Slaying (Yet Again) the Brain-Eating Zombie Called the “Isochore Theory”: A Segmentation Algorithm Used to “Confirm” the Existence of Isochores Creates “Isochores” Where None Exist

The isochore theory, which was proposed more than 40 years ago, depicts the mammalian genome as a mosaic of long, homogeneous regions that are characterized by their guanine and cytosine (GC) content. The human genome, for instance, was claimed to consist of five compositionally distinct isochore fa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of molecular sciences Ročník 23; číslo 12; s. 6558
Hlavní autor: Graur, Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 12.06.2022
MDPI
Témata:
ISSN:1422-0067, 1661-6596, 1422-0067
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The isochore theory, which was proposed more than 40 years ago, depicts the mammalian genome as a mosaic of long, homogeneous regions that are characterized by their guanine and cytosine (GC) content. The human genome, for instance, was claimed to consist of five compositionally distinct isochore families. The isochore theory, in all its reincarnations, has been repeatedly falsified in the literature, yet isochore proponents have persistently resurrected it by either redefining isochores or by proposing alternative means of testing the theory. Here, I deal with the latest attempt to salvage this seemingly immortal zombie—a sequence segmentation method called isoSegmenter, which was claimed to “identify” isochores while at the same time disregarding the main characteristic attribute of isochores—compositional homogeneity. I used a series of controlled, randomly generated simulated sequences as a benchmark to study the performance of isoSegmenter. The main advantage of using simulated sequences is that, unlike real data, the exact start and stop point of any isochore or homogeneous compositional domain is known. Based on three key performance metrics—sensitivity, precision, and Jaccard similarity index—isoSegmenter was found to be vastly inferior to isoPlotter, a segmentation algorithm with no user input. Moreover, isoSegmenter identified isochores where none exist and failed to identify compositionally homogeneous sequences that were shorter than 100−200 kb. Will this zillionth refutation of “isochores” ensure a final and permanent entombment of the isochore theory? This author is not holding his breath.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23126558