Hydrogen wettability of carbonate formations: Implications for hydrogen geo-storage
[Display omitted] •Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature and surface roughness.•Calcite-rich formations have a higher risk than other formations for H2 geo-storage projects. The mitigation of anthrop...
Uložené v:
| Vydané v: | Journal of colloid and interface science Ročník 614; s. 256 - 266 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
15.05.2022
|
| Predmet: | |
| ISSN: | 0021-9797, 1095-7103, 1095-7103 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature and surface roughness.•Calcite-rich formations have a higher risk than other formations for H2 geo-storage projects.
The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety.
As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1–20 MPa), temperature (298–353 K), salinity (0–4.95 mol.kg−1), stearic acid (as a representative of organic acid) concentration (10-9 − 10-2 mol/L), tilting plate angle (0° − 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm).
The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security. |
|---|---|
| AbstractList | The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety.HYPOTHESISThe mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety.As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg-1), stearic acid (as a representative of organic acid) concentration (10-9 - 10-2 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm).EXPERIMENTSAs there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg-1), stearic acid (as a representative of organic acid) concentration (10-9 - 10-2 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm).The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.FINDINGSThe results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security. The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H /brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θ ) and receding (θ ) contact angles of water/H /calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg ), stearic acid (as a representative of organic acid) concentration (10 - 10 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H -wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security. The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H₂/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θₐ) and receding (θᵣ) contact angles of water/H₂/calcite systems were measured as a function of different parameters, including pressure (0.1–20 MPa), temperature (298–353 K), salinity (0–4.95 mol.kg⁻¹), stearic acid (as a representative of organic acid) concentration (10⁻⁹ − 10⁻² mol/L), tilting plate angle (0° − 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H₂-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H₂ storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security. [Display omitted] •Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature and surface roughness.•Calcite-rich formations have a higher risk than other formations for H2 geo-storage projects. The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1–20 MPa), temperature (298–353 K), salinity (0–4.95 mol.kg−1), stearic acid (as a representative of organic acid) concentration (10-9 − 10-2 mol/L), tilting plate angle (0° − 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security. |
| Author | Ali, Muhammad Keshavarz, Alireza Fahimpour, Jalal Iglauer, Stefan Hosseini, Mirhasan |
| Author_xml | – sequence: 1 givenname: Mirhasan surname: Hosseini fullname: Hosseini, Mirhasan email: mirhasan.hosseini@gmail.com, mhossei0@our.ecu.edu.au organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia – sequence: 2 givenname: Jalal surname: Fahimpour fullname: Fahimpour, Jalal organization: Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran – sequence: 3 givenname: Muhammad surname: Ali fullname: Ali, Muhammad organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia – sequence: 4 givenname: Alireza surname: Keshavarz fullname: Keshavarz, Alireza organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia – sequence: 5 givenname: Stefan surname: Iglauer fullname: Iglauer, Stefan email: s.iglauer@ecu.edu.au organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35101673$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1OxCAURonR6Dj6Ai5Ml25agbYUjBsz8S8xcaGuCaWXkUlbRmA08_a2zujChXFFCOfcXL7vEO32rgeETgjOCCbsfJEttA0ZxZRmmGSY8R00IViUaUVwvosmGFOSikpUB-gwhAXGhJSl2EcHeTkOqPIJerpbN97NoU8-IEZV29bGdeJMopWvXa8iJMb5TkXr-nCR3HfL1urNbXxIXr_1Obg0ROfVHI7QnlFtgOPtOUUvN9fPs7v04fH2fnb1kOqci5hWXAvKTU2NqRTTtR4WwoaRhtFhy6ogwFlNy0aImlcFM4TRuigMEVgIRoHlU3S2mbv07m0FIcrOBg1tq3pwqyApy1k5_JTzf6C0YCUXohzQ0y26qjto5NLbTvm1_M5sAOgG0N6F4MH8IATLkZELORYjx2IkJnIoZpD4L0nb-JVj9Mq2f6uXGxWGLN8teBm0hV5DYz3oKBtn_9I_AbV4qD8 |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_173622 crossref_primary_10_1039_D4EE04564E crossref_primary_10_1016_j_ijhydene_2022_12_108 crossref_primary_10_1016_j_ijhydene_2025_02_342 crossref_primary_10_1016_j_pecs_2022_101066 crossref_primary_10_1016_j_nxener_2025_100298 crossref_primary_10_1016_j_nexus_2025_100467 crossref_primary_10_1016_j_fuel_2024_133902 crossref_primary_10_1016_j_renene_2024_121726 crossref_primary_10_1016_j_ijhydene_2023_04_197 crossref_primary_10_1016_j_ijhydene_2024_06_365 crossref_primary_10_1016_j_fuel_2024_131842 crossref_primary_10_1016_j_est_2023_108605 crossref_primary_10_1016_j_ijhydene_2022_05_289 crossref_primary_10_1016_j_energy_2023_129698 crossref_primary_10_1016_j_fuel_2023_129354 crossref_primary_10_1016_j_geoen_2023_211627 crossref_primary_10_1038_s41598_024_62458_5 crossref_primary_10_1016_j_apenergy_2025_125940 crossref_primary_10_1016_j_est_2023_108567 crossref_primary_10_1016_j_egyr_2022_11_141 crossref_primary_10_1016_j_est_2023_106737 crossref_primary_10_1016_j_ijhydene_2024_08_107 crossref_primary_10_1016_j_jcis_2023_05_066 crossref_primary_10_1016_j_egyr_2022_09_024 crossref_primary_10_1002_ghg_2277 crossref_primary_10_1021_acs_energyfuels_5c01249 crossref_primary_10_1016_j_jgsce_2025_205759 crossref_primary_10_1016_j_ijhydene_2023_05_294 crossref_primary_10_1016_j_earscirev_2023_104625 crossref_primary_10_1016_j_ijhydene_2023_05_292 crossref_primary_10_1016_j_ijhydene_2023_09_148 crossref_primary_10_1016_j_ijhydene_2023_12_298 crossref_primary_10_1016_j_est_2023_108473 crossref_primary_10_1016_j_est_2024_114076 crossref_primary_10_1016_j_ijhydene_2025_150885 crossref_primary_10_1016_j_engeos_2024_100339 crossref_primary_10_1016_j_ijhydene_2022_05_126 crossref_primary_10_1016_j_ijhydene_2022_05_247 crossref_primary_10_1016_j_ijhydene_2025_05_405 crossref_primary_10_1016_j_est_2023_108912 crossref_primary_10_1016_j_ijhydene_2024_05_208 crossref_primary_10_1016_j_rser_2025_116090 crossref_primary_10_1016_j_fuel_2024_132045 crossref_primary_10_1016_j_ijhydene_2023_07_270 crossref_primary_10_1016_j_petrol_2022_110480 crossref_primary_10_1016_j_fuel_2024_132964 crossref_primary_10_1016_j_ijhydene_2022_03_275 crossref_primary_10_1016_j_ijhydene_2024_02_158 crossref_primary_10_1016_j_ijhydene_2022_09_120 crossref_primary_10_1016_j_est_2025_115900 crossref_primary_10_1016_j_ijhydene_2022_04_103 crossref_primary_10_1016_j_ijhydene_2024_12_483 crossref_primary_10_1016_j_ijhydene_2025_150256 crossref_primary_10_1016_j_est_2023_108340 crossref_primary_10_1016_j_est_2025_117807 crossref_primary_10_1016_j_est_2025_115908 crossref_primary_10_1016_j_ijhydene_2025_151462 crossref_primary_10_1016_j_est_2022_105615 crossref_primary_10_1016_j_est_2023_107414 crossref_primary_10_1016_j_renene_2023_119267 crossref_primary_10_1016_j_est_2023_106637 crossref_primary_10_1029_2024GL109216 crossref_primary_10_1016_j_egyr_2022_10_257 crossref_primary_10_1016_j_petrol_2022_111244 crossref_primary_10_1016_j_apenergy_2024_125172 crossref_primary_10_1016_j_est_2025_115477 crossref_primary_10_1016_j_fuel_2023_128996 crossref_primary_10_1016_j_ijhydene_2022_02_149 crossref_primary_10_1021_acs_energyfuels_5c01541 crossref_primary_10_1016_j_fuel_2023_129048 crossref_primary_10_1016_j_ijhydene_2022_06_042 crossref_primary_10_1016_j_ijhydene_2025_01_062 crossref_primary_10_1016_j_est_2023_107440 crossref_primary_10_1016_j_ijhydene_2024_01_227 crossref_primary_10_1016_j_jgsce_2023_205105 crossref_primary_10_1016_j_ijhydene_2024_03_112 crossref_primary_10_1016_j_oreoa_2025_100087 crossref_primary_10_3390_fuels5030019 crossref_primary_10_3390_app142311286 crossref_primary_10_1016_j_ijhydene_2025_01_467 crossref_primary_10_1016_j_ijhydene_2024_10_023 crossref_primary_10_1016_j_ijhydene_2023_03_115 crossref_primary_10_1016_j_ijhydene_2024_07_076 crossref_primary_10_1016_j_ijhydene_2022_05_086 crossref_primary_10_1016_j_ijhydene_2025_05_342 crossref_primary_10_1016_j_fuel_2023_128183 crossref_primary_10_1016_j_est_2024_112768 crossref_primary_10_1016_j_fuel_2022_127032 crossref_primary_10_1029_2022GL098261 crossref_primary_10_1016_j_ijhydene_2023_06_208 crossref_primary_10_1016_j_geoen_2023_212354 crossref_primary_10_1016_j_est_2022_104745 crossref_primary_10_1016_j_est_2022_104866 crossref_primary_10_1016_j_est_2023_106865 crossref_primary_10_1016_j_est_2023_106986 crossref_primary_10_1016_j_chemosphere_2023_139135 crossref_primary_10_1016_j_est_2023_108405 crossref_primary_10_1016_j_fuel_2025_135821 crossref_primary_10_1016_j_molliq_2023_121279 crossref_primary_10_1016_j_est_2025_117274 crossref_primary_10_1016_j_ijhydene_2024_02_120 crossref_primary_10_1016_j_supflu_2023_106124 crossref_primary_10_1016_j_molliq_2022_121076 crossref_primary_10_1021_acs_energyfuels_4c06211 crossref_primary_10_1016_j_est_2024_110475 crossref_primary_10_1016_j_ijhydene_2025_03_450 crossref_primary_10_1002_dug2_70010 crossref_primary_10_1016_j_ijhydene_2025_151099 crossref_primary_10_3390_en15218132 crossref_primary_10_1016_j_ijhydene_2023_04_173 crossref_primary_10_1144_SP555_2023_198 crossref_primary_10_1016_j_ijhydene_2023_07_071 crossref_primary_10_1016_j_jngse_2022_104733 crossref_primary_10_1016_j_fuel_2023_129053 crossref_primary_10_1016_j_ijhydene_2022_11_292 crossref_primary_10_1016_j_egyr_2022_07_004 crossref_primary_10_1016_j_fuel_2023_128362 crossref_primary_10_1016_j_ijhydene_2022_11_059 crossref_primary_10_1016_j_ijhydene_2022_11_299 crossref_primary_10_1016_j_cej_2024_156452 crossref_primary_10_1016_j_ijhydene_2022_09_284 crossref_primary_10_1016_j_petrol_2022_110441 crossref_primary_10_1016_j_ijhydene_2023_06_153 crossref_primary_10_1016_j_ijhydene_2024_01_151 crossref_primary_10_1016_j_ijhydene_2024_10_330 crossref_primary_10_1016_j_jngse_2022_104743 crossref_primary_10_1016_j_est_2023_106921 |
| Cites_doi | 10.1016/j.jcis.2016.02.020 10.1016/0095-8522(62)90011-9 10.1016/0016-7037(88)90235-9 10.1016/j.petrol.2021.108387 10.1016/0016-7037(82)90209-5 10.1016/j.jct.2015.07.031 10.1021/acs.jpcc.9b00263 10.1029/2021GL092976 10.1021/je201062r 10.1021/la00032a055 10.1016/j.ijhydene.2020.08.244 10.1016/j.jcis.2019.12.043 10.1016/j.petlm.2019.09.001 10.1021/la3050863 10.1016/j.petrol.2021.109081 10.1021/acs.est.5b03646 10.1002/2015GL065787 10.1016/j.fuproc.2021.106722 10.1016/j.jcis.2021.06.078 10.1016/j.jcis.2018.08.106 10.1002/2014WR015553 10.1039/B514811C 10.1016/j.ijhydene.2021.07.226 10.1016/j.ijggc.2014.01.006 10.1186/s40580-021-00254-x 10.1016/j.ijhydene.2012.07.111 10.1021/ie50320a024 10.1016/j.ijhydene.2020.08.138 10.2118/37292-PA 10.1016/j.fluid.2018.07.022 10.2136/sssaj1989.03615995005300050013x 10.1021/es00166a002 10.1016/j.advwatres.2011.01.007 10.3390/en11092451 10.1016/j.ijggc.2016.04.024 10.3390/en13153988 10.1016/j.jcis.2020.12.058 10.1016/j.advwatres.2021.103964 10.1111/j.1468-8123.2012.00369.x 10.1016/j.ijhydene.2021.08.042 10.1016/j.ijggc.2015.04.006 10.1016/j.ijhydene.2020.01.044 10.1021/acs.energyfuels.0c02553 10.1016/j.colsurfa.2021.127118 10.1016/j.apgeochem.2015.04.011 10.1016/j.petrol.2021.108683 10.1002/2017GL073532 10.1016/j.ijggc.2008.02.002 10.1016/j.colsurfa.2007.09.032 10.1016/j.ijhydene.2021.07.097 10.1016/bs.agron.2014.10.005 10.1016/j.egypro.2015.07.872 10.1021/acsami.0c10491 10.1016/j.envres.2020.109547 10.1016/j.jngse.2017.03.016 10.1016/j.rser.2019.01.051 10.1021/acs.est.5b05925 10.1016/j.coal.2019.103370 10.1021/la204322k 10.1016/j.earscirev.2021.103895 10.1021/la980602k 10.1016/j.fuel.2016.05.053 10.3390/catal10080858 10.1016/j.jcis.2019.10.028 10.1016/j.egypro.2011.02.527 10.1016/j.jcis.2021.10.050 10.1021/acs.accounts.6b00602 10.1021/ef300913t 10.1016/j.ijhydene.2019.12.161 10.1016/j.fuel.2021.120773 10.1007/s13202-020-01081-2 10.1016/j.ijggc.2019.02.002 10.1016/j.jcis.2014.11.010 10.1029/2020GL090814 10.1021/ef700383x 10.1016/j.ijhydene.2021.05.067 10.1016/j.jcis.2021.10.080 10.1080/08120099.2013.756830 10.1016/j.jcis.2015.09.076 10.3389/fenrg.2021.666191 10.1139/t05-048 10.1016/j.colsurfa.2013.05.070 10.1016/j.jcis.2012.06.052 10.1111/j.1468-8123.2007.00168.x 10.1063/1.555991 10.1007/s11242-018-1004-7 10.1016/j.enconman.2017.12.096 10.1021/acs.energyfuels.9b03700 10.1016/j.ijggc.2017.01.012 10.1016/j.ijggc.2017.04.014 10.1063/1.3160306 10.1016/j.jngse.2021.104177 10.1016/j.jcis.2015.09.051 10.1029/2009WR008634 10.1016/j.egyr.2021.09.016 10.1021/acs.energyfuels.8b03406 10.1016/j.ijhydene.2016.05.293 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jcis.2022.01.068 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1095-7103 |
| EndPage | 266 |
| ExternalDocumentID | 35101673 10_1016_j_jcis_2022_01_068 S0021979722000819 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW VH1 WUQ ZGI ZXP ~HD BNPGV NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c389t-78c928fb2ff7a6cbc6730f61d62559741e86b25d99b8746f162b44f1909962e63 |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750145000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9797 1095-7103 |
| IngestDate | Sun Sep 28 09:56:05 EDT 2025 Sun Sep 28 10:01:43 EDT 2025 Thu Apr 03 07:08:33 EDT 2025 Tue Nov 18 22:10:52 EST 2025 Sat Nov 29 07:30:14 EST 2025 Fri Feb 23 02:40:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wettability Hydrogen geo-storage Contact angle Calcite-rich formation Hydrogen |
| Language | English |
| License | Copyright © 2022 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-78c928fb2ff7a6cbc6730f61d62559741e86b25d99b8746f162b44f1909962e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 35101673 |
| PQID | 2624658995 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2636551088 proquest_miscellaneous_2624658995 pubmed_primary_35101673 crossref_primary_10_1016_j_jcis_2022_01_068 crossref_citationtrail_10_1016_j_jcis_2022_01_068 elsevier_sciencedirect_doi_10_1016_j_jcis_2022_01_068 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of colloid and interface science |
| PublicationTitleAlternate | J Colloid Interface Sci |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Al-Yaseri, Abdulelah, Yekeen, Ali, Negash, Zhang (b0220) 2021; 627 Saraji, Goual, Piri (b0465) 2013; 434 Memon, Mahesar, Ali, Tunio, Mohanty, Akhondzadeh, Awan, Iglauer, Keshavarz (b0170) 2020; 34 X. Li, E. Boek, G.C. Maitland, J.M.J.J.o.C. Trusler, E. Data, Interfacial Tension of (Brines+ CO2):(0.864 NaCl+ 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol· kg–1, 57(4) (2012) 1078-1088. Yang, Gu, Tontiwachwuthikul (b0415) 2008; 22 Al-Rubaye, Al-Yaseri, Ali, Ben Mahmud (b0130) 2021; 11 B. Pan, X. Yin, S.J.I.J.o.H.E. Iglauer, Rock-fluid interfacial tension at subsurface conditions: Implications for H2, CO2 and natural gas geo-storage, (2021). Lai, Cozzolino, Diamanti, Al Hassan, Chiesa (b0285) 2015; 119 Al-Menhali, Krevor (b0375) 2016; 50 Ali, Arif, Sahito, Al-Anssari, Keshavarz, Barifcani, Stalker, Sarmadivaleh, Iglauer (b0255) 2019; 83 Leachman, Jacobsen, Penoncello, Lemmon, Data (b0425) 2009; 38 Rahman, Lebedev, Barifcani, Iglauer (b0380) 2016; 469 Furmidge (b0480) 1962; 17 Ulrich, Stumm, Cosovic (b0315) 1988; 22 Caballero, Trugo, Finglas (b0565) 2003 Lemieux, Shkarupin, Sharp (b0055) 2020; 45 Davis (b0305) 1982; 46 Ali, Yekeen, Pal, Keshavarz, Iglauer, Hoteit (b0275) 2021; 7 Madsen, Ida (b0335) 1998; 1 Espinoza, Santamarina (b0445) 2010; 46 Keshavarz, Abid, Ali, Iglauer (b0110) 2022; 608 Al-Anssari, Barifcani, Wang, Maxim, Iglauer (b0345) 2016; 461 Akob, Cozzarelli, Dunlap, Rowan, Lorah (b0530) 2015; 60 Ali, Jha, Al-Yaseri, Zhang, Iglauer, Sarmadivaleh (b0140) 2021 Jha, Iglauer, Barifcani, Sarmadivaleh, Sangwai (b0555) 2019; 33 Wenzel (b0505) 1936; 28 Cao, Iris, Xiong, Tsang, Zhang, Clark, Hu, Ng, Shang, Ok (b0035) 2020; 186 Akhondzadeh, Keshavarz, Al-Yaseri, Ali, Awan, Wang, Yang, Iglauer, Lebedev (b0115) 2020; 219 Arain, Al-Anssari, Ali, Memon, Bhatti, Lagat, Sarmadivaleh (b0325) 2020; 6 Span, Wagner (b0430) 1996; 25 Ali, Al-Anssari, Arif, Barifcani, Sarmadivaleh, Stalker, Lebedev, Iglauer (b0205) 2019; 534 Al-Yaseri, Wolff-Boenisch, Fauziah, Iglauer (b0280) 2021; 46 Jha, Lebedev, Iglauer, Ali, Roshan, Barifcani, Sangwai, Sarmadivaleh (b0560) 2020; 562 Mahesar, Ali, Shar, Memon, Mohanty, Akhondzadeh, Tunio, Iglauer, Keshavarz (b0150) 2020; 34 Shiva Kumar, Himabindu (b0015) 2019; 2 Chen, Zhang, Li, Song (b0440) 2015; 49 Jardine, McCarthy, Weber (b0330) 1989; 53 Iglauer (b0455) 2017; 50 Ali, Aftab, Awan, Akhondzadeh, Keshavarz, Saeedi, Iglauer, Sarmadivaleh (b0250) 2021; 214 Mahesar, Shar, Ali, Tunio, Uqailli, Mohanty, Akhondzadeh, Iglauer, Keshavarz (b0155) 2020; 192 Pierce, Carmona, Amirfazli (b0475) 2008; 323 Ali, Aftab, Arain, Al-Yaseri, Roshan, Saeedi, Iglauer, Sarmadivaleh (b0065) 2020; 12 Nazarahari, Manshad, Ali, Ali, Shafiei, Sajadi, Moradi, Iglauer, Keshavarz (b0240) 2021; 298 Jha, Al-Yaseri, Ghasemi, Al-Bayati, Lebedev, Sarmadivaleh (b0550) 2021; 46 Jung, Wan (b0405) 2012; 26 Wan (b0295) 2011 Lander, Siewierski, Brittain, Vogler (b0355) 1993; 9 Al-Yaseri, Jha (b0135) 2021; 200 Akhondzadeh, Keshavarz, Awan, Ali, Al-Yaseri, Liu, Yang, Iglauer, Gurevich, Lebedev (b0120) 2021; 95 Broseta, Tonnet, Shah (b0370) 2012; 12 Arif, Al-Yaseri, Barifcani, Lebedev, Iglauer (b0385) 2016; 462 Grate, Dehoff, Warner, Pittman, Wietsma, Zhang, Oostrom (b0395) 2012; 28 Iglauer, Al-Yaseri, Rezaee, Lebedev (b0185) 2015; 42 Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0310) 2015; 130 Dahraj, Ali, Khan (b0145) 2016 Zulfiqar, Vogel, Ding, Golmohammadi, Küchler, Reuter, Geistlinger (b0500) 2020; 56 Stalker, Varma, Van Gent, Haworth, Sharma (b0340) 2013; 60 Saraji, Goual, Piri, Plancher (b0410) 2013; 29 Sarmadivaleh, Al-Yaseri, Iglauer (b0400) 2015; 441 Arif, Lebedev, Barifcani, Iglauer (b0175) 2017; 62 Ali, Jha, Pal, Keshavarz, Hoteit, Sarmadivaleh (b0100) 2022; 225 Abdulelah, Al-Yaseri, Ali, Giwelli, Negash, Sarmadivaleh (b0190) 2021; 204 Crotogino, Donadei, Bünger, Landinger (b0225) 2010 Marmur (b0510) 2006; 2 Tonnet, Mouronval, Chiquet, Broseta (b0520) 2011; 4 Al-Khdheeawi, Vialle, Barifcani, Sarmadivaleh, Iglauer (b0540) 2017; 58 Arif, Barifcani, Lebedev, Iglauer (b0390) 2016; 50 Shah, Broseta, Mouronval, Montel (b0365) 2008; 2 Haghighi, Zargar, Khaksar Manshad, Ali, Takassi, Ali, Keshavarz (b0230) 2020; 13 Chow, Maitland, Trusler (b0485) 2018; 475 Ali, Awan, Ali, Al-Yaseri, Arif, Sánchez-Román, Keshavarz, Iglauer (b0260) 2021; 588 Iglauer, Mathew, Bresme (b0420) 2012; 386 Shayan, Zare, Mirzaee (b0040) 2018; 159 Iglauer, Ali, Keshavarz (b0090) 2021; 48 Zivar, Kumar, Foroozesh (b0010) 2021; 46 Shi, Jessen, Tsotsis (b0270) 2020; 45 Arribas, González-Aguilar, Romero (b0045) 2018; 11 Ali, Sahito, Jha, Arain, Memon, Keshavarz, Iglauer, Saeedi, Sarmadivaleh (b0070) 2020; 559 Al-Khdheeawi, Mahdi, Ali, Iglauer, Barifcani (b0125) 2021; 3818887 Boretti, Nayfeh, Al-Maaitah (b0050) 2021; 9 Yekta, Manceau, Gaboreau, Pichavant, Audigane (b0165) 2018; 122 Ali, Yekeen, Pal, Keshavarz, Iglauer, Hoteit (b0105) 2022; 608 Ozarslan (b0160) 2012; 37 Abramov, Keshavarz, Iglauer (b0470) 2019; 123 Aggelopoulos, Robin, Vizika (b0360) 2011; 34 Iglauer, Salamah, Sarmadivaleh, Liu, Phan (b0300) 2014; 22 Tarkowski, Reviews (b0005) 2019; 105 Iglauer (b0080) 2021 Chen, Qi, Zhang, Su, Somorjai (b0025) 2020; 10 Al-Yaseri, Ali, Ali, Taheri, Wolff-Boenisch (b0195) 2021; 603 Wang, Lu, Zhong (b0020) 2021; 8 Hashemi, Glerum, Farajzadeh, Hajibeygi (b0235) 2021; 154 Al-Yaseri, Lebedev, Barifcani, Iglauer (b0435) 2016; 93 Krevor, Blunt, Benson, Pentland, Reynolds, Al-Menhali, Niu (b0525) 2015; 40 Trueman, Rodgers, McLellan, Hursthouse (b0215) 2019 Iglauer, Pentland, Busch (b0200) 2015; 51 Iglauer, Abid, Al-Yaseri, Keshavarz (b0085) 2021; 48 Pfeiffer, Bauer (b0095) 2015; 76 Swain, Lipowsky (b0515) 1998; 14 Arif, Lebedev, Barifcani, Iglauer (b0180) 2017; 44 Chiquet, Broseta, Thibeau (b0350) 2007; 7 Mohanty, Ali, Azhar, Al-Yaseri, Keshavarz, Iglauer (b0030) 2021; 46 Morrow (b0495) 1975; 14 Zullig, Morse (b0320) 1988; 52 Haldar (b0210) 2020 Arif, Barifcani, Lebedev, Iglauer (b0450) 2016; 181 Ali (b0245) 2021 Caglayan, Weber, Heinrichs, Linßen, Robinius, Kukla, Stolten (b0075) 2020; 45 Kaya, Yukselen (b0460) 2005; 42 Al-Khdheeawi, Vialle, Barifcani, Sarmadivaleh, Iglauer (b0545) 2017; 43 Lundegard, Kharaka (b0535) 1994 Zhang, Zhao, Niu, Maddy (b0060) 2016; 41 Sari, Al Maskari, Saeedi, Xie (b0490) 2020; 299 Al-Yaseri (10.1016/j.jcis.2022.01.068_b0220) 2021; 627 Shi (10.1016/j.jcis.2022.01.068_b0270) 2020; 45 Hashemi (10.1016/j.jcis.2022.01.068_b0235) 2021; 154 Krevor (10.1016/j.jcis.2022.01.068_b0525) 2015; 40 Ali (10.1016/j.jcis.2022.01.068_b0065) 2020; 12 Mohanty (10.1016/j.jcis.2022.01.068_b0030) 2021; 46 Ali (10.1016/j.jcis.2022.01.068_b0260) 2021; 588 Caglayan (10.1016/j.jcis.2022.01.068_b0075) 2020; 45 Arif (10.1016/j.jcis.2022.01.068_b0390) 2016; 50 Yang (10.1016/j.jcis.2022.01.068_b0415) 2008; 22 Ali (10.1016/j.jcis.2022.01.068_b0140) 2021 Caballero (10.1016/j.jcis.2022.01.068_b0565) 2003 Ulrich (10.1016/j.jcis.2022.01.068_b0315) 1988; 22 Jha (10.1016/j.jcis.2022.01.068_b0550) 2021; 46 Lander (10.1016/j.jcis.2022.01.068_b0355) 1993; 9 Morrow (10.1016/j.jcis.2022.01.068_b0495) 1975; 14 Ali (10.1016/j.jcis.2022.01.068_b0100) 2022; 225 Rahman (10.1016/j.jcis.2022.01.068_b0380) 2016; 469 Lai (10.1016/j.jcis.2022.01.068_b0285) 2015; 119 Iglauer (10.1016/j.jcis.2022.01.068_b0080) 2021 Ali (10.1016/j.jcis.2022.01.068_b0250) 2021; 214 Iglauer (10.1016/j.jcis.2022.01.068_b0455) 2017; 50 Ali (10.1016/j.jcis.2022.01.068_b0070) 2020; 559 Ozarslan (10.1016/j.jcis.2022.01.068_b0160) 2012; 37 Iglauer (10.1016/j.jcis.2022.01.068_b0085) 2021; 48 Marmur (10.1016/j.jcis.2022.01.068_b0510) 2006; 2 Iglauer (10.1016/j.jcis.2022.01.068_b0200) 2015; 51 Abramov (10.1016/j.jcis.2022.01.068_b0470) 2019; 123 Ali (10.1016/j.jcis.2022.01.068_b0275) 2021; 7 Keshavarz (10.1016/j.jcis.2022.01.068_b0110) 2022; 608 10.1016/j.jcis.2022.01.068_b0265 Shayan (10.1016/j.jcis.2022.01.068_b0040) 2018; 159 Mahesar (10.1016/j.jcis.2022.01.068_b0155) 2020; 192 Al-Yaseri (10.1016/j.jcis.2022.01.068_b0195) 2021; 603 Trueman (10.1016/j.jcis.2022.01.068_b0215) 2019 Al-Rubaye (10.1016/j.jcis.2022.01.068_b0130) 2021; 11 Shah (10.1016/j.jcis.2022.01.068_b0365) 2008; 2 Akhondzadeh (10.1016/j.jcis.2022.01.068_b0115) 2020; 219 Haldar (10.1016/j.jcis.2022.01.068_b0210) 2020 Zulfiqar (10.1016/j.jcis.2022.01.068_b0500) 2020; 56 Chow (10.1016/j.jcis.2022.01.068_b0485) 2018; 475 Jha (10.1016/j.jcis.2022.01.068_b0555) 2019; 33 Arif (10.1016/j.jcis.2022.01.068_b0180) 2017; 44 Ali (10.1016/j.jcis.2022.01.068_b0205) 2019; 534 Haghighi (10.1016/j.jcis.2022.01.068_b0230) 2020; 13 Wan (10.1016/j.jcis.2022.01.068_b0295) 2011 Sari (10.1016/j.jcis.2022.01.068_b0490) 2020; 299 Span (10.1016/j.jcis.2022.01.068_b0430) 1996; 25 Zhang (10.1016/j.jcis.2022.01.068_b0060) 2016; 41 Kleber (10.1016/j.jcis.2022.01.068_b0310) 2015; 130 Chiquet (10.1016/j.jcis.2022.01.068_b0350) 2007; 7 Arain (10.1016/j.jcis.2022.01.068_b0325) 2020; 6 Tonnet (10.1016/j.jcis.2022.01.068_b0520) 2011; 4 Memon (10.1016/j.jcis.2022.01.068_b0170) 2020; 34 Al-Khdheeawi (10.1016/j.jcis.2022.01.068_b0545) 2017; 43 Broseta (10.1016/j.jcis.2022.01.068_b0370) 2012; 12 Sarmadivaleh (10.1016/j.jcis.2022.01.068_b0400) 2015; 441 Cao (10.1016/j.jcis.2022.01.068_b0035) 2020; 186 Tarkowski (10.1016/j.jcis.2022.01.068_b0005) 2019; 105 Arif (10.1016/j.jcis.2022.01.068_b0175) 2017; 62 Lundegard (10.1016/j.jcis.2022.01.068_b0535) 1994 Jha (10.1016/j.jcis.2022.01.068_b0560) 2020; 562 Arribas (10.1016/j.jcis.2022.01.068_b0045) 2018; 11 Boretti (10.1016/j.jcis.2022.01.068_b0050) 2021; 9 Iglauer (10.1016/j.jcis.2022.01.068_b0300) 2014; 22 Al-Khdheeawi (10.1016/j.jcis.2022.01.068_b0540) 2017; 58 Al-Yaseri (10.1016/j.jcis.2022.01.068_b0135) 2021; 200 Ali (10.1016/j.jcis.2022.01.068_b0245) 2021 Iglauer (10.1016/j.jcis.2022.01.068_b0420) 2012; 386 Akob (10.1016/j.jcis.2022.01.068_b0530) 2015; 60 Lemieux (10.1016/j.jcis.2022.01.068_b0055) 2020; 45 Dahraj (10.1016/j.jcis.2022.01.068_b0145) 2016 Leachman (10.1016/j.jcis.2022.01.068_b0425) 2009; 38 Pfeiffer (10.1016/j.jcis.2022.01.068_b0095) 2015; 76 Mahesar (10.1016/j.jcis.2022.01.068_b0150) 2020; 34 Ali (10.1016/j.jcis.2022.01.068_b0105) 2022; 608 Saraji (10.1016/j.jcis.2022.01.068_b0410) 2013; 29 Wenzel (10.1016/j.jcis.2022.01.068_b0505) 1936; 28 Nazarahari (10.1016/j.jcis.2022.01.068_b0240) 2021; 298 Pierce (10.1016/j.jcis.2022.01.068_b0475) 2008; 323 Al-Menhali (10.1016/j.jcis.2022.01.068_b0375) 2016; 50 Zivar (10.1016/j.jcis.2022.01.068_b0010) 2021; 46 Ali (10.1016/j.jcis.2022.01.068_b0255) 2019; 83 Al-Yaseri (10.1016/j.jcis.2022.01.068_b0435) 2016; 93 Davis (10.1016/j.jcis.2022.01.068_b0305) 1982; 46 Abdulelah (10.1016/j.jcis.2022.01.068_b0190) 2021; 204 Madsen (10.1016/j.jcis.2022.01.068_b0335) 1998; 1 Aggelopoulos (10.1016/j.jcis.2022.01.068_b0360) 2011; 34 Crotogino (10.1016/j.jcis.2022.01.068_b0225) 2010 Arif (10.1016/j.jcis.2022.01.068_b0385) 2016; 462 Kaya (10.1016/j.jcis.2022.01.068_b0460) 2005; 42 Iglauer (10.1016/j.jcis.2022.01.068_b0185) 2015; 42 Grate (10.1016/j.jcis.2022.01.068_b0395) 2012; 28 Swain (10.1016/j.jcis.2022.01.068_b0515) 1998; 14 Zullig (10.1016/j.jcis.2022.01.068_b0320) 1988; 52 Al-Khdheeawi (10.1016/j.jcis.2022.01.068_b0125) 2021; 3818887 Iglauer (10.1016/j.jcis.2022.01.068_b0090) 2021; 48 10.1016/j.jcis.2022.01.068_b0290 Chen (10.1016/j.jcis.2022.01.068_b0440) 2015; 49 Espinoza (10.1016/j.jcis.2022.01.068_b0445) 2010; 46 Chen (10.1016/j.jcis.2022.01.068_b0025) 2020; 10 Al-Yaseri (10.1016/j.jcis.2022.01.068_b0280) 2021; 46 Akhondzadeh (10.1016/j.jcis.2022.01.068_b0120) 2021; 95 Al-Anssari (10.1016/j.jcis.2022.01.068_b0345) 2016; 461 Stalker (10.1016/j.jcis.2022.01.068_b0340) 2013; 60 Arif (10.1016/j.jcis.2022.01.068_b0450) 2016; 181 Jung (10.1016/j.jcis.2022.01.068_b0405) 2012; 26 Wang (10.1016/j.jcis.2022.01.068_b0020) 2021; 8 Yekta (10.1016/j.jcis.2022.01.068_b0165) 2018; 122 Jardine (10.1016/j.jcis.2022.01.068_b0330) 1989; 53 Furmidge (10.1016/j.jcis.2022.01.068_b0480) 1962; 17 Saraji (10.1016/j.jcis.2022.01.068_b0465) 2013; 434 Shiva Kumar (10.1016/j.jcis.2022.01.068_b0015) 2019; 2 |
| References_xml | – volume: 50 start-page: 112 year: 2016 end-page: 120 ident: b0390 article-title: Structural trapping capacity of oil-wet caprock as a function of pressure, temperature and salinity publication-title: Int. J. Greenhouse Gas Control – volume: 49 start-page: 14680 year: 2015 end-page: 14687 ident: b0440 article-title: Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions publication-title: Environ. Sci. Technol. – volume: 60 start-page: 116 year: 2015 end-page: 125 ident: b0530 article-title: Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells publication-title: Appl. Geochem. – year: 2020 ident: b0210 article-title: Introduction to mineralogy and petrology – volume: 588 start-page: 315 year: 2021 end-page: 325 ident: b0260 article-title: Effect of humic acid on CO2-wettability in sandstone formation publication-title: J. Colloid Interface Sci. – volume: 461 start-page: 435 year: 2016 end-page: 442 ident: b0345 article-title: Wettability alteration of oil-wet carbonate by silica nanofluid publication-title: J. Colloid Interface Sci. – volume: 119 start-page: 29038 year: 2015 end-page: 29043 ident: b0285 publication-title: Underlying mechanism of time dependent surface properties of calcite (CaCO3): a baseline for investigations of reservoirs wettability – volume: 46 year: 2010 ident: b0445 article-title: Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage publication-title: Water Resour. Res. – volume: 105 start-page: 86 year: 2019 end-page: 94 ident: b0005 article-title: Underground hydrogen storage: Characteristics and prospects publication-title: Renew. Sustain. Energy Rev. – volume: 9 start-page: 2237 year: 1993 end-page: 2239 ident: b0355 article-title: A systematic comparison of contact angle methods publication-title: Langmuir – volume: 44 start-page: 8769 year: 2017 end-page: 8775 ident: b0180 article-title: Influence of shale-total organic content on CO2 geo-storage potential publication-title: Geophys. Res. Lett. – volume: 441 start-page: 59 year: 2015 end-page: 64 ident: b0400 article-title: Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2–water interfacial tension publication-title: J. Colloid Interface Sci. – volume: 323 start-page: 73 year: 2008 end-page: 82 ident: b0475 article-title: Understanding of sliding and contact angle results in tilted plate experiments publication-title: Colloids Surf., A – volume: 214 year: 2021 ident: b0250 article-title: CO2-wettability reversal of cap-rock by alumina nanofluid: Implications for CO2 geo-storage publication-title: Fuel Process. Technol. – volume: 28 start-page: 7182 year: 2012 end-page: 7188 ident: b0395 article-title: Correlation of oil–water and air–water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions publication-title: Langmuir – volume: 17 start-page: 309 year: 1962 end-page: 324 ident: b0480 article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention publication-title: J. Colloid Sci. – volume: 627 start-page: 127118 year: 2021 ident: b0220 article-title: Assessment of CO2/shale interfacial tension publication-title: Colloids Surf., A – volume: 46 start-page: 34356 year: 2021 end-page: 34361 ident: b0280 article-title: Hydrogen wettability of clays: Implications for underground hydrogen storage publication-title: Int. J. Hydrogen Energy – volume: 22 start-page: 325 year: 2014 end-page: 328 ident: b0300 article-title: Contamination of silica surfaces: Impact on water–CO2–quartz and glass contact angle measurements publication-title: Int. J. Greenhouse Gas Control – volume: 475 start-page: 37 year: 2018 end-page: 44 ident: b0485 article-title: Erratum to “Interfacial tensions of (H2O+ H2) and (H2O+ CO2+ H2) systems at temperatures of (298 to 448) K and pressures up to 45 MPa” publication-title: Fluid Phase Equil. – volume: 122 start-page: 333 year: 2018 end-page: 356 ident: b0165 article-title: Determination of hydrogen–water relative permeability and capillary pressure in sandstone: application to underground hydrogen injection in sedimentary formations publication-title: Transp. Porous Media – volume: 4 start-page: 5422 year: 2011 end-page: 5429 ident: b0520 article-title: Petrophysical assessment of a carbonate-rich caprock for CO2 geological storage purposes publication-title: Energy Procedia – volume: 22 start-page: 504 year: 2008 end-page: 509 ident: b0415 article-title: Wettability determination of the reservoir brine− reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures publication-title: Energy Fuels – volume: 11 start-page: 2451 year: 2018 ident: b0045 article-title: Solar-driven thermochemical water-splitting by cerium oxide: determination of operational conditions in a directly irradiated fixed bed reactor publication-title: Energies – volume: 13 start-page: 3988 year: 2020 ident: b0230 article-title: Effect of environment-friendly non-ionic surfactant on interfacial tension reduction and wettability alteration; implications for enhanced oil recovery publication-title: Energies – volume: 462 start-page: 208 year: 2016 end-page: 215 ident: b0385 article-title: Impact of pressure and temperature on CO2–brine–mica contact angles and CO2–brine interfacial tension: Implications for carbon geo-sequestration publication-title: J. Colloid Interface Sci. – volume: 62 start-page: 113 year: 2017 end-page: 121 ident: b0175 article-title: CO2 storage in carbonates: Wettability of calcite publication-title: Int. J. Greenhouse Gas Control – volume: 83 start-page: 61 year: 2019 end-page: 68 ident: b0255 article-title: CO2-wettability of sandstones exposed to traces of organic acids: Implications for CO2 geo-storage publication-title: Int. J. Greenhouse Gas Control – reference: B. Pan, X. Yin, S.J.I.J.o.H.E. Iglauer, Rock-fluid interfacial tension at subsurface conditions: Implications for H2, CO2 and natural gas geo-storage, (2021). – volume: 45 start-page: 32243 year: 2020 end-page: 32259 ident: b0055 article-title: Geologic feasibility of underground hydrogen storage in Canada publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 505 year: 2011 end-page: 511 ident: b0360 article-title: Interfacial tension between CO2 and brine (NaCl+ CaCl2) at elevated pressures and temperatures: The additive effect of different salts publication-title: Adv. Water Resour. – volume: 130 start-page: 1 year: 2015 end-page: 140 ident: b0310 article-title: Mineral–organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agron. – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: b0505 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. – volume: 608 start-page: 1739 year: 2022 end-page: 1749 ident: b0105 article-title: Science, Influence of organic molecules on wetting characteristics of mica/H2/brine systems: Implications for hydrogen structural trapping capacities publication-title: J. Colloid Interface Sci. – volume: 42 start-page: 1280 year: 2005 end-page: 1289 ident: b0460 article-title: Zeta potential of clay minerals and quartz contaminated by heavy metals publication-title: Can. Geotech. J. – volume: 14 start-page: 6772 year: 1998 end-page: 6780 ident: b0515 article-title: Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws publication-title: Langmuir – volume: 52 start-page: 1667 year: 1988 end-page: 1678 ident: b0320 article-title: Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions: I. Fatty acid adsorption publication-title: Geochim. Cosmochim. Acta – volume: 95 year: 2021 ident: b0120 article-title: Liquid nitrogen fracturing efficiency as a function of coal rank: A multi-scale tomographic study publication-title: J. Nat. Gas Sci. Eng. – year: 2016 ident: b0145 article-title: End of Linear Flow Time Picking in Long Transient Hydraulically Fractured Wells to Correctly Estimate the Permeability, Fracture Half-Length and Original Gas in Place in Liquid Rich Shales publication-title: PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition, Society of Petroleum Engineers – volume: 53 start-page: 1378 year: 1989 end-page: 1385 ident: b0330 article-title: Mechanisms of dissolved organic carbon adsorption on soil publication-title: Soil Sci. Soc. Am. J. – volume: 29 start-page: 6856 year: 2013 end-page: 6866 ident: b0410 article-title: Wettability of sc-CO2/water/quartz systems: Simultaneous measurement of contact angle and interfacial tension at reservoir conditions publication-title: Langmuir – start-page: 37 year: 2010 end-page: 45 ident: b0225 article-title: Large-scale hydrogen underground storage for securing future energy supplies publication-title: 18th World hydrogen energy conference – volume: 14 year: 1975 ident: b0495 publication-title: The effects of surface roughness on contact: angle with special reference to petroleum recovery – volume: 37 start-page: 14265 year: 2012 end-page: 14277 ident: b0160 article-title: Large-scale hydrogen energy storage in salt caverns publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 221 year: 2015 end-page: 237 ident: b0525 article-title: Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications publication-title: Int. J. Greenhouse Gas Control – volume: 10 start-page: 858 year: 2020 ident: b0025 article-title: Catalytic hydrogen production from methane: A review on recent progress and prospect publication-title: Catalysts – volume: 56 year: 2020 ident: b0500 publication-title: The impact of wettability and surface roughness on fluid displacement and capillary trapping in 2-D and 3-D porous media: 2. Combined effect of wettability, surface roughness, and pore space structure on trapping efficiency in sand packs and micromodels – volume: 34 start-page: 2160 year: 2020 end-page: 2168 ident: b0170 article-title: Influence of cryogenic liquid nitrogen on petro-physical characteristics of mancos shale: an experimental investigation publication-title: Energy Fuels – year: 2021 ident: b0245 article-title: Effect of Organics and Nanoparticles on CO2-Wettability of Reservoir Rock; Implications for CO2 Geo-Storage – year: 2003 ident: b0565 article-title: Encyclopedia of food sciences and nutrition – volume: 12 start-page: 280 year: 2012 end-page: 294 ident: b0370 article-title: Are rocks still water-wet in the presence of dense CO2 or H2S? publication-title: Geofluids – volume: 26 start-page: 6053 year: 2012 end-page: 6059 ident: b0405 article-title: Supercritical CO2 and ionic strength effects on wettability of silica surfaces: Equilibrium contact angle measurements publication-title: Energy Fuels – volume: 200 start-page: 108387 year: 2021 ident: b0135 article-title: On hydrogen wettability of basaltic rock publication-title: J. Petrol. Sci. Eng. – volume: 434 start-page: 260 year: 2013 end-page: 267 ident: b0465 article-title: Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films publication-title: Colloids Surf., A – volume: 559 start-page: 304 year: 2020 end-page: 312 ident: b0070 article-title: M.J.J.o.c. Sarmadivaleh, i. science, Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage publication-title: J. Colloid Interface Sci. – volume: 46 start-page: 23436 year: 2021 end-page: 23462 ident: b0010 article-title: Underground hydrogen storage: A comprehensive review publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 639 year: 2021 end-page: 649 ident: b0130 article-title: Characterization and analysis of naturally fractured gas reservoirs based on stimulated reservoir volume and petro-physical parameters publication-title: J. Petrol. Exploration Production – volume: 93 start-page: 416 year: 2016 end-page: 423 ident: b0435 article-title: Receding and advancing (CO2+ brine+ quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity publication-title: J. Chem. Thermodyn. – volume: 181 start-page: 680 year: 2016 end-page: 689 ident: b0450 article-title: CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery publication-title: Fuel – volume: 25 start-page: 1509 year: 1996 end-page: 1596 ident: b0430 article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa publication-title: J. Phys. Chem. Ref. Data – volume: 38 start-page: 721 year: 2009 end-page: 748 ident: b0425 article-title: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen publication-title: J. Phys. Chem. Ref. Data – volume: 204 year: 2021 ident: b0190 article-title: CO2/Basalt's interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration publication-title: J. Petrol. Sci. Eng. – volume: 45 start-page: 6793 year: 2020 end-page: 6805 ident: b0075 article-title: Technical potential of salt caverns for hydrogen storage in Europe publication-title: Int. J. Hydrogen Energy – volume: 219 year: 2020 ident: b0115 article-title: Pore-scale analysis of coal cleat network evolution through liquid nitrogen treatment: A Micro-Computed Tomography investigation publication-title: Int. J. Coal Geol. – year: 2021 ident: b0080 article-title: Optimum geological storage depths for structural H2 geo-storage publication-title: J. Petrol. Sci. Eng. – volume: 8 start-page: 1 year: 2021 end-page: 23 ident: b0020 article-title: Hydrogen production from water electrolysis: role of catalysts publication-title: Nano Convergence – volume: 42 start-page: 9279 year: 2015 end-page: 9284 ident: b0185 article-title: CO2 wettability of caprocks: Implications for structural storage capacity and containment security publication-title: Geophys. Res. Lett. – volume: 7 start-page: 5988 year: 2021 end-page: 5996 ident: b0275 article-title: Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage publication-title: Energy Rep. – volume: 534 start-page: 88 year: 2019 end-page: 94 ident: b0205 article-title: i. science, Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage publication-title: J. Colloid Interface Sci. – volume: 298 year: 2021 ident: b0240 article-title: Impact of a novel biosynthesized nanocomposite (SiO2@ Montmorilant@ Xanthan) on wettability shift and interfacial tension: Applications for enhanced oil recovery publication-title: Fuel – volume: 2 start-page: 442 year: 2019 end-page: 454 ident: b0015 article-title: Hydrogen production by PEM water electrolysis–A review publication-title: Mater. Sci. for Energy Technol. – volume: 186 year: 2020 ident: b0035 article-title: Biorenewable hydrogen production through biomass gasification: A review and future prospects publication-title: Environ. Res. – volume: 225 year: 2022 ident: b0100 article-title: Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook publication-title: Earth Sci. Rev. – volume: 22 start-page: 37 year: 1988 end-page: 41 ident: b0315 article-title: Adsorption of aliphatic fatty acids on aquatic interfaces. Comparison between two model surfaces: the mercury electrode and δ-Al2O3 colloids publication-title: Environ. Sci. Technol. – volume: 46 start-page: 34822 year: 2021 end-page: 34829 ident: b0550 article-title: Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography publication-title: Int. J. Hydrogen Energy – volume: 1 start-page: 47 year: 1998 end-page: 51 ident: b0335 article-title: Engineering, Adsorption of carboxylic acids on reservoir minerals from organic and aqueous phase publication-title: SPE Reservoir Eval. Eng. – volume: 51 start-page: 729 year: 2015 end-page: 774 ident: b0200 article-title: CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration publication-title: Water Resour. Res. – volume: 608 start-page: 1457 year: 2022 end-page: 1462 ident: b0110 article-title: Hydrogen diffusion in coal: Implications for Hydrogen Geo-Storage publication-title: J. Colloid Interface Sci. – volume: 60 start-page: 45 year: 2013 end-page: 58 ident: b0340 article-title: South West Hub: a carbon capture and storage project publication-title: Aust. J. Earth Sci. – volume: 41 start-page: 14535 year: 2016 end-page: 14552 ident: b0060 article-title: The survey of key technologies in hydrogen energy storage publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 277 year: 2020 end-page: 285 ident: b0325 article-title: Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition publication-title: Petroleum – year: 2021 ident: b0140 article-title: Hydrogen wettability of quartz substrates exposed to organic acids; Implications for hydrogen trapping/storage in sandstone reservoirs publication-title: J. Petrol. Sci. Eng. – volume: 45 start-page: 8757 year: 2020 end-page: 8773 ident: b0270 article-title: Impacts of the subsurface storage of natural gas and hydrogen mixtures publication-title: Int. J. Hydrogen Energy – volume: 3818887 year: 2021 ident: b0125 article-title: Reservoir Scale Porosity-Permeability Evolution in Sandstone Due to CO2 Geological Storage publication-title: Available at SSRN – volume: 159 start-page: 30 year: 2018 end-page: 41 ident: b0040 article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents publication-title: Energy Convers. Manage. – volume: 43 start-page: 190 year: 2017 end-page: 206 ident: b0545 article-title: Influence of injection well configuration and rock wettability on CO2 plume behaviour and CO2 trapping capacity in heterogeneous reservoirs publication-title: J. Nat. Gas Sci. Eng. – year: 2011 ident: b0295 article-title: Advanced well completion engineering – volume: 469 start-page: 63 year: 2016 end-page: 68 ident: b0380 article-title: Residual trapping of supercritical CO2 in oil-wet sandstone publication-title: J. Colloid Interface Sci. – volume: 299 year: 2020 ident: b0490 publication-title: Impact of surface roughness on wettability of oil-brine-calcite system at sub-pore scale – start-page: 40 year: 1994 end-page: 69 ident: b0535 article-title: Distribution and occurrence of organic acids in subsurface waters, Organic acids in geological processes publication-title: Organic Acids in Geological Processes – volume: 562 start-page: 370 year: 2020 end-page: 380 ident: b0560 article-title: Pore scale investigation of low salinity surfactant nanofluid injection into oil saturated sandstone via X-ray micro-tomography publication-title: J. Colloid Interface Sci. – volume: 46 start-page: 2381 year: 1982 end-page: 2393 ident: b0305 article-title: Adsorption of natural dissolved organic matter at the oxide/water interface publication-title: Geochim. Cosmochim. Acta – volume: 2 start-page: 12 year: 2006 end-page: 17 ident: b0510 article-title: Soft contact: measurement and interpretation of contact angles publication-title: Soft Matter – volume: 12 start-page: 39850 year: 2020 end-page: 39858 ident: b0065 article-title: Interfaces, Influence of organic acid concentration on wettability alteration of cap-rock: implications for CO2 trapping/storage publication-title: ACS Appl. Mater. Interfaces – volume: 386 start-page: 405 year: 2012 end-page: 414 ident: b0420 article-title: i. science, Molecular dynamics computations of brine–CO2 interfacial tensions and brine–CO2–quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 112 year: 2007 end-page: 122 ident: b0350 article-title: Wettability alteration of caprock minerals by carbon dioxide publication-title: Geofluids – reference: X. Li, E. Boek, G.C. Maitland, J.M.J.J.o.C. Trusler, E. Data, Interfacial Tension of (Brines+ CO2):(0.864 NaCl+ 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol· kg–1, 57(4) (2012) 1078-1088. – volume: 58 start-page: 142 year: 2017 end-page: 158 ident: b0540 article-title: Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity publication-title: Int. J. Greenhouse Gas Control – volume: 33 start-page: 739 year: 2019 end-page: 746 ident: b0555 article-title: Low-salinity surfactant nanofluid formulations for wettability alteration of sandstone: role of the SiO2 nanoparticle concentration and divalent cation/SO42–ratio publication-title: Energy Fuels – volume: 34 start-page: 14548 year: 2020 end-page: 14559 ident: b0150 article-title: Effect of cryogenic liquid nitrogen on the morphological and petrophysical characteristics of tight gas sandstone rocks from kirthar fold belt publication-title: Indus Basin, Pakistan, Energy Fuels – volume: 76 start-page: 565 year: 2015 end-page: 572 ident: b0095 article-title: Subsurface porous media hydrogen storage–scenario development and simulation publication-title: Energy Procedia – volume: 50 start-page: 2727 year: 2016 end-page: 2734 ident: b0375 article-title: Capillary trapping of CO2 in oil reservoirs: Observations in a mixed-wet carbonate rock publication-title: Environ. Sci. Technol. – volume: 46 start-page: 32809 year: 2021 end-page: 32845 ident: b0030 article-title: Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review publication-title: Int. J. Hydrogen Energy – volume: 123 start-page: 9027 year: 2019 end-page: 9040 ident: b0470 article-title: Wettability of fully hydroxylated and alkylated (001) α-quartz surface in carbon dioxide atmosphere publication-title: J. Phys. Chem. C – volume: 192 year: 2020 ident: b0155 article-title: Morphological and petro physical estimation of eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin publication-title: Pakistan, J. Petroleum Sci. Eng. – volume: 603 start-page: 165 year: 2021 end-page: 171 ident: b0195 article-title: Western Australia basalt-CO2-brine wettability at geo-storage conditions publication-title: J. Colloid Interface Sci. – start-page: 271 year: 2019 end-page: 282 ident: b0215 article-title: Geochemistry: inorganic, Encyclopedia of Analytical Science: Reference Module in Chemistry – volume: 2 start-page: 594 year: 2008 end-page: 604 ident: b0365 article-title: Water/acid gas interfacial tensions and their impact on acid gas geological storage publication-title: Int. J. Greenhouse Gas Control – volume: 154 year: 2021 ident: b0235 article-title: Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage publication-title: Adv. Water Resour. – volume: 48 year: 2021 ident: b0085 article-title: Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage publication-title: Geophys. Res. Lett. – volume: 48 year: 2021 ident: b0090 article-title: Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage publication-title: Geophys. Res. Lett. – volume: 50 start-page: 1134 year: 2017 end-page: 1142 ident: b0455 article-title: CO2–water–rock wettability: variability, influencing factors, and implications for CO2 geostorage publication-title: Acc. Chem. Res. – volume: 9 start-page: 116 year: 2021 ident: b0050 article-title: Hydrogen production by solar thermochemical water-splitting cycle via a beam down concentrator publication-title: Front. Energy Res. – volume: 469 start-page: 63 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0380 article-title: Residual trapping of supercritical CO2 in oil-wet sandstone publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.02.020 – volume: 17 start-page: 309 issue: 4 year: 1962 ident: 10.1016/j.jcis.2022.01.068_b0480 article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention publication-title: J. Colloid Sci. doi: 10.1016/0095-8522(62)90011-9 – volume: 52 start-page: 1667 issue: 6 year: 1988 ident: 10.1016/j.jcis.2022.01.068_b0320 article-title: Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions: I. Fatty acid adsorption publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90235-9 – volume: 200 start-page: 108387 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0135 article-title: On hydrogen wettability of basaltic rock publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108387 – volume: 46 start-page: 2381 issue: 11 year: 1982 ident: 10.1016/j.jcis.2022.01.068_b0305 article-title: Adsorption of natural dissolved organic matter at the oxide/water interface publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90209-5 – volume: 93 start-page: 416 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0435 article-title: Receding and advancing (CO2+ brine+ quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2015.07.031 – volume: 123 start-page: 9027 issue: 14 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0470 article-title: Wettability of fully hydroxylated and alkylated (001) α-quartz surface in carbon dioxide atmosphere publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b00263 – volume: 48 issue: 10 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0085 article-title: Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL092976 – volume: 2 start-page: 442 issue: 3 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0015 article-title: Hydrogen production by PEM water electrolysis–A review publication-title: Mater. Sci. for Energy Technol. – start-page: 37 year: 2010 ident: 10.1016/j.jcis.2022.01.068_b0225 article-title: Large-scale hydrogen underground storage for securing future energy supplies publication-title: 18th World hydrogen energy conference – ident: 10.1016/j.jcis.2022.01.068_b0290 doi: 10.1021/je201062r – volume: 9 start-page: 2237 issue: 8 year: 1993 ident: 10.1016/j.jcis.2022.01.068_b0355 article-title: A systematic comparison of contact angle methods publication-title: Langmuir doi: 10.1021/la00032a055 – volume: 45 start-page: 32243 issue: 56 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0055 article-title: Geologic feasibility of underground hydrogen storage in Canada publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.244 – volume: 192 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0155 article-title: Morphological and petro physical estimation of eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin publication-title: Pakistan, J. Petroleum Sci. Eng. – volume: 562 start-page: 370 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0560 article-title: Pore scale investigation of low salinity surfactant nanofluid injection into oil saturated sandstone via X-ray micro-tomography publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.043 – volume: 6 start-page: 277 issue: 3 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0325 article-title: Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition publication-title: Petroleum doi: 10.1016/j.petlm.2019.09.001 – volume: 29 start-page: 6856 issue: 23 year: 2013 ident: 10.1016/j.jcis.2022.01.068_b0410 article-title: Wettability of sc-CO2/water/quartz systems: Simultaneous measurement of contact angle and interfacial tension at reservoir conditions publication-title: Langmuir doi: 10.1021/la3050863 – year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0140 article-title: Hydrogen wettability of quartz substrates exposed to organic acids; Implications for hydrogen trapping/storage in sandstone reservoirs publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.109081 – volume: 49 start-page: 14680 issue: 24 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0440 article-title: Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03646 – volume: 42 start-page: 9279 issue: 21 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0185 article-title: CO2 wettability of caprocks: Implications for structural storage capacity and containment security publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL065787 – volume: 214 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0250 article-title: CO2-wettability reversal of cap-rock by alumina nanofluid: Implications for CO2 geo-storage publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106722 – volume: 603 start-page: 165 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0195 article-title: Western Australia basalt-CO2-brine wettability at geo-storage conditions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.078 – start-page: 40 year: 1994 ident: 10.1016/j.jcis.2022.01.068_b0535 article-title: Distribution and occurrence of organic acids in subsurface waters, Organic acids in geological processes – volume: 534 start-page: 88 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0205 article-title: i. science, Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.08.106 – volume: 51 start-page: 729 issue: 1 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0200 article-title: CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration publication-title: Water Resour. Res. doi: 10.1002/2014WR015553 – volume: 2 start-page: 12 issue: 1 year: 2006 ident: 10.1016/j.jcis.2022.01.068_b0510 article-title: Soft contact: measurement and interpretation of contact angles publication-title: Soft Matter doi: 10.1039/B514811C – volume: 46 start-page: 34356 issue: 69 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0280 article-title: Hydrogen wettability of clays: Implications for underground hydrogen storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.226 – volume: 22 start-page: 325 year: 2014 ident: 10.1016/j.jcis.2022.01.068_b0300 article-title: Contamination of silica surfaces: Impact on water–CO2–quartz and glass contact angle measurements publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.01.006 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0020 article-title: Hydrogen production from water electrolysis: role of catalysts publication-title: Nano Convergence doi: 10.1186/s40580-021-00254-x – volume: 37 start-page: 14265 issue: 19 year: 2012 ident: 10.1016/j.jcis.2022.01.068_b0160 article-title: Large-scale hydrogen energy storage in salt caverns publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.111 – volume: 3818887 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0125 article-title: Reservoir Scale Porosity-Permeability Evolution in Sandstone Due to CO2 Geological Storage publication-title: Available at SSRN – volume: 28 start-page: 988 issue: 8 year: 1936 ident: 10.1016/j.jcis.2022.01.068_b0505 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – volume: 46 start-page: 23436 issue: 45 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0010 article-title: Underground hydrogen storage: A comprehensive review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.138 – volume: 1 start-page: 47 issue: 01 year: 1998 ident: 10.1016/j.jcis.2022.01.068_b0335 article-title: Engineering, Adsorption of carboxylic acids on reservoir minerals from organic and aqueous phase publication-title: SPE Reservoir Eval. Eng. doi: 10.2118/37292-PA – start-page: 271 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0215 – volume: 475 start-page: 37 year: 2018 ident: 10.1016/j.jcis.2022.01.068_b0485 article-title: Erratum to “Interfacial tensions of (H2O+ H2) and (H2O+ CO2+ H2) systems at temperatures of (298 to 448) K and pressures up to 45 MPa” publication-title: Fluid Phase Equil. doi: 10.1016/j.fluid.2018.07.022 – volume: 14 issue: 04 year: 1975 ident: 10.1016/j.jcis.2022.01.068_b0495 publication-title: The effects of surface roughness on contact: angle with special reference to petroleum recovery – volume: 53 start-page: 1378 issue: 5 year: 1989 ident: 10.1016/j.jcis.2022.01.068_b0330 article-title: Mechanisms of dissolved organic carbon adsorption on soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300050013x – volume: 22 start-page: 37 issue: 1 year: 1988 ident: 10.1016/j.jcis.2022.01.068_b0315 article-title: Adsorption of aliphatic fatty acids on aquatic interfaces. Comparison between two model surfaces: the mercury electrode and δ-Al2O3 colloids publication-title: Environ. Sci. Technol. doi: 10.1021/es00166a002 – volume: 34 start-page: 505 issue: 4 year: 2011 ident: 10.1016/j.jcis.2022.01.068_b0360 article-title: Interfacial tension between CO2 and brine (NaCl+ CaCl2) at elevated pressures and temperatures: The additive effect of different salts publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.01.007 – volume: 11 start-page: 2451 issue: 9 year: 2018 ident: 10.1016/j.jcis.2022.01.068_b0045 article-title: Solar-driven thermochemical water-splitting by cerium oxide: determination of operational conditions in a directly irradiated fixed bed reactor publication-title: Energies doi: 10.3390/en11092451 – volume: 299 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0490 publication-title: Impact of surface roughness on wettability of oil-brine-calcite system at sub-pore scale – volume: 50 start-page: 112 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0390 article-title: Structural trapping capacity of oil-wet caprock as a function of pressure, temperature and salinity publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.04.024 – volume: 13 start-page: 3988 issue: 15 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0230 article-title: Effect of environment-friendly non-ionic surfactant on interfacial tension reduction and wettability alteration; implications for enhanced oil recovery publication-title: Energies doi: 10.3390/en13153988 – volume: 588 start-page: 315 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0260 article-title: Effect of humic acid on CO2-wettability in sandstone formation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.058 – year: 2011 ident: 10.1016/j.jcis.2022.01.068_b0295 – volume: 154 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0235 article-title: Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.103964 – volume: 12 start-page: 280 issue: 4 year: 2012 ident: 10.1016/j.jcis.2022.01.068_b0370 article-title: Are rocks still water-wet in the presence of dense CO2 or H2S? publication-title: Geofluids doi: 10.1111/j.1468-8123.2012.00369.x – volume: 46 start-page: 34822 issue: 70 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0550 article-title: Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.08.042 – volume: 40 start-page: 221 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0525 article-title: Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2015.04.006 – volume: 45 start-page: 8757 issue: 15 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0270 article-title: Impacts of the subsurface storage of natural gas and hydrogen mixtures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.01.044 – year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0080 article-title: Optimum geological storage depths for structural H2 geo-storage publication-title: J. Petrol. Sci. Eng. – year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0145 article-title: End of Linear Flow Time Picking in Long Transient Hydraulically Fractured Wells to Correctly Estimate the Permeability, Fracture Half-Length and Original Gas in Place in Liquid Rich Shales publication-title: PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition, Society of Petroleum Engineers – volume: 34 start-page: 14548 issue: 11 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0150 article-title: Effect of cryogenic liquid nitrogen on the morphological and petrophysical characteristics of tight gas sandstone rocks from kirthar fold belt publication-title: Indus Basin, Pakistan, Energy Fuels doi: 10.1021/acs.energyfuels.0c02553 – volume: 627 start-page: 127118 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0220 article-title: Assessment of CO2/shale interfacial tension publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2021.127118 – volume: 60 start-page: 116 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0530 article-title: Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2015.04.011 – volume: 204 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0190 article-title: CO2/Basalt's interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108683 – year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0210 – volume: 56 issue: 10 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0500 publication-title: The impact of wettability and surface roughness on fluid displacement and capillary trapping in 2-D and 3-D porous media: 2. Combined effect of wettability, surface roughness, and pore space structure on trapping efficiency in sand packs and micromodels – volume: 44 start-page: 8769 issue: 17 year: 2017 ident: 10.1016/j.jcis.2022.01.068_b0180 article-title: Influence of shale-total organic content on CO2 geo-storage potential publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073532 – volume: 2 start-page: 594 issue: 4 year: 2008 ident: 10.1016/j.jcis.2022.01.068_b0365 article-title: Water/acid gas interfacial tensions and their impact on acid gas geological storage publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2008.02.002 – volume: 323 start-page: 73 issue: 1-3 year: 2008 ident: 10.1016/j.jcis.2022.01.068_b0475 article-title: Understanding of sliding and contact angle results in tilted plate experiments publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2007.09.032 – volume: 46 start-page: 32809 issue: 65 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0030 article-title: Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.097 – volume: 130 start-page: 1 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0310 article-title: Mineral–organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agron. doi: 10.1016/bs.agron.2014.10.005 – volume: 76 start-page: 565 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0095 article-title: Subsurface porous media hydrogen storage–scenario development and simulation publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.872 – volume: 12 start-page: 39850 issue: 35 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0065 article-title: Interfaces, Influence of organic acid concentration on wettability alteration of cap-rock: implications for CO2 trapping/storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10491 – year: 2003 ident: 10.1016/j.jcis.2022.01.068_b0565 – volume: 186 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0035 article-title: Biorenewable hydrogen production through biomass gasification: A review and future prospects publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109547 – volume: 43 start-page: 190 year: 2017 ident: 10.1016/j.jcis.2022.01.068_b0545 article-title: Influence of injection well configuration and rock wettability on CO2 plume behaviour and CO2 trapping capacity in heterogeneous reservoirs publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.03.016 – volume: 105 start-page: 86 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0005 article-title: Underground hydrogen storage: Characteristics and prospects publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.051 – volume: 50 start-page: 2727 issue: 5 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0375 article-title: Capillary trapping of CO2 in oil reservoirs: Observations in a mixed-wet carbonate rock publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05925 – volume: 219 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0115 article-title: Pore-scale analysis of coal cleat network evolution through liquid nitrogen treatment: A Micro-Computed Tomography investigation publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2019.103370 – volume: 28 start-page: 7182 issue: 18 year: 2012 ident: 10.1016/j.jcis.2022.01.068_b0395 article-title: Correlation of oil–water and air–water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions publication-title: Langmuir doi: 10.1021/la204322k – volume: 225 year: 2022 ident: 10.1016/j.jcis.2022.01.068_b0100 article-title: Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2021.103895 – volume: 14 start-page: 6772 issue: 23 year: 1998 ident: 10.1016/j.jcis.2022.01.068_b0515 article-title: Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws publication-title: Langmuir doi: 10.1021/la980602k – volume: 181 start-page: 680 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0450 article-title: CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery publication-title: Fuel doi: 10.1016/j.fuel.2016.05.053 – volume: 10 start-page: 858 issue: 8 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0025 article-title: Catalytic hydrogen production from methane: A review on recent progress and prospect publication-title: Catalysts doi: 10.3390/catal10080858 – volume: 559 start-page: 304 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0070 article-title: M.J.J.o.c. Sarmadivaleh, i. science, Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.10.028 – volume: 4 start-page: 5422 year: 2011 ident: 10.1016/j.jcis.2022.01.068_b0520 article-title: Petrophysical assessment of a carbonate-rich caprock for CO2 geological storage purposes publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.527 – volume: 608 start-page: 1457 year: 2022 ident: 10.1016/j.jcis.2022.01.068_b0110 article-title: Hydrogen diffusion in coal: Implications for Hydrogen Geo-Storage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.050 – volume: 50 start-page: 1134 issue: 5 year: 2017 ident: 10.1016/j.jcis.2022.01.068_b0455 article-title: CO2–water–rock wettability: variability, influencing factors, and implications for CO2 geostorage publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00602 – volume: 26 start-page: 6053 issue: 9 year: 2012 ident: 10.1016/j.jcis.2022.01.068_b0405 article-title: Supercritical CO2 and ionic strength effects on wettability of silica surfaces: Equilibrium contact angle measurements publication-title: Energy Fuels doi: 10.1021/ef300913t – volume: 45 start-page: 6793 issue: 11 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0075 article-title: Technical potential of salt caverns for hydrogen storage in Europe publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.161 – volume: 298 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0240 article-title: Impact of a novel biosynthesized nanocomposite (SiO2@ Montmorilant@ Xanthan) on wettability shift and interfacial tension: Applications for enhanced oil recovery publication-title: Fuel doi: 10.1016/j.fuel.2021.120773 – volume: 119 start-page: 29038 issue: 52 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0285 publication-title: Underlying mechanism of time dependent surface properties of calcite (CaCO3): a baseline for investigations of reservoirs wettability – volume: 11 start-page: 639 issue: 2 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0130 article-title: Characterization and analysis of naturally fractured gas reservoirs based on stimulated reservoir volume and petro-physical parameters publication-title: J. Petrol. Exploration Production doi: 10.1007/s13202-020-01081-2 – volume: 83 start-page: 61 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0255 article-title: CO2-wettability of sandstones exposed to traces of organic acids: Implications for CO2 geo-storage publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.02.002 – volume: 441 start-page: 59 year: 2015 ident: 10.1016/j.jcis.2022.01.068_b0400 article-title: Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2–water interfacial tension publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.11.010 – volume: 48 issue: 3 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0090 article-title: Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL090814 – volume: 22 start-page: 504 issue: 1 year: 2008 ident: 10.1016/j.jcis.2022.01.068_b0415 article-title: Wettability determination of the reservoir brine− reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures publication-title: Energy Fuels doi: 10.1021/ef700383x – ident: 10.1016/j.jcis.2022.01.068_b0265 doi: 10.1016/j.ijhydene.2021.05.067 – volume: 608 start-page: 1739 year: 2022 ident: 10.1016/j.jcis.2022.01.068_b0105 article-title: Science, Influence of organic molecules on wetting characteristics of mica/H2/brine systems: Implications for hydrogen structural trapping capacities publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.080 – volume: 60 start-page: 45 issue: 1 year: 2013 ident: 10.1016/j.jcis.2022.01.068_b0340 article-title: South West Hub: a carbon capture and storage project publication-title: Aust. J. Earth Sci. doi: 10.1080/08120099.2013.756830 – volume: 462 start-page: 208 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0385 article-title: Impact of pressure and temperature on CO2–brine–mica contact angles and CO2–brine interfacial tension: Implications for carbon geo-sequestration publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.09.076 – volume: 9 start-page: 116 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0050 article-title: Hydrogen production by solar thermochemical water-splitting cycle via a beam down concentrator publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.666191 – volume: 42 start-page: 1280 issue: 5 year: 2005 ident: 10.1016/j.jcis.2022.01.068_b0460 article-title: Zeta potential of clay minerals and quartz contaminated by heavy metals publication-title: Can. Geotech. J. doi: 10.1139/t05-048 – volume: 434 start-page: 260 year: 2013 ident: 10.1016/j.jcis.2022.01.068_b0465 article-title: Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.05.070 – year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0245 – volume: 386 start-page: 405 issue: 1 year: 2012 ident: 10.1016/j.jcis.2022.01.068_b0420 article-title: i. science, Molecular dynamics computations of brine–CO2 interfacial tensions and brine–CO2–quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.06.052 – volume: 7 start-page: 112 issue: 2 year: 2007 ident: 10.1016/j.jcis.2022.01.068_b0350 article-title: Wettability alteration of caprock minerals by carbon dioxide publication-title: Geofluids doi: 10.1111/j.1468-8123.2007.00168.x – volume: 25 start-page: 1509 issue: 6 year: 1996 ident: 10.1016/j.jcis.2022.01.068_b0430 article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555991 – volume: 122 start-page: 333 issue: 2 year: 2018 ident: 10.1016/j.jcis.2022.01.068_b0165 article-title: Determination of hydrogen–water relative permeability and capillary pressure in sandstone: application to underground hydrogen injection in sedimentary formations publication-title: Transp. Porous Media doi: 10.1007/s11242-018-1004-7 – volume: 159 start-page: 30 year: 2018 ident: 10.1016/j.jcis.2022.01.068_b0040 article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.12.096 – volume: 34 start-page: 2160 issue: 2 year: 2020 ident: 10.1016/j.jcis.2022.01.068_b0170 article-title: Influence of cryogenic liquid nitrogen on petro-physical characteristics of mancos shale: an experimental investigation publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b03700 – volume: 58 start-page: 142 year: 2017 ident: 10.1016/j.jcis.2022.01.068_b0540 article-title: Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.01.012 – volume: 62 start-page: 113 year: 2017 ident: 10.1016/j.jcis.2022.01.068_b0175 article-title: CO2 storage in carbonates: Wettability of calcite publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.04.014 – volume: 38 start-page: 721 issue: 3 year: 2009 ident: 10.1016/j.jcis.2022.01.068_b0425 article-title: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.3160306 – volume: 95 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0120 article-title: Liquid nitrogen fracturing efficiency as a function of coal rank: A multi-scale tomographic study publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.104177 – volume: 461 start-page: 435 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0345 article-title: Wettability alteration of oil-wet carbonate by silica nanofluid publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.09.051 – volume: 46 issue: 7 year: 2010 ident: 10.1016/j.jcis.2022.01.068_b0445 article-title: Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage publication-title: Water Resour. Res. doi: 10.1029/2009WR008634 – volume: 7 start-page: 5988 year: 2021 ident: 10.1016/j.jcis.2022.01.068_b0275 article-title: Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.09.016 – volume: 33 start-page: 739 issue: 2 year: 2019 ident: 10.1016/j.jcis.2022.01.068_b0555 article-title: Low-salinity surfactant nanofluid formulations for wettability alteration of sandstone: role of the SiO2 nanoparticle concentration and divalent cation/SO42–ratio publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b03406 – volume: 41 start-page: 14535 issue: 33 year: 2016 ident: 10.1016/j.jcis.2022.01.068_b0060 article-title: The survey of key technologies in hydrogen energy storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.293 |
| SSID | ssj0011559 |
| Score | 2.6765924 |
| Snippet | [Display omitted]
•Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature... The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 256 |
| SubjectTerms | calcite Calcite-rich formation carbonates Contact angle energy greenhouse gases Hydrogen Hydrogen geo-storage salinity stearic acid surface roughness temperature Wettability |
| Title | Hydrogen wettability of carbonate formations: Implications for hydrogen geo-storage |
| URI | https://dx.doi.org/10.1016/j.jcis.2022.01.068 https://www.ncbi.nlm.nih.gov/pubmed/35101673 https://www.proquest.com/docview/2624658995 https://www.proquest.com/docview/2636551088 |
| Volume | 614 |
| WOSCitedRecordID | wos000750145000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-7103 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DsE4IBgDyscUJG5TUOMkTsytmjZtSJuQGFJvke3Ya6o2qbK2Grvxn_Mcx0lU1AoOXKIq_mjr38_Pz_b7QOiTzwNQslXqwq6NuAGnscu9SLiBYBQLymMl0irZRHR9HY_H9Fuv98v6wqxnUZ7H9_d08V-hhncAtnad_Qe4m07hBXwG0OEJsMPzr4C_-JmWxa12z5bLpYnCXd2iC1ZyfVQuW4fFyhzusmtTro0OJ7aDW1m42niSbdgLtTqsZlGRpXUIJ53xmumQtUZeNIyBdVhmVeqok6usnLCOHdA5m2TzBXRoLHZnrDH4GBm_7avVhM3nLG0XhrsJW7PywXjngMB-YN2TC9j06qCn5gpbGmkL-p02BvW74ph4QVegmrDjfwh6c-Yw_TwVmQ66jnEVfNVk6OmAvJhXKPta8hCTM2UjvLYt2kP7OApp3Ef7o8uz8dfmKkrf29beVsYwcPMrD9Bj28k25Wbb5qVSYm6eo2c1cs7IsOYF6sn8ED05tUn_DtHTTnzKl-i75ZLT4ZJTKKfhktNy6YvTZZIucCyTnA6TjtCP87Ob0wu3zsLhClBml24UC4pjxbFSESOCC_ifQ0W8lJjdqCdjwnGYUpjYUUCURzAPAgWKJmylsST-K9TPi1y-QU5MfA9jLiVRacAIhdahwpQTpbwhS8kAeXb4ElGHqNeZUmaJtUWcJnr0Ez36ydBLYPQH6KRpszABWnbWDi0qST0ZjOqYALF2tvtoIUwAEX2pxnJZrKASwQFo8ZSGu-r4BHYmsKAP0GuDf_NbLXXebi15hw7a2fMe9ZflSn5Aj8R6md2Vx2gvGsfHNWl_A1BZulk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+wettability+of+carbonate+formations%3A+Implications+for+hydrogen+geo-storage&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Hosseini%2C+Mirhasan&rft.au=Fahimpour%2C+Jalal&rft.au=Ali%2C+Muhammad&rft.au=Keshavarz%2C+Alireza&rft.date=2022-05-15&rft.eissn=1095-7103&rft.volume=614&rft.spage=256&rft_id=info:doi/10.1016%2Fj.jcis.2022.01.068&rft_id=info%3Apmid%2F35101673&rft.externalDocID=35101673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |