and Information Engineering, Beihang University , Beijing 100191, China
7 CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences , Shanghai 200031, China
2 School of Physics Science and Engineering, Tongji University , Shanghai 200092, China
4 Network Science Institute, Northeastern University , Boston, MA 02115, USA
6 Shanghai Institute of Intelligence Science and Technology, Tongji University , Shanghai 200092, China
3 National Engineering Laboratory of Big Data Application Technologies of Comprehensive Transportation , Beijing 100191, China
AuthorAffiliation_xml – name: 3 National Engineering Laboratory of Big Data Application Technologies of Comprehensive Transportation , Beijing 100191, China
– name: 7 CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences , Shanghai 200031, China
– name: 6 Shanghai Institute of Intelligence Science and Technology, Tongji University , Shanghai 200092, China
– name: 1 School of Electronic and Information Engineering, Beihang University , Beijing 100191, China
– name: 4 Network Science Institute, Northeastern University , Boston, MA 02115, USA
– name: 2 School of Physics Science and Engineering, Tongji University , Shanghai 200092, China
– name: 5 Department of Physics, Bar Ilan University , Ramat Gan 5290002, Israel
Author_xml – sequence: 1
  givenname: Disheng
  surname: Tang
  fullname: Tang, Disheng
  organization: School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Wenbo
  surname: Du
  fullname: Du, Wenbo
  email: xbcao@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Louis
  surname: Shekhtman
  fullname: Shekhtman, Louis
  organization: Network Science Institute, Northeastern University, Boston, MA 02115, USA
– sequence: 4
  givenname: Yijie
  surname: Wang
  fullname: Wang, Yijie
  organization: School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
– sequence: 5
  givenname: Shlomo
  surname: Havlin
  fullname: Havlin, Shlomo
  organization: Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel
– sequence: 6
  givenname: Xianbin
  surname: Cao
  fullname: Cao, Xianbin
  email: xbcao@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
– sequence: 7
  givenname: Gang
  orcidid: 0000-0001-6196-2615
  surname: Yan
  fullname: Yan, Gang
  email: gyan@tongji.edu.cn
  organization: School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
BookMark eNp9kMtKAzEUhoNUbK1d-QJdSUHG5jK5zEaQ4g0KulBwFzIzGQ3OJDXJWPr2prQuFHGVH_Kd7xz-YzCwzmoAThG8QLAgcxv83K6VgogegBGGlGQc5S-DbS5oRhERQzAJwZQwZcZ5jo7AkOSswAiREZg9el2bKqrStCZupq6Zeq3aadTdyvkUrI5r59_DCThsVBv0ZP-OwfPN9dPiLls-3N4vrpZZRUQRM16xsubJLSBSuCF1WggZwYxqUcICKdXUjBRUcwaFgjURSJS4YIRCygSvyRhc7ryrvux0XWkb0xly5U2n_EY6ZeTPH2ve5Kv7lAILIThPgtle4N1Hr0OUnQmVbltlteuDxFTQAueQ44SiHVp5F4LXjaxMVNG4rdm0EkG5LVmmkuW-5DRz_mvm-7S_6bMd7frVv-AXKCeM6A
CitedBy_id crossref_primary_10_1016_j_ipm_2024_103950
crossref_primary_10_1109_TNSE_2023_3283999
crossref_primary_10_1088_1674_1056_ac4483
crossref_primary_10_1109_TCSS_2022_3168010
crossref_primary_10_1093_nsr_nwae073
crossref_primary_10_1093_pnasnexus_pgae113
crossref_primary_10_1103_PhysRevResearch_3_L032045
crossref_primary_10_1038_s41540_023_00318_0
crossref_primary_10_1016_j_amc_2021_126084
crossref_primary_10_1016_j_physa_2021_126326
crossref_primary_10_1109_TNSE_2020_3022170
crossref_primary_10_3390_e25111542
crossref_primary_10_1093_nsr_nwaa229
crossref_primary_10_1007_s41109_023_00597_w
crossref_primary_10_1016_j_cja_2022_01_009
crossref_primary_10_1103_PhysRevLett_134_137402
crossref_primary_10_3389_fphy_2021_822915
crossref_primary_10_1155_2021_5539793
crossref_primary_10_1145_3656640
crossref_primary_10_1016_j_chaos_2023_113402
crossref_primary_10_1038_s42005_025_01940_6
crossref_primary_10_1109_TNSE_2021_3138643
crossref_primary_10_1098_rsos_210649
crossref_primary_10_1088_2632_072X_ac4bee
crossref_primary_10_1109_TNSE_2021_3115104
crossref_primary_10_3390_axioms11090464
crossref_primary_10_1016_j_chaos_2024_115767
crossref_primary_10_3390_systems11020082
crossref_primary_10_1109_TNSE_2024_3485093
crossref_primary_10_1016_j_trc_2021_103361
Cites_doi 10.1038/s41467-019-09177-y
10.1016/j.physrep.2012.03.001
10.1038/nature06830
10.1038/s41467-019-09186-x
10.1103/PhysRevE.53.5445
10.1007/b97391
10.1038/nphys2819
10.1038/ncomms15729
10.1002/asi.20591
10.1371/journal.pcbi.1000353
10.1073/pnas.1108243108
10.1126/science.1237825
10.1038/ncomms6024
10.1073/pnas.1424644112
10.1201/9781420036206
10.1126/science.aai7488
10.1038/ncomms9860
10.1109/TIT.1982.1056464
10.1126/science.1184819
10.1016/j.jneumeth.2010.08.027
10.1103/PhysRevLett.98.158702
10.1109/18.669425
10.1126/science.1116869
10.1126/science.1177170
10.1145/1082469.1082470
10.1016/0378-8733(83)90021-7
10.1103/PhysRevLett.111.188701
10.1103/PhysRevE.77.050905
10.1038/s41467-017-00148-9
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
DBID TOX
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nsr/nwaa015
DatabaseName Oxford Journals Open Access Collection
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2053-714X
EndPage 937
ExternalDocumentID PMC8288877
10_1093_nsr_nwaa015
10.1093/nsr/nwaa015
GrantInformation_xml – fundername: ;
  grantid: 11875043; 61671031; 61722102; 61961146005
– fundername: ;
  grantid: 2019YFF0301400
– fundername: ;
  grantid: 18ZR1442000
– fundername: ;
  grantid: 22120190251
GroupedDBID -SA
-SC
-S~
0R~
5VR
AAFWJ
AAOGV
AAPXW
AAVAP
AAXDM
ABDBF
ABPTD
ABQLI
ABXVV
ACGFS
AENEX
AFPKN
AFUIB
AFULF
ALMA_UNASSIGNED_HOLDINGS
AVWKF
BAYMD
CAJEA
CAJEC
CCEZO
CCVFK
CEKLB
EBS
ESX
FA0
GROUPED_DOAJ
H13
KSI
O9-
OK1
Q--
ROX
RPM
RXO
TOX
U1G
U5K
U5M
AAYXX
ABEJV
ABGNP
ACUHS
ADMLS
AMNDL
CITATION
7X8
5PM
ID FETCH-LOGICAL-c389t-7c6bd7211801a2f3d741063265e8b091aafd6395e7608a0d3818b2963505687d3
IEDL.DBID TOX
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537524500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-5138
2053-714X
IngestDate Tue Sep 30 16:32:38 EDT 2025
Thu Oct 02 10:05:50 EDT 2025
Sat Nov 29 02:00:25 EST 2025
Tue Nov 18 20:54:57 EST 2025
Wed Aug 28 03:17:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords predictive algorithm
temporal network
network entropy
predictability
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-7c6bd7211801a2f3d741063265e8b091aafd6395e7608a0d3818b2963505687d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6196-2615
OpenAccessLink https://dx.doi.org/10.1093/nsr/nwaa015
PMID 34692113
PQID 2585924072
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8288877
proquest_miscellaneous_2585924072
crossref_citationtrail_10_1093_nsr_nwaa015
crossref_primary_10_1093_nsr_nwaa015
oup_primary_10_1093_nsr_nwaa015
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle National science review
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Rand (2021070719072119900_bib15) 2011; 108
Li (2021070719072119900_bib12) 2017; 8
Clauset (2021070719072119900_bib20) 2008; 453
Majdandzic (2021070719072119900_bib5) 2014; 10
Mucha (2021070719072119900_bib3) 2010; 328
Cheng (2021070719072119900_bib22) 2019; 10
Holme (2021070719072119900_bib1) 2012; 519
Li (2021070719072119900_bib16) 2017; 358
Jelasity (2021070719072119900_bib14) 2005; 23
Valencia (2021070719072119900_bib9) 2008; 77
Kontoyiannis (2021070719072119900_bib25) 1998; 44
Shi (2021070719072119900_bib30)
Lü (2021070719072119900_bib32) 2015; 112
Wang (2021070719072119900_bib19) 2013; 342
Dimitriadis (2021070719072119900_bib10) 2010; 193
Anastassiou (2021070719072119900_bib24) 1982; 28
Song (2021070719072119900_bib28) 2010; 327
Scholtes (2021070719072119900_bib6) 2014; 5
Kovács (2021070719072119900_bib21) 2019; 10
Hidalgo (2021070719072119900_bib11) 2009; 5
Holland (2021070719072119900_bib26) 1983; 5
Peixoto (2021070719072119900_bib8) 2017; 8
Vazquez (2021070719072119900_bib13) 2007; 98
Makse (2021070719072119900_bib27) 1996; 53
Liben-Nowell (2021070719072119900_bib23) 2007; 58
Brockwell (2021070719072119900_bib17) 2002
Chatfield (2021070719072119900_bib18) 2000
Kemeny (2021070719072119900_bib29) 1976
Kossinets (2021070719072119900_bib2) 2006; 311
Lotter (2021070719072119900_bib31)
Génois (2021070719072119900_bib7) 2015; 6
Masuda (2021070719072119900_bib4) 2013; 111
References_xml – volume: 10
  start-page: 1240
  year: 2019
  ident: 2021070719072119900_bib21
  article-title: Network-based prediction of protein interactions
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09177-y
– volume: 519
  start-page: 97
  year: 2012
  ident: 2021070719072119900_bib1
  article-title: Temporal networks
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2012.03.001
– volume-title: Advances in Neural Information Processing Systems
  ident: 2021070719072119900_bib30
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
– volume: 453
  start-page: 98
  year: 2008
  ident: 2021070719072119900_bib20
  article-title: Hierarchical structure and the prediction of missing links in networks
  publication-title: Nature
  doi: 10.1038/nature06830
– volume: 10
  start-page: 1197
  year: 2019
  ident: 2021070719072119900_bib22
  article-title: Network-based prediction of drug combinations
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09186-x
– volume: 53
  start-page: 5445
  year: 1996
  ident: 2021070719072119900_bib27
  article-title: Method for generating long-range correlations for large systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.53.5445
– volume-title: Markov Chains
  year: 1976
  ident: 2021070719072119900_bib29
– volume-title: Introduction to Time Series and Forecasting
  year: 2002
  ident: 2021070719072119900_bib17
  doi: 10.1007/b97391
– volume: 10
  start-page: 34
  year: 2014
  ident: 2021070719072119900_bib5
  article-title: Spontaneous recovery in dynamical networks
  publication-title: Nat Phys
  doi: 10.1038/nphys2819
– volume: 8
  start-page: 15729
  year: 2017
  ident: 2021070719072119900_bib12
  article-title: Reconstruction of stochastic temporal networks through diffusive arrival times
  publication-title: Nat Commun
  doi: 10.1038/ncomms15729
– volume: 58
  start-page: 1019
  year: 2007
  ident: 2021070719072119900_bib23
  article-title: The link-prediction problem for social networks
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.20591
– volume: 5
  start-page: e1000353
  year: 2009
  ident: 2021070719072119900_bib11
  article-title: A dynamic network approach for the study of human phenotypes
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000353
– volume: 108
  start-page: 19193
  year: 2011
  ident: 2021070719072119900_bib15
  article-title: Dynamic social networks promote cooperation in experiments with humans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1108243108
– volume: 342
  start-page: 127
  year: 2013
  ident: 2021070719072119900_bib19
  article-title: Quantifying long-term scientific impact
  publication-title: Science
  doi: 10.1126/science.1237825
– ident: 2021070719072119900_bib31
  article-title: Deep predictive coding networks for video prediction and unsupervised learning
– volume: 5
  start-page: 5024
  year: 2014
  ident: 2021070719072119900_bib6
  article-title: Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks
  publication-title: Nat Commun
  doi: 10.1038/ncomms6024
– volume: 112
  start-page: 2325
  year: 2015
  ident: 2021070719072119900_bib32
  article-title: Toward link predictability of complex networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1424644112
– volume-title: Time-Series Forecasting
  year: 2000
  ident: 2021070719072119900_bib18
  doi: 10.1201/9781420036206
– volume: 358
  start-page: 1042
  year: 2017
  ident: 2021070719072119900_bib16
  article-title: The fundamental advantages of temporal networks
  publication-title: Science
  doi: 10.1126/science.aai7488
– volume: 6
  start-page: 8860
  year: 2015
  ident: 2021070719072119900_bib7
  article-title: Compensating for population sampling in simulations of epidemic spread on temporal contact networks
  publication-title: Nat Commun
  doi: 10.1038/ncomms9860
– volume: 28
  start-page: 340
  year: 1982
  ident: 2021070719072119900_bib24
  article-title: Some results regarding the entropy rate of random fields (Corresp.)
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056464
– volume: 328
  start-page: 876
  year: 2010
  ident: 2021070719072119900_bib3
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 193
  start-page: 145
  year: 2010
  ident: 2021070719072119900_bib10
  article-title: Tracking brain dynamics via time-dependent network analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.08.027
– volume: 98
  start-page: 158702
  year: 2007
  ident: 2021070719072119900_bib13
  article-title: Impact of non-Poissonian activity patterns on spreading processes
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.98.158702
– volume: 44
  start-page: 1319
  year: 1998
  ident: 2021070719072119900_bib25
  article-title: Nonparametric entropy estimation for stationary processes and random fields, with applications to English text
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.669425
– volume: 311
  start-page: 88
  year: 2006
  ident: 2021070719072119900_bib2
  article-title: Empirical analysis of an evolving social network
  publication-title: Science
  doi: 10.1126/science.1116869
– volume: 327
  start-page: 1018
  year: 2010
  ident: 2021070719072119900_bib28
  article-title: Limits of predictability in human mobility
  publication-title: Science
  doi: 10.1126/science.1177170
– volume: 23
  start-page: 219
  year: 2005
  ident: 2021070719072119900_bib14
  article-title: Gossip-based aggregation in large dynamic networks
  publication-title: ACM T Comput Syst
  doi: 10.1145/1082469.1082470
– volume: 5
  start-page: 109
  year: 1983
  ident: 2021070719072119900_bib26
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc Networks
  doi: 10.1016/0378-8733(83)90021-7
– volume: 111
  start-page: 188701
  year: 2013
  ident: 2021070719072119900_bib4
  article-title: Temporal networks: slowing down diffusion by long lasting interactions
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.111.188701
– volume: 77
  start-page: 050905
  year: 2008
  ident: 2021070719072119900_bib9
  article-title: Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.77.050905
– volume: 8
  start-page: 582
  year: 2017
  ident: 2021070719072119900_bib8
  article-title: Modelling sequences and temporal networks with dynamic community structures
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00148-9
SSID ssib051367741
ssib050735980
ssj0001257732
Score 2.3637843
Snippet Abstract Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has...
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 929
Title Predictability of real temporal networks
URI https://www.proquest.com/docview/2585924072
https://pubmed.ncbi.nlm.nih.gov/PMC8288877
Volume 7
WOSCitedRecordID wos000537524500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2053-714X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257732
  issn: 2095-5138
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2053-714X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050735980
  issn: 2095-5138
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2053-714X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257732
  issn: 2095-5138
  databaseCode: TOX
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86PHjxAxXnx6ywgwhhNVmT9Ciy4UHnDhN2K2mT4GB00naKF_92X9J2WBnqpZeEtMl76fu9vJffQ6hLhVGS0AADelC4L5mPhQwp5oYTYjTjKnaSfuCjkZhOw3GVIJuvCeGHtJfmWS99l9J3d8lvAmHVefI0rdUGEI2loVupXWBZyOqCMuVRS8C5K1VGAFBgaBfVTb0fwzdsU-O-m4WdzaTJb1ZouPvf799DOxXO9G5LxdhHGzo9QFfjzMZlipKb-8NbGA8w49yr-KnmXlomheeH6Hk4mNzd46pUAk4AcRSYJyxW1pkDgyOJoQrmD-CDsECLGCCBlEYBFgk0Z76QvrJ2Oiaw-SwAElzRI9RKF6k-Rl4QSyMSqgRjft8oEzNf95Xh_EbbICdro-t6kaKk4hG35SzmURnPphFMOKom3EbdVefXkj5jfbcLWO3fe1zWkohgA9iohkz1YplHBBye0PG8tRFviGg1nqXQbraksxdHpQ3-Jvxl-cmf7z9F28R62i7V8Qy1imypz9FW8lbM8qyDNvlUdJw_D8_Hz0HHaegXqYDepw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictability+of+real+temporal+networks&rft.jtitle=National+science+review&rft.au=Tang%2C+Disheng&rft.au=Du%2C+Wenbo&rft.au=Shekhtman%2C+Louis&rft.au=Wang%2C+Yijie&rft.date=2020-05-01&rft.pub=Oxford+University+Press&rft.issn=2095-5138&rft.eissn=2053-714X&rft.volume=7&rft.issue=5&rft.spage=929&rft.epage=937&rft_id=info:doi/10.1093%2Fnsr%2Fnwaa015&rft.externalDocID=10.1093%2Fnsr%2Fnwaa015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-5138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-5138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-5138&client=summon