Hydrogen wettability of carbonate formations: Implications for hydrogen geo-storage

[Display omitted] •Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature and surface roughness.•Calcite-rich formations have a higher risk than other formations for H2 geo-storage projects. The mitigation of anthrop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of colloid and interface science Ročník 614; s. 256 - 266
Hlavní autori: Hosseini, Mirhasan, Fahimpour, Jalal, Ali, Muhammad, Keshavarz, Alireza, Iglauer, Stefan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 15.05.2022
Predmet:
ISSN:0021-9797, 1095-7103, 1095-7103
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature and surface roughness.•Calcite-rich formations have a higher risk than other formations for H2 geo-storage projects. The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1–20 MPa), temperature (298–353 K), salinity (0–4.95 mol.kg−1), stearic acid (as a representative of organic acid) concentration (10-9 − 10-2 mol/L), tilting plate angle (0° − 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.
AbstractList The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety.HYPOTHESISThe mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety.As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg-1), stearic acid (as a representative of organic acid) concentration (10-9 - 10-2 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm).EXPERIMENTSAs there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg-1), stearic acid (as a representative of organic acid) concentration (10-9 - 10-2 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm).The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.FINDINGSThe results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.
The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H /brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θ ) and receding (θ ) contact angles of water/H /calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg ), stearic acid (as a representative of organic acid) concentration (10 - 10 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H -wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.
The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H₂/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θₐ) and receding (θᵣ) contact angles of water/H₂/calcite systems were measured as a function of different parameters, including pressure (0.1–20 MPa), temperature (298–353 K), salinity (0–4.95 mol.kg⁻¹), stearic acid (as a representative of organic acid) concentration (10⁻⁹ − 10⁻² mol/L), tilting plate angle (0° − 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H₂-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H₂ storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.
[Display omitted] •Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature and surface roughness.•Calcite-rich formations have a higher risk than other formations for H2 geo-storage projects. The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1–20 MPa), temperature (298–353 K), salinity (0–4.95 mol.kg−1), stearic acid (as a representative of organic acid) concentration (10-9 − 10-2 mol/L), tilting plate angle (0° − 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.
Author Ali, Muhammad
Keshavarz, Alireza
Fahimpour, Jalal
Iglauer, Stefan
Hosseini, Mirhasan
Author_xml – sequence: 1
  givenname: Mirhasan
  surname: Hosseini
  fullname: Hosseini, Mirhasan
  email: mirhasan.hosseini@gmail.com, mhossei0@our.ecu.edu.au
  organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia
– sequence: 2
  givenname: Jalal
  surname: Fahimpour
  fullname: Fahimpour, Jalal
  organization: Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
– sequence: 3
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
  organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia
– sequence: 4
  givenname: Alireza
  surname: Keshavarz
  fullname: Keshavarz, Alireza
  organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia
– sequence: 5
  givenname: Stefan
  surname: Iglauer
  fullname: Iglauer, Stefan
  email: s.iglauer@ecu.edu.au
  organization: Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35101673$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1OxCAURonR6Dj6Ai5Ml25agbYUjBsz8S8xcaGuCaWXkUlbRmA08_a2zujChXFFCOfcXL7vEO32rgeETgjOCCbsfJEttA0ZxZRmmGSY8R00IViUaUVwvosmGFOSikpUB-gwhAXGhJSl2EcHeTkOqPIJerpbN97NoU8-IEZV29bGdeJMopWvXa8iJMb5TkXr-nCR3HfL1urNbXxIXr_1Obg0ROfVHI7QnlFtgOPtOUUvN9fPs7v04fH2fnb1kOqci5hWXAvKTU2NqRTTtR4WwoaRhtFhy6ogwFlNy0aImlcFM4TRuigMEVgIRoHlU3S2mbv07m0FIcrOBg1tq3pwqyApy1k5_JTzf6C0YCUXohzQ0y26qjto5NLbTvm1_M5sAOgG0N6F4MH8IATLkZELORYjx2IkJnIoZpD4L0nb-JVj9Mq2f6uXGxWGLN8teBm0hV5DYz3oKBtn_9I_AbV4qD8
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_173622
crossref_primary_10_1039_D4EE04564E
crossref_primary_10_1016_j_ijhydene_2022_12_108
crossref_primary_10_1016_j_ijhydene_2025_02_342
crossref_primary_10_1016_j_pecs_2022_101066
crossref_primary_10_1016_j_nxener_2025_100298
crossref_primary_10_1016_j_nexus_2025_100467
crossref_primary_10_1016_j_fuel_2024_133902
crossref_primary_10_1016_j_renene_2024_121726
crossref_primary_10_1016_j_ijhydene_2023_04_197
crossref_primary_10_1016_j_ijhydene_2024_06_365
crossref_primary_10_1016_j_fuel_2024_131842
crossref_primary_10_1016_j_est_2023_108605
crossref_primary_10_1016_j_ijhydene_2022_05_289
crossref_primary_10_1016_j_energy_2023_129698
crossref_primary_10_1016_j_fuel_2023_129354
crossref_primary_10_1016_j_geoen_2023_211627
crossref_primary_10_1038_s41598_024_62458_5
crossref_primary_10_1016_j_apenergy_2025_125940
crossref_primary_10_1016_j_est_2023_108567
crossref_primary_10_1016_j_egyr_2022_11_141
crossref_primary_10_1016_j_est_2023_106737
crossref_primary_10_1016_j_ijhydene_2024_08_107
crossref_primary_10_1016_j_jcis_2023_05_066
crossref_primary_10_1016_j_egyr_2022_09_024
crossref_primary_10_1002_ghg_2277
crossref_primary_10_1021_acs_energyfuels_5c01249
crossref_primary_10_1016_j_jgsce_2025_205759
crossref_primary_10_1016_j_ijhydene_2023_05_294
crossref_primary_10_1016_j_earscirev_2023_104625
crossref_primary_10_1016_j_ijhydene_2023_05_292
crossref_primary_10_1016_j_ijhydene_2023_09_148
crossref_primary_10_1016_j_ijhydene_2023_12_298
crossref_primary_10_1016_j_est_2023_108473
crossref_primary_10_1016_j_est_2024_114076
crossref_primary_10_1016_j_ijhydene_2025_150885
crossref_primary_10_1016_j_engeos_2024_100339
crossref_primary_10_1016_j_ijhydene_2022_05_126
crossref_primary_10_1016_j_ijhydene_2022_05_247
crossref_primary_10_1016_j_ijhydene_2025_05_405
crossref_primary_10_1016_j_est_2023_108912
crossref_primary_10_1016_j_ijhydene_2024_05_208
crossref_primary_10_1016_j_rser_2025_116090
crossref_primary_10_1016_j_fuel_2024_132045
crossref_primary_10_1016_j_ijhydene_2023_07_270
crossref_primary_10_1016_j_petrol_2022_110480
crossref_primary_10_1016_j_fuel_2024_132964
crossref_primary_10_1016_j_ijhydene_2022_03_275
crossref_primary_10_1016_j_ijhydene_2024_02_158
crossref_primary_10_1016_j_ijhydene_2022_09_120
crossref_primary_10_1016_j_est_2025_115900
crossref_primary_10_1016_j_ijhydene_2022_04_103
crossref_primary_10_1016_j_ijhydene_2024_12_483
crossref_primary_10_1016_j_ijhydene_2025_150256
crossref_primary_10_1016_j_est_2023_108340
crossref_primary_10_1016_j_est_2025_117807
crossref_primary_10_1016_j_est_2025_115908
crossref_primary_10_1016_j_ijhydene_2025_151462
crossref_primary_10_1016_j_est_2022_105615
crossref_primary_10_1016_j_est_2023_107414
crossref_primary_10_1016_j_renene_2023_119267
crossref_primary_10_1016_j_est_2023_106637
crossref_primary_10_1029_2024GL109216
crossref_primary_10_1016_j_egyr_2022_10_257
crossref_primary_10_1016_j_petrol_2022_111244
crossref_primary_10_1016_j_apenergy_2024_125172
crossref_primary_10_1016_j_est_2025_115477
crossref_primary_10_1016_j_fuel_2023_128996
crossref_primary_10_1016_j_ijhydene_2022_02_149
crossref_primary_10_1021_acs_energyfuels_5c01541
crossref_primary_10_1016_j_fuel_2023_129048
crossref_primary_10_1016_j_ijhydene_2022_06_042
crossref_primary_10_1016_j_ijhydene_2025_01_062
crossref_primary_10_1016_j_est_2023_107440
crossref_primary_10_1016_j_ijhydene_2024_01_227
crossref_primary_10_1016_j_jgsce_2023_205105
crossref_primary_10_1016_j_ijhydene_2024_03_112
crossref_primary_10_1016_j_oreoa_2025_100087
crossref_primary_10_3390_fuels5030019
crossref_primary_10_3390_app142311286
crossref_primary_10_1016_j_ijhydene_2025_01_467
crossref_primary_10_1016_j_ijhydene_2024_10_023
crossref_primary_10_1016_j_ijhydene_2023_03_115
crossref_primary_10_1016_j_ijhydene_2024_07_076
crossref_primary_10_1016_j_ijhydene_2022_05_086
crossref_primary_10_1016_j_ijhydene_2025_05_342
crossref_primary_10_1016_j_fuel_2023_128183
crossref_primary_10_1016_j_est_2024_112768
crossref_primary_10_1016_j_fuel_2022_127032
crossref_primary_10_1029_2022GL098261
crossref_primary_10_1016_j_ijhydene_2023_06_208
crossref_primary_10_1016_j_geoen_2023_212354
crossref_primary_10_1016_j_est_2022_104745
crossref_primary_10_1016_j_est_2022_104866
crossref_primary_10_1016_j_est_2023_106865
crossref_primary_10_1016_j_est_2023_106986
crossref_primary_10_1016_j_chemosphere_2023_139135
crossref_primary_10_1016_j_est_2023_108405
crossref_primary_10_1016_j_fuel_2025_135821
crossref_primary_10_1016_j_molliq_2023_121279
crossref_primary_10_1016_j_est_2025_117274
crossref_primary_10_1016_j_ijhydene_2024_02_120
crossref_primary_10_1016_j_supflu_2023_106124
crossref_primary_10_1016_j_molliq_2022_121076
crossref_primary_10_1021_acs_energyfuels_4c06211
crossref_primary_10_1016_j_est_2024_110475
crossref_primary_10_1016_j_ijhydene_2025_03_450
crossref_primary_10_1002_dug2_70010
crossref_primary_10_1016_j_ijhydene_2025_151099
crossref_primary_10_3390_en15218132
crossref_primary_10_1016_j_ijhydene_2023_04_173
crossref_primary_10_1144_SP555_2023_198
crossref_primary_10_1016_j_ijhydene_2023_07_071
crossref_primary_10_1016_j_jngse_2022_104733
crossref_primary_10_1016_j_fuel_2023_129053
crossref_primary_10_1016_j_ijhydene_2022_11_292
crossref_primary_10_1016_j_egyr_2022_07_004
crossref_primary_10_1016_j_fuel_2023_128362
crossref_primary_10_1016_j_ijhydene_2022_11_059
crossref_primary_10_1016_j_ijhydene_2022_11_299
crossref_primary_10_1016_j_cej_2024_156452
crossref_primary_10_1016_j_ijhydene_2022_09_284
crossref_primary_10_1016_j_petrol_2022_110441
crossref_primary_10_1016_j_ijhydene_2023_06_153
crossref_primary_10_1016_j_ijhydene_2024_01_151
crossref_primary_10_1016_j_ijhydene_2024_10_330
crossref_primary_10_1016_j_jngse_2022_104743
crossref_primary_10_1016_j_est_2023_106921
Cites_doi 10.1016/j.jcis.2016.02.020
10.1016/0095-8522(62)90011-9
10.1016/0016-7037(88)90235-9
10.1016/j.petrol.2021.108387
10.1016/0016-7037(82)90209-5
10.1016/j.jct.2015.07.031
10.1021/acs.jpcc.9b00263
10.1029/2021GL092976
10.1021/je201062r
10.1021/la00032a055
10.1016/j.ijhydene.2020.08.244
10.1016/j.jcis.2019.12.043
10.1016/j.petlm.2019.09.001
10.1021/la3050863
10.1016/j.petrol.2021.109081
10.1021/acs.est.5b03646
10.1002/2015GL065787
10.1016/j.fuproc.2021.106722
10.1016/j.jcis.2021.06.078
10.1016/j.jcis.2018.08.106
10.1002/2014WR015553
10.1039/B514811C
10.1016/j.ijhydene.2021.07.226
10.1016/j.ijggc.2014.01.006
10.1186/s40580-021-00254-x
10.1016/j.ijhydene.2012.07.111
10.1021/ie50320a024
10.1016/j.ijhydene.2020.08.138
10.2118/37292-PA
10.1016/j.fluid.2018.07.022
10.2136/sssaj1989.03615995005300050013x
10.1021/es00166a002
10.1016/j.advwatres.2011.01.007
10.3390/en11092451
10.1016/j.ijggc.2016.04.024
10.3390/en13153988
10.1016/j.jcis.2020.12.058
10.1016/j.advwatres.2021.103964
10.1111/j.1468-8123.2012.00369.x
10.1016/j.ijhydene.2021.08.042
10.1016/j.ijggc.2015.04.006
10.1016/j.ijhydene.2020.01.044
10.1021/acs.energyfuels.0c02553
10.1016/j.colsurfa.2021.127118
10.1016/j.apgeochem.2015.04.011
10.1016/j.petrol.2021.108683
10.1002/2017GL073532
10.1016/j.ijggc.2008.02.002
10.1016/j.colsurfa.2007.09.032
10.1016/j.ijhydene.2021.07.097
10.1016/bs.agron.2014.10.005
10.1016/j.egypro.2015.07.872
10.1021/acsami.0c10491
10.1016/j.envres.2020.109547
10.1016/j.jngse.2017.03.016
10.1016/j.rser.2019.01.051
10.1021/acs.est.5b05925
10.1016/j.coal.2019.103370
10.1021/la204322k
10.1016/j.earscirev.2021.103895
10.1021/la980602k
10.1016/j.fuel.2016.05.053
10.3390/catal10080858
10.1016/j.jcis.2019.10.028
10.1016/j.egypro.2011.02.527
10.1016/j.jcis.2021.10.050
10.1021/acs.accounts.6b00602
10.1021/ef300913t
10.1016/j.ijhydene.2019.12.161
10.1016/j.fuel.2021.120773
10.1007/s13202-020-01081-2
10.1016/j.ijggc.2019.02.002
10.1016/j.jcis.2014.11.010
10.1029/2020GL090814
10.1021/ef700383x
10.1016/j.ijhydene.2021.05.067
10.1016/j.jcis.2021.10.080
10.1080/08120099.2013.756830
10.1016/j.jcis.2015.09.076
10.3389/fenrg.2021.666191
10.1139/t05-048
10.1016/j.colsurfa.2013.05.070
10.1016/j.jcis.2012.06.052
10.1111/j.1468-8123.2007.00168.x
10.1063/1.555991
10.1007/s11242-018-1004-7
10.1016/j.enconman.2017.12.096
10.1021/acs.energyfuels.9b03700
10.1016/j.ijggc.2017.01.012
10.1016/j.ijggc.2017.04.014
10.1063/1.3160306
10.1016/j.jngse.2021.104177
10.1016/j.jcis.2015.09.051
10.1029/2009WR008634
10.1016/j.egyr.2021.09.016
10.1021/acs.energyfuels.8b03406
10.1016/j.ijhydene.2016.05.293
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2022.01.068
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 266
ExternalDocumentID 35101673
10_1016_j_jcis_2022_01_068
S0021979722000819
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
VH1
WUQ
ZGI
ZXP
~HD
BNPGV
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-78c928fb2ff7a6cbc6730f61d62559741e86b25d99b8746f162b44f1909962e63
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750145000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9797
1095-7103
IngestDate Sun Sep 28 09:56:05 EDT 2025
Sun Sep 28 10:01:43 EDT 2025
Thu Apr 03 07:08:33 EDT 2025
Tue Nov 18 22:10:52 EST 2025
Sat Nov 29 07:30:14 EST 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wettability
Hydrogen geo-storage
Contact angle
Calcite-rich formation
Hydrogen
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-78c928fb2ff7a6cbc6730f61d62559741e86b25d99b8746f162b44f1909962e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35101673
PQID 2624658995
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2636551088
proquest_miscellaneous_2624658995
pubmed_primary_35101673
crossref_primary_10_1016_j_jcis_2022_01_068
crossref_citationtrail_10_1016_j_jcis_2022_01_068
elsevier_sciencedirect_doi_10_1016_j_jcis_2022_01_068
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Al-Yaseri, Abdulelah, Yekeen, Ali, Negash, Zhang (b0220) 2021; 627
Saraji, Goual, Piri (b0465) 2013; 434
Memon, Mahesar, Ali, Tunio, Mohanty, Akhondzadeh, Awan, Iglauer, Keshavarz (b0170) 2020; 34
X. Li, E. Boek, G.C. Maitland, J.M.J.J.o.C. Trusler, E. Data, Interfacial Tension of (Brines+ CO2):(0.864 NaCl+ 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol· kg–1, 57(4) (2012) 1078-1088.
Yang, Gu, Tontiwachwuthikul (b0415) 2008; 22
Al-Rubaye, Al-Yaseri, Ali, Ben Mahmud (b0130) 2021; 11
B. Pan, X. Yin, S.J.I.J.o.H.E. Iglauer, Rock-fluid interfacial tension at subsurface conditions: Implications for H2, CO2 and natural gas geo-storage, (2021).
Lai, Cozzolino, Diamanti, Al Hassan, Chiesa (b0285) 2015; 119
Al-Menhali, Krevor (b0375) 2016; 50
Ali, Arif, Sahito, Al-Anssari, Keshavarz, Barifcani, Stalker, Sarmadivaleh, Iglauer (b0255) 2019; 83
Leachman, Jacobsen, Penoncello, Lemmon, Data (b0425) 2009; 38
Rahman, Lebedev, Barifcani, Iglauer (b0380) 2016; 469
Furmidge (b0480) 1962; 17
Ulrich, Stumm, Cosovic (b0315) 1988; 22
Caballero, Trugo, Finglas (b0565) 2003
Lemieux, Shkarupin, Sharp (b0055) 2020; 45
Davis (b0305) 1982; 46
Ali, Yekeen, Pal, Keshavarz, Iglauer, Hoteit (b0275) 2021; 7
Madsen, Ida (b0335) 1998; 1
Espinoza, Santamarina (b0445) 2010; 46
Keshavarz, Abid, Ali, Iglauer (b0110) 2022; 608
Al-Anssari, Barifcani, Wang, Maxim, Iglauer (b0345) 2016; 461
Akob, Cozzarelli, Dunlap, Rowan, Lorah (b0530) 2015; 60
Ali, Jha, Al-Yaseri, Zhang, Iglauer, Sarmadivaleh (b0140) 2021
Jha, Iglauer, Barifcani, Sarmadivaleh, Sangwai (b0555) 2019; 33
Wenzel (b0505) 1936; 28
Cao, Iris, Xiong, Tsang, Zhang, Clark, Hu, Ng, Shang, Ok (b0035) 2020; 186
Akhondzadeh, Keshavarz, Al-Yaseri, Ali, Awan, Wang, Yang, Iglauer, Lebedev (b0115) 2020; 219
Arain, Al-Anssari, Ali, Memon, Bhatti, Lagat, Sarmadivaleh (b0325) 2020; 6
Span, Wagner (b0430) 1996; 25
Ali, Al-Anssari, Arif, Barifcani, Sarmadivaleh, Stalker, Lebedev, Iglauer (b0205) 2019; 534
Al-Yaseri, Wolff-Boenisch, Fauziah, Iglauer (b0280) 2021; 46
Jha, Lebedev, Iglauer, Ali, Roshan, Barifcani, Sangwai, Sarmadivaleh (b0560) 2020; 562
Mahesar, Ali, Shar, Memon, Mohanty, Akhondzadeh, Tunio, Iglauer, Keshavarz (b0150) 2020; 34
Shiva Kumar, Himabindu (b0015) 2019; 2
Chen, Zhang, Li, Song (b0440) 2015; 49
Jardine, McCarthy, Weber (b0330) 1989; 53
Iglauer (b0455) 2017; 50
Ali, Aftab, Awan, Akhondzadeh, Keshavarz, Saeedi, Iglauer, Sarmadivaleh (b0250) 2021; 214
Mahesar, Shar, Ali, Tunio, Uqailli, Mohanty, Akhondzadeh, Iglauer, Keshavarz (b0155) 2020; 192
Pierce, Carmona, Amirfazli (b0475) 2008; 323
Ali, Aftab, Arain, Al-Yaseri, Roshan, Saeedi, Iglauer, Sarmadivaleh (b0065) 2020; 12
Nazarahari, Manshad, Ali, Ali, Shafiei, Sajadi, Moradi, Iglauer, Keshavarz (b0240) 2021; 298
Jha, Al-Yaseri, Ghasemi, Al-Bayati, Lebedev, Sarmadivaleh (b0550) 2021; 46
Jung, Wan (b0405) 2012; 26
Wan (b0295) 2011
Lander, Siewierski, Brittain, Vogler (b0355) 1993; 9
Al-Yaseri, Jha (b0135) 2021; 200
Akhondzadeh, Keshavarz, Awan, Ali, Al-Yaseri, Liu, Yang, Iglauer, Gurevich, Lebedev (b0120) 2021; 95
Broseta, Tonnet, Shah (b0370) 2012; 12
Arif, Al-Yaseri, Barifcani, Lebedev, Iglauer (b0385) 2016; 462
Grate, Dehoff, Warner, Pittman, Wietsma, Zhang, Oostrom (b0395) 2012; 28
Iglauer, Al-Yaseri, Rezaee, Lebedev (b0185) 2015; 42
Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0310) 2015; 130
Dahraj, Ali, Khan (b0145) 2016
Zulfiqar, Vogel, Ding, Golmohammadi, Küchler, Reuter, Geistlinger (b0500) 2020; 56
Stalker, Varma, Van Gent, Haworth, Sharma (b0340) 2013; 60
Saraji, Goual, Piri, Plancher (b0410) 2013; 29
Sarmadivaleh, Al-Yaseri, Iglauer (b0400) 2015; 441
Arif, Lebedev, Barifcani, Iglauer (b0175) 2017; 62
Ali, Jha, Pal, Keshavarz, Hoteit, Sarmadivaleh (b0100) 2022; 225
Abdulelah, Al-Yaseri, Ali, Giwelli, Negash, Sarmadivaleh (b0190) 2021; 204
Crotogino, Donadei, Bünger, Landinger (b0225) 2010
Marmur (b0510) 2006; 2
Tonnet, Mouronval, Chiquet, Broseta (b0520) 2011; 4
Al-Khdheeawi, Vialle, Barifcani, Sarmadivaleh, Iglauer (b0540) 2017; 58
Arif, Barifcani, Lebedev, Iglauer (b0390) 2016; 50
Shah, Broseta, Mouronval, Montel (b0365) 2008; 2
Haghighi, Zargar, Khaksar Manshad, Ali, Takassi, Ali, Keshavarz (b0230) 2020; 13
Chow, Maitland, Trusler (b0485) 2018; 475
Ali, Awan, Ali, Al-Yaseri, Arif, Sánchez-Román, Keshavarz, Iglauer (b0260) 2021; 588
Iglauer, Mathew, Bresme (b0420) 2012; 386
Shayan, Zare, Mirzaee (b0040) 2018; 159
Iglauer, Ali, Keshavarz (b0090) 2021; 48
Zivar, Kumar, Foroozesh (b0010) 2021; 46
Shi, Jessen, Tsotsis (b0270) 2020; 45
Arribas, González-Aguilar, Romero (b0045) 2018; 11
Ali, Sahito, Jha, Arain, Memon, Keshavarz, Iglauer, Saeedi, Sarmadivaleh (b0070) 2020; 559
Al-Khdheeawi, Mahdi, Ali, Iglauer, Barifcani (b0125) 2021; 3818887
Boretti, Nayfeh, Al-Maaitah (b0050) 2021; 9
Yekta, Manceau, Gaboreau, Pichavant, Audigane (b0165) 2018; 122
Ali, Yekeen, Pal, Keshavarz, Iglauer, Hoteit (b0105) 2022; 608
Ozarslan (b0160) 2012; 37
Abramov, Keshavarz, Iglauer (b0470) 2019; 123
Aggelopoulos, Robin, Vizika (b0360) 2011; 34
Iglauer, Salamah, Sarmadivaleh, Liu, Phan (b0300) 2014; 22
Tarkowski, Reviews (b0005) 2019; 105
Iglauer (b0080) 2021
Chen, Qi, Zhang, Su, Somorjai (b0025) 2020; 10
Al-Yaseri, Ali, Ali, Taheri, Wolff-Boenisch (b0195) 2021; 603
Wang, Lu, Zhong (b0020) 2021; 8
Hashemi, Glerum, Farajzadeh, Hajibeygi (b0235) 2021; 154
Al-Yaseri, Lebedev, Barifcani, Iglauer (b0435) 2016; 93
Krevor, Blunt, Benson, Pentland, Reynolds, Al-Menhali, Niu (b0525) 2015; 40
Trueman, Rodgers, McLellan, Hursthouse (b0215) 2019
Iglauer, Pentland, Busch (b0200) 2015; 51
Iglauer, Abid, Al-Yaseri, Keshavarz (b0085) 2021; 48
Pfeiffer, Bauer (b0095) 2015; 76
Swain, Lipowsky (b0515) 1998; 14
Arif, Lebedev, Barifcani, Iglauer (b0180) 2017; 44
Chiquet, Broseta, Thibeau (b0350) 2007; 7
Mohanty, Ali, Azhar, Al-Yaseri, Keshavarz, Iglauer (b0030) 2021; 46
Morrow (b0495) 1975; 14
Zullig, Morse (b0320) 1988; 52
Haldar (b0210) 2020
Arif, Barifcani, Lebedev, Iglauer (b0450) 2016; 181
Ali (b0245) 2021
Caglayan, Weber, Heinrichs, Linßen, Robinius, Kukla, Stolten (b0075) 2020; 45
Kaya, Yukselen (b0460) 2005; 42
Al-Khdheeawi, Vialle, Barifcani, Sarmadivaleh, Iglauer (b0545) 2017; 43
Lundegard, Kharaka (b0535) 1994
Zhang, Zhao, Niu, Maddy (b0060) 2016; 41
Sari, Al Maskari, Saeedi, Xie (b0490) 2020; 299
Al-Yaseri (10.1016/j.jcis.2022.01.068_b0220) 2021; 627
Shi (10.1016/j.jcis.2022.01.068_b0270) 2020; 45
Hashemi (10.1016/j.jcis.2022.01.068_b0235) 2021; 154
Krevor (10.1016/j.jcis.2022.01.068_b0525) 2015; 40
Ali (10.1016/j.jcis.2022.01.068_b0065) 2020; 12
Mohanty (10.1016/j.jcis.2022.01.068_b0030) 2021; 46
Ali (10.1016/j.jcis.2022.01.068_b0260) 2021; 588
Caglayan (10.1016/j.jcis.2022.01.068_b0075) 2020; 45
Arif (10.1016/j.jcis.2022.01.068_b0390) 2016; 50
Yang (10.1016/j.jcis.2022.01.068_b0415) 2008; 22
Ali (10.1016/j.jcis.2022.01.068_b0140) 2021
Caballero (10.1016/j.jcis.2022.01.068_b0565) 2003
Ulrich (10.1016/j.jcis.2022.01.068_b0315) 1988; 22
Jha (10.1016/j.jcis.2022.01.068_b0550) 2021; 46
Lander (10.1016/j.jcis.2022.01.068_b0355) 1993; 9
Morrow (10.1016/j.jcis.2022.01.068_b0495) 1975; 14
Ali (10.1016/j.jcis.2022.01.068_b0100) 2022; 225
Rahman (10.1016/j.jcis.2022.01.068_b0380) 2016; 469
Lai (10.1016/j.jcis.2022.01.068_b0285) 2015; 119
Iglauer (10.1016/j.jcis.2022.01.068_b0080) 2021
Ali (10.1016/j.jcis.2022.01.068_b0250) 2021; 214
Iglauer (10.1016/j.jcis.2022.01.068_b0455) 2017; 50
Ali (10.1016/j.jcis.2022.01.068_b0070) 2020; 559
Ozarslan (10.1016/j.jcis.2022.01.068_b0160) 2012; 37
Iglauer (10.1016/j.jcis.2022.01.068_b0085) 2021; 48
Marmur (10.1016/j.jcis.2022.01.068_b0510) 2006; 2
Iglauer (10.1016/j.jcis.2022.01.068_b0200) 2015; 51
Abramov (10.1016/j.jcis.2022.01.068_b0470) 2019; 123
Ali (10.1016/j.jcis.2022.01.068_b0275) 2021; 7
Keshavarz (10.1016/j.jcis.2022.01.068_b0110) 2022; 608
10.1016/j.jcis.2022.01.068_b0265
Shayan (10.1016/j.jcis.2022.01.068_b0040) 2018; 159
Mahesar (10.1016/j.jcis.2022.01.068_b0155) 2020; 192
Al-Yaseri (10.1016/j.jcis.2022.01.068_b0195) 2021; 603
Trueman (10.1016/j.jcis.2022.01.068_b0215) 2019
Al-Rubaye (10.1016/j.jcis.2022.01.068_b0130) 2021; 11
Shah (10.1016/j.jcis.2022.01.068_b0365) 2008; 2
Akhondzadeh (10.1016/j.jcis.2022.01.068_b0115) 2020; 219
Haldar (10.1016/j.jcis.2022.01.068_b0210) 2020
Zulfiqar (10.1016/j.jcis.2022.01.068_b0500) 2020; 56
Chow (10.1016/j.jcis.2022.01.068_b0485) 2018; 475
Jha (10.1016/j.jcis.2022.01.068_b0555) 2019; 33
Arif (10.1016/j.jcis.2022.01.068_b0180) 2017; 44
Ali (10.1016/j.jcis.2022.01.068_b0205) 2019; 534
Haghighi (10.1016/j.jcis.2022.01.068_b0230) 2020; 13
Wan (10.1016/j.jcis.2022.01.068_b0295) 2011
Sari (10.1016/j.jcis.2022.01.068_b0490) 2020; 299
Span (10.1016/j.jcis.2022.01.068_b0430) 1996; 25
Zhang (10.1016/j.jcis.2022.01.068_b0060) 2016; 41
Kleber (10.1016/j.jcis.2022.01.068_b0310) 2015; 130
Chiquet (10.1016/j.jcis.2022.01.068_b0350) 2007; 7
Arain (10.1016/j.jcis.2022.01.068_b0325) 2020; 6
Tonnet (10.1016/j.jcis.2022.01.068_b0520) 2011; 4
Memon (10.1016/j.jcis.2022.01.068_b0170) 2020; 34
Al-Khdheeawi (10.1016/j.jcis.2022.01.068_b0545) 2017; 43
Broseta (10.1016/j.jcis.2022.01.068_b0370) 2012; 12
Sarmadivaleh (10.1016/j.jcis.2022.01.068_b0400) 2015; 441
Cao (10.1016/j.jcis.2022.01.068_b0035) 2020; 186
Tarkowski (10.1016/j.jcis.2022.01.068_b0005) 2019; 105
Arif (10.1016/j.jcis.2022.01.068_b0175) 2017; 62
Lundegard (10.1016/j.jcis.2022.01.068_b0535) 1994
Jha (10.1016/j.jcis.2022.01.068_b0560) 2020; 562
Arribas (10.1016/j.jcis.2022.01.068_b0045) 2018; 11
Boretti (10.1016/j.jcis.2022.01.068_b0050) 2021; 9
Iglauer (10.1016/j.jcis.2022.01.068_b0300) 2014; 22
Al-Khdheeawi (10.1016/j.jcis.2022.01.068_b0540) 2017; 58
Al-Yaseri (10.1016/j.jcis.2022.01.068_b0135) 2021; 200
Ali (10.1016/j.jcis.2022.01.068_b0245) 2021
Iglauer (10.1016/j.jcis.2022.01.068_b0420) 2012; 386
Akob (10.1016/j.jcis.2022.01.068_b0530) 2015; 60
Lemieux (10.1016/j.jcis.2022.01.068_b0055) 2020; 45
Dahraj (10.1016/j.jcis.2022.01.068_b0145) 2016
Leachman (10.1016/j.jcis.2022.01.068_b0425) 2009; 38
Pfeiffer (10.1016/j.jcis.2022.01.068_b0095) 2015; 76
Mahesar (10.1016/j.jcis.2022.01.068_b0150) 2020; 34
Ali (10.1016/j.jcis.2022.01.068_b0105) 2022; 608
Saraji (10.1016/j.jcis.2022.01.068_b0410) 2013; 29
Wenzel (10.1016/j.jcis.2022.01.068_b0505) 1936; 28
Nazarahari (10.1016/j.jcis.2022.01.068_b0240) 2021; 298
Pierce (10.1016/j.jcis.2022.01.068_b0475) 2008; 323
Al-Menhali (10.1016/j.jcis.2022.01.068_b0375) 2016; 50
Zivar (10.1016/j.jcis.2022.01.068_b0010) 2021; 46
Ali (10.1016/j.jcis.2022.01.068_b0255) 2019; 83
Al-Yaseri (10.1016/j.jcis.2022.01.068_b0435) 2016; 93
Davis (10.1016/j.jcis.2022.01.068_b0305) 1982; 46
Abdulelah (10.1016/j.jcis.2022.01.068_b0190) 2021; 204
Madsen (10.1016/j.jcis.2022.01.068_b0335) 1998; 1
Aggelopoulos (10.1016/j.jcis.2022.01.068_b0360) 2011; 34
Crotogino (10.1016/j.jcis.2022.01.068_b0225) 2010
Arif (10.1016/j.jcis.2022.01.068_b0385) 2016; 462
Kaya (10.1016/j.jcis.2022.01.068_b0460) 2005; 42
Iglauer (10.1016/j.jcis.2022.01.068_b0185) 2015; 42
Grate (10.1016/j.jcis.2022.01.068_b0395) 2012; 28
Swain (10.1016/j.jcis.2022.01.068_b0515) 1998; 14
Zullig (10.1016/j.jcis.2022.01.068_b0320) 1988; 52
Al-Khdheeawi (10.1016/j.jcis.2022.01.068_b0125) 2021; 3818887
Iglauer (10.1016/j.jcis.2022.01.068_b0090) 2021; 48
10.1016/j.jcis.2022.01.068_b0290
Chen (10.1016/j.jcis.2022.01.068_b0440) 2015; 49
Espinoza (10.1016/j.jcis.2022.01.068_b0445) 2010; 46
Chen (10.1016/j.jcis.2022.01.068_b0025) 2020; 10
Al-Yaseri (10.1016/j.jcis.2022.01.068_b0280) 2021; 46
Akhondzadeh (10.1016/j.jcis.2022.01.068_b0120) 2021; 95
Al-Anssari (10.1016/j.jcis.2022.01.068_b0345) 2016; 461
Stalker (10.1016/j.jcis.2022.01.068_b0340) 2013; 60
Arif (10.1016/j.jcis.2022.01.068_b0450) 2016; 181
Jung (10.1016/j.jcis.2022.01.068_b0405) 2012; 26
Wang (10.1016/j.jcis.2022.01.068_b0020) 2021; 8
Yekta (10.1016/j.jcis.2022.01.068_b0165) 2018; 122
Jardine (10.1016/j.jcis.2022.01.068_b0330) 1989; 53
Furmidge (10.1016/j.jcis.2022.01.068_b0480) 1962; 17
Saraji (10.1016/j.jcis.2022.01.068_b0465) 2013; 434
Shiva Kumar (10.1016/j.jcis.2022.01.068_b0015) 2019; 2
References_xml – volume: 50
  start-page: 112
  year: 2016
  end-page: 120
  ident: b0390
  article-title: Structural trapping capacity of oil-wet caprock as a function of pressure, temperature and salinity
  publication-title: Int. J. Greenhouse Gas Control
– volume: 49
  start-page: 14680
  year: 2015
  end-page: 14687
  ident: b0440
  article-title: Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions
  publication-title: Environ. Sci. Technol.
– volume: 60
  start-page: 116
  year: 2015
  end-page: 125
  ident: b0530
  article-title: Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells
  publication-title: Appl. Geochem.
– year: 2020
  ident: b0210
  article-title: Introduction to mineralogy and petrology
– volume: 588
  start-page: 315
  year: 2021
  end-page: 325
  ident: b0260
  article-title: Effect of humic acid on CO2-wettability in sandstone formation
  publication-title: J. Colloid Interface Sci.
– volume: 461
  start-page: 435
  year: 2016
  end-page: 442
  ident: b0345
  article-title: Wettability alteration of oil-wet carbonate by silica nanofluid
  publication-title: J. Colloid Interface Sci.
– volume: 119
  start-page: 29038
  year: 2015
  end-page: 29043
  ident: b0285
  publication-title: Underlying mechanism of time dependent surface properties of calcite (CaCO3): a baseline for investigations of reservoirs wettability
– volume: 46
  year: 2010
  ident: b0445
  article-title: Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage
  publication-title: Water Resour. Res.
– volume: 105
  start-page: 86
  year: 2019
  end-page: 94
  ident: b0005
  article-title: Underground hydrogen storage: Characteristics and prospects
  publication-title: Renew. Sustain. Energy Rev.
– volume: 9
  start-page: 2237
  year: 1993
  end-page: 2239
  ident: b0355
  article-title: A systematic comparison of contact angle methods
  publication-title: Langmuir
– volume: 44
  start-page: 8769
  year: 2017
  end-page: 8775
  ident: b0180
  article-title: Influence of shale-total organic content on CO2 geo-storage potential
  publication-title: Geophys. Res. Lett.
– volume: 441
  start-page: 59
  year: 2015
  end-page: 64
  ident: b0400
  article-title: Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2–water interfacial tension
  publication-title: J. Colloid Interface Sci.
– volume: 323
  start-page: 73
  year: 2008
  end-page: 82
  ident: b0475
  article-title: Understanding of sliding and contact angle results in tilted plate experiments
  publication-title: Colloids Surf., A
– volume: 214
  year: 2021
  ident: b0250
  article-title: CO2-wettability reversal of cap-rock by alumina nanofluid: Implications for CO2 geo-storage
  publication-title: Fuel Process. Technol.
– volume: 28
  start-page: 7182
  year: 2012
  end-page: 7188
  ident: b0395
  article-title: Correlation of oil–water and air–water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions
  publication-title: Langmuir
– volume: 17
  start-page: 309
  year: 1962
  end-page: 324
  ident: b0480
  article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention
  publication-title: J. Colloid Sci.
– volume: 627
  start-page: 127118
  year: 2021
  ident: b0220
  article-title: Assessment of CO2/shale interfacial tension
  publication-title: Colloids Surf., A
– volume: 46
  start-page: 34356
  year: 2021
  end-page: 34361
  ident: b0280
  article-title: Hydrogen wettability of clays: Implications for underground hydrogen storage
  publication-title: Int. J. Hydrogen Energy
– volume: 22
  start-page: 325
  year: 2014
  end-page: 328
  ident: b0300
  article-title: Contamination of silica surfaces: Impact on water–CO2–quartz and glass contact angle measurements
  publication-title: Int. J. Greenhouse Gas Control
– volume: 475
  start-page: 37
  year: 2018
  end-page: 44
  ident: b0485
  article-title: Erratum to “Interfacial tensions of (H2O+ H2) and (H2O+ CO2+ H2) systems at temperatures of (298 to 448) K and pressures up to 45 MPa”
  publication-title: Fluid Phase Equil.
– volume: 122
  start-page: 333
  year: 2018
  end-page: 356
  ident: b0165
  article-title: Determination of hydrogen–water relative permeability and capillary pressure in sandstone: application to underground hydrogen injection in sedimentary formations
  publication-title: Transp. Porous Media
– volume: 4
  start-page: 5422
  year: 2011
  end-page: 5429
  ident: b0520
  article-title: Petrophysical assessment of a carbonate-rich caprock for CO2 geological storage purposes
  publication-title: Energy Procedia
– volume: 22
  start-page: 504
  year: 2008
  end-page: 509
  ident: b0415
  article-title: Wettability determination of the reservoir brine− reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures
  publication-title: Energy Fuels
– volume: 11
  start-page: 2451
  year: 2018
  ident: b0045
  article-title: Solar-driven thermochemical water-splitting by cerium oxide: determination of operational conditions in a directly irradiated fixed bed reactor
  publication-title: Energies
– volume: 13
  start-page: 3988
  year: 2020
  ident: b0230
  article-title: Effect of environment-friendly non-ionic surfactant on interfacial tension reduction and wettability alteration; implications for enhanced oil recovery
  publication-title: Energies
– volume: 462
  start-page: 208
  year: 2016
  end-page: 215
  ident: b0385
  article-title: Impact of pressure and temperature on CO2–brine–mica contact angles and CO2–brine interfacial tension: Implications for carbon geo-sequestration
  publication-title: J. Colloid Interface Sci.
– volume: 62
  start-page: 113
  year: 2017
  end-page: 121
  ident: b0175
  article-title: CO2 storage in carbonates: Wettability of calcite
  publication-title: Int. J. Greenhouse Gas Control
– volume: 83
  start-page: 61
  year: 2019
  end-page: 68
  ident: b0255
  article-title: CO2-wettability of sandstones exposed to traces of organic acids: Implications for CO2 geo-storage
  publication-title: Int. J. Greenhouse Gas Control
– reference: B. Pan, X. Yin, S.J.I.J.o.H.E. Iglauer, Rock-fluid interfacial tension at subsurface conditions: Implications for H2, CO2 and natural gas geo-storage, (2021).
– volume: 45
  start-page: 32243
  year: 2020
  end-page: 32259
  ident: b0055
  article-title: Geologic feasibility of underground hydrogen storage in Canada
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 505
  year: 2011
  end-page: 511
  ident: b0360
  article-title: Interfacial tension between CO2 and brine (NaCl+ CaCl2) at elevated pressures and temperatures: The additive effect of different salts
  publication-title: Adv. Water Resour.
– volume: 130
  start-page: 1
  year: 2015
  end-page: 140
  ident: b0310
  article-title: Mineral–organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agron.
– volume: 28
  start-page: 988
  year: 1936
  end-page: 994
  ident: b0505
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind. Eng. Chem.
– volume: 608
  start-page: 1739
  year: 2022
  end-page: 1749
  ident: b0105
  article-title: Science, Influence of organic molecules on wetting characteristics of mica/H2/brine systems: Implications for hydrogen structural trapping capacities
  publication-title: J. Colloid Interface Sci.
– volume: 42
  start-page: 1280
  year: 2005
  end-page: 1289
  ident: b0460
  article-title: Zeta potential of clay minerals and quartz contaminated by heavy metals
  publication-title: Can. Geotech. J.
– volume: 14
  start-page: 6772
  year: 1998
  end-page: 6780
  ident: b0515
  article-title: Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws
  publication-title: Langmuir
– volume: 52
  start-page: 1667
  year: 1988
  end-page: 1678
  ident: b0320
  article-title: Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions: I. Fatty acid adsorption
  publication-title: Geochim. Cosmochim. Acta
– volume: 95
  year: 2021
  ident: b0120
  article-title: Liquid nitrogen fracturing efficiency as a function of coal rank: A multi-scale tomographic study
  publication-title: J. Nat. Gas Sci. Eng.
– year: 2016
  ident: b0145
  article-title: End of Linear Flow Time Picking in Long Transient Hydraulically Fractured Wells to Correctly Estimate the Permeability, Fracture Half-Length and Original Gas in Place in Liquid Rich Shales
  publication-title: PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition, Society of Petroleum Engineers
– volume: 53
  start-page: 1378
  year: 1989
  end-page: 1385
  ident: b0330
  article-title: Mechanisms of dissolved organic carbon adsorption on soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 29
  start-page: 6856
  year: 2013
  end-page: 6866
  ident: b0410
  article-title: Wettability of sc-CO2/water/quartz systems: Simultaneous measurement of contact angle and interfacial tension at reservoir conditions
  publication-title: Langmuir
– start-page: 37
  year: 2010
  end-page: 45
  ident: b0225
  article-title: Large-scale hydrogen underground storage for securing future energy supplies
  publication-title: 18th World hydrogen energy conference
– volume: 14
  year: 1975
  ident: b0495
  publication-title: The effects of surface roughness on contact: angle with special reference to petroleum recovery
– volume: 37
  start-page: 14265
  year: 2012
  end-page: 14277
  ident: b0160
  article-title: Large-scale hydrogen energy storage in salt caverns
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 221
  year: 2015
  end-page: 237
  ident: b0525
  article-title: Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications
  publication-title: Int. J. Greenhouse Gas Control
– volume: 10
  start-page: 858
  year: 2020
  ident: b0025
  article-title: Catalytic hydrogen production from methane: A review on recent progress and prospect
  publication-title: Catalysts
– volume: 56
  year: 2020
  ident: b0500
  publication-title: The impact of wettability and surface roughness on fluid displacement and capillary trapping in 2-D and 3-D porous media: 2. Combined effect of wettability, surface roughness, and pore space structure on trapping efficiency in sand packs and micromodels
– volume: 34
  start-page: 2160
  year: 2020
  end-page: 2168
  ident: b0170
  article-title: Influence of cryogenic liquid nitrogen on petro-physical characteristics of mancos shale: an experimental investigation
  publication-title: Energy Fuels
– year: 2021
  ident: b0245
  article-title: Effect of Organics and Nanoparticles on CO2-Wettability of Reservoir Rock; Implications for CO2 Geo-Storage
– year: 2003
  ident: b0565
  article-title: Encyclopedia of food sciences and nutrition
– volume: 12
  start-page: 280
  year: 2012
  end-page: 294
  ident: b0370
  article-title: Are rocks still water-wet in the presence of dense CO2 or H2S?
  publication-title: Geofluids
– volume: 26
  start-page: 6053
  year: 2012
  end-page: 6059
  ident: b0405
  article-title: Supercritical CO2 and ionic strength effects on wettability of silica surfaces: Equilibrium contact angle measurements
  publication-title: Energy Fuels
– volume: 200
  start-page: 108387
  year: 2021
  ident: b0135
  article-title: On hydrogen wettability of basaltic rock
  publication-title: J. Petrol. Sci. Eng.
– volume: 434
  start-page: 260
  year: 2013
  end-page: 267
  ident: b0465
  article-title: Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films
  publication-title: Colloids Surf., A
– volume: 559
  start-page: 304
  year: 2020
  end-page: 312
  ident: b0070
  article-title: M.J.J.o.c. Sarmadivaleh, i. science, Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage
  publication-title: J. Colloid Interface Sci.
– volume: 46
  start-page: 23436
  year: 2021
  end-page: 23462
  ident: b0010
  article-title: Underground hydrogen storage: A comprehensive review
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 639
  year: 2021
  end-page: 649
  ident: b0130
  article-title: Characterization and analysis of naturally fractured gas reservoirs based on stimulated reservoir volume and petro-physical parameters
  publication-title: J. Petrol. Exploration Production
– volume: 93
  start-page: 416
  year: 2016
  end-page: 423
  ident: b0435
  article-title: Receding and advancing (CO2+ brine+ quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity
  publication-title: J. Chem. Thermodyn.
– volume: 181
  start-page: 680
  year: 2016
  end-page: 689
  ident: b0450
  article-title: CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery
  publication-title: Fuel
– volume: 25
  start-page: 1509
  year: 1996
  end-page: 1596
  ident: b0430
  article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
  publication-title: J. Phys. Chem. Ref. Data
– volume: 38
  start-page: 721
  year: 2009
  end-page: 748
  ident: b0425
  article-title: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen
  publication-title: J. Phys. Chem. Ref. Data
– volume: 204
  year: 2021
  ident: b0190
  article-title: CO2/Basalt's interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration
  publication-title: J. Petrol. Sci. Eng.
– volume: 45
  start-page: 6793
  year: 2020
  end-page: 6805
  ident: b0075
  article-title: Technical potential of salt caverns for hydrogen storage in Europe
  publication-title: Int. J. Hydrogen Energy
– volume: 219
  year: 2020
  ident: b0115
  article-title: Pore-scale analysis of coal cleat network evolution through liquid nitrogen treatment: A Micro-Computed Tomography investigation
  publication-title: Int. J. Coal Geol.
– year: 2021
  ident: b0080
  article-title: Optimum geological storage depths for structural H2 geo-storage
  publication-title: J. Petrol. Sci. Eng.
– volume: 8
  start-page: 1
  year: 2021
  end-page: 23
  ident: b0020
  article-title: Hydrogen production from water electrolysis: role of catalysts
  publication-title: Nano Convergence
– volume: 42
  start-page: 9279
  year: 2015
  end-page: 9284
  ident: b0185
  article-title: CO2 wettability of caprocks: Implications for structural storage capacity and containment security
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 5988
  year: 2021
  end-page: 5996
  ident: b0275
  article-title: Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage
  publication-title: Energy Rep.
– volume: 534
  start-page: 88
  year: 2019
  end-page: 94
  ident: b0205
  article-title: i. science, Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage
  publication-title: J. Colloid Interface Sci.
– volume: 298
  year: 2021
  ident: b0240
  article-title: Impact of a novel biosynthesized nanocomposite (SiO2@ Montmorilant@ Xanthan) on wettability shift and interfacial tension: Applications for enhanced oil recovery
  publication-title: Fuel
– volume: 2
  start-page: 442
  year: 2019
  end-page: 454
  ident: b0015
  article-title: Hydrogen production by PEM water electrolysis–A review
  publication-title: Mater. Sci. for Energy Technol.
– volume: 186
  year: 2020
  ident: b0035
  article-title: Biorenewable hydrogen production through biomass gasification: A review and future prospects
  publication-title: Environ. Res.
– volume: 225
  year: 2022
  ident: b0100
  article-title: Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook
  publication-title: Earth Sci. Rev.
– volume: 22
  start-page: 37
  year: 1988
  end-page: 41
  ident: b0315
  article-title: Adsorption of aliphatic fatty acids on aquatic interfaces. Comparison between two model surfaces: the mercury electrode and δ-Al2O3 colloids
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 34822
  year: 2021
  end-page: 34829
  ident: b0550
  article-title: Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography
  publication-title: Int. J. Hydrogen Energy
– volume: 1
  start-page: 47
  year: 1998
  end-page: 51
  ident: b0335
  article-title: Engineering, Adsorption of carboxylic acids on reservoir minerals from organic and aqueous phase
  publication-title: SPE Reservoir Eval. Eng.
– volume: 51
  start-page: 729
  year: 2015
  end-page: 774
  ident: b0200
  article-title: CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration
  publication-title: Water Resour. Res.
– volume: 608
  start-page: 1457
  year: 2022
  end-page: 1462
  ident: b0110
  article-title: Hydrogen diffusion in coal: Implications for Hydrogen Geo-Storage
  publication-title: J. Colloid Interface Sci.
– volume: 60
  start-page: 45
  year: 2013
  end-page: 58
  ident: b0340
  article-title: South West Hub: a carbon capture and storage project
  publication-title: Aust. J. Earth Sci.
– volume: 41
  start-page: 14535
  year: 2016
  end-page: 14552
  ident: b0060
  article-title: The survey of key technologies in hydrogen energy storage
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 277
  year: 2020
  end-page: 285
  ident: b0325
  article-title: Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition
  publication-title: Petroleum
– year: 2021
  ident: b0140
  article-title: Hydrogen wettability of quartz substrates exposed to organic acids; Implications for hydrogen trapping/storage in sandstone reservoirs
  publication-title: J. Petrol. Sci. Eng.
– volume: 45
  start-page: 8757
  year: 2020
  end-page: 8773
  ident: b0270
  article-title: Impacts of the subsurface storage of natural gas and hydrogen mixtures
  publication-title: Int. J. Hydrogen Energy
– volume: 3818887
  year: 2021
  ident: b0125
  article-title: Reservoir Scale Porosity-Permeability Evolution in Sandstone Due to CO2 Geological Storage
  publication-title: Available at SSRN
– volume: 159
  start-page: 30
  year: 2018
  end-page: 41
  ident: b0040
  article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents
  publication-title: Energy Convers. Manage.
– volume: 43
  start-page: 190
  year: 2017
  end-page: 206
  ident: b0545
  article-title: Influence of injection well configuration and rock wettability on CO2 plume behaviour and CO2 trapping capacity in heterogeneous reservoirs
  publication-title: J. Nat. Gas Sci. Eng.
– year: 2011
  ident: b0295
  article-title: Advanced well completion engineering
– volume: 469
  start-page: 63
  year: 2016
  end-page: 68
  ident: b0380
  article-title: Residual trapping of supercritical CO2 in oil-wet sandstone
  publication-title: J. Colloid Interface Sci.
– volume: 299
  year: 2020
  ident: b0490
  publication-title: Impact of surface roughness on wettability of oil-brine-calcite system at sub-pore scale
– start-page: 40
  year: 1994
  end-page: 69
  ident: b0535
  article-title: Distribution and occurrence of organic acids in subsurface waters, Organic acids in geological processes
  publication-title: Organic Acids in Geological Processes
– volume: 562
  start-page: 370
  year: 2020
  end-page: 380
  ident: b0560
  article-title: Pore scale investigation of low salinity surfactant nanofluid injection into oil saturated sandstone via X-ray micro-tomography
  publication-title: J. Colloid Interface Sci.
– volume: 46
  start-page: 2381
  year: 1982
  end-page: 2393
  ident: b0305
  article-title: Adsorption of natural dissolved organic matter at the oxide/water interface
  publication-title: Geochim. Cosmochim. Acta
– volume: 2
  start-page: 12
  year: 2006
  end-page: 17
  ident: b0510
  article-title: Soft contact: measurement and interpretation of contact angles
  publication-title: Soft Matter
– volume: 12
  start-page: 39850
  year: 2020
  end-page: 39858
  ident: b0065
  article-title: Interfaces, Influence of organic acid concentration on wettability alteration of cap-rock: implications for CO2 trapping/storage
  publication-title: ACS Appl. Mater. Interfaces
– volume: 386
  start-page: 405
  year: 2012
  end-page: 414
  ident: b0420
  article-title: i. science, Molecular dynamics computations of brine–CO2 interfacial tensions and brine–CO2–quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 112
  year: 2007
  end-page: 122
  ident: b0350
  article-title: Wettability alteration of caprock minerals by carbon dioxide
  publication-title: Geofluids
– reference: X. Li, E. Boek, G.C. Maitland, J.M.J.J.o.C. Trusler, E. Data, Interfacial Tension of (Brines+ CO2):(0.864 NaCl+ 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol· kg–1, 57(4) (2012) 1078-1088.
– volume: 58
  start-page: 142
  year: 2017
  end-page: 158
  ident: b0540
  article-title: Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity
  publication-title: Int. J. Greenhouse Gas Control
– volume: 33
  start-page: 739
  year: 2019
  end-page: 746
  ident: b0555
  article-title: Low-salinity surfactant nanofluid formulations for wettability alteration of sandstone: role of the SiO2 nanoparticle concentration and divalent cation/SO42–ratio
  publication-title: Energy Fuels
– volume: 34
  start-page: 14548
  year: 2020
  end-page: 14559
  ident: b0150
  article-title: Effect of cryogenic liquid nitrogen on the morphological and petrophysical characteristics of tight gas sandstone rocks from kirthar fold belt
  publication-title: Indus Basin, Pakistan, Energy Fuels
– volume: 76
  start-page: 565
  year: 2015
  end-page: 572
  ident: b0095
  article-title: Subsurface porous media hydrogen storage–scenario development and simulation
  publication-title: Energy Procedia
– volume: 50
  start-page: 2727
  year: 2016
  end-page: 2734
  ident: b0375
  article-title: Capillary trapping of CO2 in oil reservoirs: Observations in a mixed-wet carbonate rock
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 32809
  year: 2021
  end-page: 32845
  ident: b0030
  article-title: Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review
  publication-title: Int. J. Hydrogen Energy
– volume: 123
  start-page: 9027
  year: 2019
  end-page: 9040
  ident: b0470
  article-title: Wettability of fully hydroxylated and alkylated (001) α-quartz surface in carbon dioxide atmosphere
  publication-title: J. Phys. Chem. C
– volume: 192
  year: 2020
  ident: b0155
  article-title: Morphological and petro physical estimation of eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin
  publication-title: Pakistan, J. Petroleum Sci. Eng.
– volume: 603
  start-page: 165
  year: 2021
  end-page: 171
  ident: b0195
  article-title: Western Australia basalt-CO2-brine wettability at geo-storage conditions
  publication-title: J. Colloid Interface Sci.
– start-page: 271
  year: 2019
  end-page: 282
  ident: b0215
  article-title: Geochemistry: inorganic, Encyclopedia of Analytical Science: Reference Module in Chemistry
– volume: 2
  start-page: 594
  year: 2008
  end-page: 604
  ident: b0365
  article-title: Water/acid gas interfacial tensions and their impact on acid gas geological storage
  publication-title: Int. J. Greenhouse Gas Control
– volume: 154
  year: 2021
  ident: b0235
  article-title: Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage
  publication-title: Adv. Water Resour.
– volume: 48
  year: 2021
  ident: b0085
  article-title: Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage
  publication-title: Geophys. Res. Lett.
– volume: 48
  year: 2021
  ident: b0090
  article-title: Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage
  publication-title: Geophys. Res. Lett.
– volume: 50
  start-page: 1134
  year: 2017
  end-page: 1142
  ident: b0455
  article-title: CO2–water–rock wettability: variability, influencing factors, and implications for CO2 geostorage
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 116
  year: 2021
  ident: b0050
  article-title: Hydrogen production by solar thermochemical water-splitting cycle via a beam down concentrator
  publication-title: Front. Energy Res.
– volume: 469
  start-page: 63
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0380
  article-title: Residual trapping of supercritical CO2 in oil-wet sandstone
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.02.020
– volume: 17
  start-page: 309
  issue: 4
  year: 1962
  ident: 10.1016/j.jcis.2022.01.068_b0480
  article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention
  publication-title: J. Colloid Sci.
  doi: 10.1016/0095-8522(62)90011-9
– volume: 52
  start-page: 1667
  issue: 6
  year: 1988
  ident: 10.1016/j.jcis.2022.01.068_b0320
  article-title: Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions: I. Fatty acid adsorption
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90235-9
– volume: 200
  start-page: 108387
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0135
  article-title: On hydrogen wettability of basaltic rock
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108387
– volume: 46
  start-page: 2381
  issue: 11
  year: 1982
  ident: 10.1016/j.jcis.2022.01.068_b0305
  article-title: Adsorption of natural dissolved organic matter at the oxide/water interface
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(82)90209-5
– volume: 93
  start-page: 416
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0435
  article-title: Receding and advancing (CO2+ brine+ quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2015.07.031
– volume: 123
  start-page: 9027
  issue: 14
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0470
  article-title: Wettability of fully hydroxylated and alkylated (001) α-quartz surface in carbon dioxide atmosphere
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b00263
– volume: 48
  issue: 10
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0085
  article-title: Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL092976
– volume: 2
  start-page: 442
  issue: 3
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0015
  article-title: Hydrogen production by PEM water electrolysis–A review
  publication-title: Mater. Sci. for Energy Technol.
– start-page: 37
  year: 2010
  ident: 10.1016/j.jcis.2022.01.068_b0225
  article-title: Large-scale hydrogen underground storage for securing future energy supplies
  publication-title: 18th World hydrogen energy conference
– ident: 10.1016/j.jcis.2022.01.068_b0290
  doi: 10.1021/je201062r
– volume: 9
  start-page: 2237
  issue: 8
  year: 1993
  ident: 10.1016/j.jcis.2022.01.068_b0355
  article-title: A systematic comparison of contact angle methods
  publication-title: Langmuir
  doi: 10.1021/la00032a055
– volume: 45
  start-page: 32243
  issue: 56
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0055
  article-title: Geologic feasibility of underground hydrogen storage in Canada
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.244
– volume: 192
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0155
  article-title: Morphological and petro physical estimation of eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin
  publication-title: Pakistan, J. Petroleum Sci. Eng.
– volume: 562
  start-page: 370
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0560
  article-title: Pore scale investigation of low salinity surfactant nanofluid injection into oil saturated sandstone via X-ray micro-tomography
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.043
– volume: 6
  start-page: 277
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0325
  article-title: Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2019.09.001
– volume: 29
  start-page: 6856
  issue: 23
  year: 2013
  ident: 10.1016/j.jcis.2022.01.068_b0410
  article-title: Wettability of sc-CO2/water/quartz systems: Simultaneous measurement of contact angle and interfacial tension at reservoir conditions
  publication-title: Langmuir
  doi: 10.1021/la3050863
– year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0140
  article-title: Hydrogen wettability of quartz substrates exposed to organic acids; Implications for hydrogen trapping/storage in sandstone reservoirs
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109081
– volume: 49
  start-page: 14680
  issue: 24
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0440
  article-title: Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03646
– volume: 42
  start-page: 9279
  issue: 21
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0185
  article-title: CO2 wettability of caprocks: Implications for structural storage capacity and containment security
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL065787
– volume: 214
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0250
  article-title: CO2-wettability reversal of cap-rock by alumina nanofluid: Implications for CO2 geo-storage
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2021.106722
– volume: 603
  start-page: 165
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0195
  article-title: Western Australia basalt-CO2-brine wettability at geo-storage conditions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.06.078
– start-page: 40
  year: 1994
  ident: 10.1016/j.jcis.2022.01.068_b0535
  article-title: Distribution and occurrence of organic acids in subsurface waters, Organic acids in geological processes
– volume: 534
  start-page: 88
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0205
  article-title: i. science, Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.08.106
– volume: 51
  start-page: 729
  issue: 1
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0200
  article-title: CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015553
– volume: 2
  start-page: 12
  issue: 1
  year: 2006
  ident: 10.1016/j.jcis.2022.01.068_b0510
  article-title: Soft contact: measurement and interpretation of contact angles
  publication-title: Soft Matter
  doi: 10.1039/B514811C
– volume: 46
  start-page: 34356
  issue: 69
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0280
  article-title: Hydrogen wettability of clays: Implications for underground hydrogen storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.226
– volume: 22
  start-page: 325
  year: 2014
  ident: 10.1016/j.jcis.2022.01.068_b0300
  article-title: Contamination of silica surfaces: Impact on water–CO2–quartz and glass contact angle measurements
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2014.01.006
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0020
  article-title: Hydrogen production from water electrolysis: role of catalysts
  publication-title: Nano Convergence
  doi: 10.1186/s40580-021-00254-x
– volume: 37
  start-page: 14265
  issue: 19
  year: 2012
  ident: 10.1016/j.jcis.2022.01.068_b0160
  article-title: Large-scale hydrogen energy storage in salt caverns
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.111
– volume: 3818887
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0125
  article-title: Reservoir Scale Porosity-Permeability Evolution in Sandstone Due to CO2 Geological Storage
  publication-title: Available at SSRN
– volume: 28
  start-page: 988
  issue: 8
  year: 1936
  ident: 10.1016/j.jcis.2022.01.068_b0505
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50320a024
– volume: 46
  start-page: 23436
  issue: 45
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0010
  article-title: Underground hydrogen storage: A comprehensive review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.138
– volume: 1
  start-page: 47
  issue: 01
  year: 1998
  ident: 10.1016/j.jcis.2022.01.068_b0335
  article-title: Engineering, Adsorption of carboxylic acids on reservoir minerals from organic and aqueous phase
  publication-title: SPE Reservoir Eval. Eng.
  doi: 10.2118/37292-PA
– start-page: 271
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0215
– volume: 475
  start-page: 37
  year: 2018
  ident: 10.1016/j.jcis.2022.01.068_b0485
  article-title: Erratum to “Interfacial tensions of (H2O+ H2) and (H2O+ CO2+ H2) systems at temperatures of (298 to 448) K and pressures up to 45 MPa”
  publication-title: Fluid Phase Equil.
  doi: 10.1016/j.fluid.2018.07.022
– volume: 14
  issue: 04
  year: 1975
  ident: 10.1016/j.jcis.2022.01.068_b0495
  publication-title: The effects of surface roughness on contact: angle with special reference to petroleum recovery
– volume: 53
  start-page: 1378
  issue: 5
  year: 1989
  ident: 10.1016/j.jcis.2022.01.068_b0330
  article-title: Mechanisms of dissolved organic carbon adsorption on soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300050013x
– volume: 22
  start-page: 37
  issue: 1
  year: 1988
  ident: 10.1016/j.jcis.2022.01.068_b0315
  article-title: Adsorption of aliphatic fatty acids on aquatic interfaces. Comparison between two model surfaces: the mercury electrode and δ-Al2O3 colloids
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00166a002
– volume: 34
  start-page: 505
  issue: 4
  year: 2011
  ident: 10.1016/j.jcis.2022.01.068_b0360
  article-title: Interfacial tension between CO2 and brine (NaCl+ CaCl2) at elevated pressures and temperatures: The additive effect of different salts
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.01.007
– volume: 11
  start-page: 2451
  issue: 9
  year: 2018
  ident: 10.1016/j.jcis.2022.01.068_b0045
  article-title: Solar-driven thermochemical water-splitting by cerium oxide: determination of operational conditions in a directly irradiated fixed bed reactor
  publication-title: Energies
  doi: 10.3390/en11092451
– volume: 299
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0490
  publication-title: Impact of surface roughness on wettability of oil-brine-calcite system at sub-pore scale
– volume: 50
  start-page: 112
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0390
  article-title: Structural trapping capacity of oil-wet caprock as a function of pressure, temperature and salinity
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.04.024
– volume: 13
  start-page: 3988
  issue: 15
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0230
  article-title: Effect of environment-friendly non-ionic surfactant on interfacial tension reduction and wettability alteration; implications for enhanced oil recovery
  publication-title: Energies
  doi: 10.3390/en13153988
– volume: 588
  start-page: 315
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0260
  article-title: Effect of humic acid on CO2-wettability in sandstone formation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.058
– year: 2011
  ident: 10.1016/j.jcis.2022.01.068_b0295
– volume: 154
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0235
  article-title: Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.103964
– volume: 12
  start-page: 280
  issue: 4
  year: 2012
  ident: 10.1016/j.jcis.2022.01.068_b0370
  article-title: Are rocks still water-wet in the presence of dense CO2 or H2S?
  publication-title: Geofluids
  doi: 10.1111/j.1468-8123.2012.00369.x
– volume: 46
  start-page: 34822
  issue: 70
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0550
  article-title: Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.042
– volume: 40
  start-page: 221
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0525
  article-title: Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2015.04.006
– volume: 45
  start-page: 8757
  issue: 15
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0270
  article-title: Impacts of the subsurface storage of natural gas and hydrogen mixtures
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.01.044
– year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0080
  article-title: Optimum geological storage depths for structural H2 geo-storage
  publication-title: J. Petrol. Sci. Eng.
– year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0145
  article-title: End of Linear Flow Time Picking in Long Transient Hydraulically Fractured Wells to Correctly Estimate the Permeability, Fracture Half-Length and Original Gas in Place in Liquid Rich Shales
  publication-title: PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition, Society of Petroleum Engineers
– volume: 34
  start-page: 14548
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0150
  article-title: Effect of cryogenic liquid nitrogen on the morphological and petrophysical characteristics of tight gas sandstone rocks from kirthar fold belt
  publication-title: Indus Basin, Pakistan, Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02553
– volume: 627
  start-page: 127118
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0220
  article-title: Assessment of CO2/shale interfacial tension
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2021.127118
– volume: 60
  start-page: 116
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0530
  article-title: Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2015.04.011
– volume: 204
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0190
  article-title: CO2/Basalt's interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108683
– year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0210
– volume: 56
  issue: 10
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0500
  publication-title: The impact of wettability and surface roughness on fluid displacement and capillary trapping in 2-D and 3-D porous media: 2. Combined effect of wettability, surface roughness, and pore space structure on trapping efficiency in sand packs and micromodels
– volume: 44
  start-page: 8769
  issue: 17
  year: 2017
  ident: 10.1016/j.jcis.2022.01.068_b0180
  article-title: Influence of shale-total organic content on CO2 geo-storage potential
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073532
– volume: 2
  start-page: 594
  issue: 4
  year: 2008
  ident: 10.1016/j.jcis.2022.01.068_b0365
  article-title: Water/acid gas interfacial tensions and their impact on acid gas geological storage
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2008.02.002
– volume: 323
  start-page: 73
  issue: 1-3
  year: 2008
  ident: 10.1016/j.jcis.2022.01.068_b0475
  article-title: Understanding of sliding and contact angle results in tilted plate experiments
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2007.09.032
– volume: 46
  start-page: 32809
  issue: 65
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0030
  article-title: Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.097
– volume: 130
  start-page: 1
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0310
  article-title: Mineral–organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2014.10.005
– volume: 76
  start-page: 565
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0095
  article-title: Subsurface porous media hydrogen storage–scenario development and simulation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.872
– volume: 12
  start-page: 39850
  issue: 35
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0065
  article-title: Interfaces, Influence of organic acid concentration on wettability alteration of cap-rock: implications for CO2 trapping/storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10491
– year: 2003
  ident: 10.1016/j.jcis.2022.01.068_b0565
– volume: 186
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0035
  article-title: Biorenewable hydrogen production through biomass gasification: A review and future prospects
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109547
– volume: 43
  start-page: 190
  year: 2017
  ident: 10.1016/j.jcis.2022.01.068_b0545
  article-title: Influence of injection well configuration and rock wettability on CO2 plume behaviour and CO2 trapping capacity in heterogeneous reservoirs
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.03.016
– volume: 105
  start-page: 86
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0005
  article-title: Underground hydrogen storage: Characteristics and prospects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.051
– volume: 50
  start-page: 2727
  issue: 5
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0375
  article-title: Capillary trapping of CO2 in oil reservoirs: Observations in a mixed-wet carbonate rock
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05925
– volume: 219
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0115
  article-title: Pore-scale analysis of coal cleat network evolution through liquid nitrogen treatment: A Micro-Computed Tomography investigation
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2019.103370
– volume: 28
  start-page: 7182
  issue: 18
  year: 2012
  ident: 10.1016/j.jcis.2022.01.068_b0395
  article-title: Correlation of oil–water and air–water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions
  publication-title: Langmuir
  doi: 10.1021/la204322k
– volume: 225
  year: 2022
  ident: 10.1016/j.jcis.2022.01.068_b0100
  article-title: Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2021.103895
– volume: 14
  start-page: 6772
  issue: 23
  year: 1998
  ident: 10.1016/j.jcis.2022.01.068_b0515
  article-title: Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws
  publication-title: Langmuir
  doi: 10.1021/la980602k
– volume: 181
  start-page: 680
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0450
  article-title: CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.053
– volume: 10
  start-page: 858
  issue: 8
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0025
  article-title: Catalytic hydrogen production from methane: A review on recent progress and prospect
  publication-title: Catalysts
  doi: 10.3390/catal10080858
– volume: 559
  start-page: 304
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0070
  article-title: M.J.J.o.c. Sarmadivaleh, i. science, Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.10.028
– volume: 4
  start-page: 5422
  year: 2011
  ident: 10.1016/j.jcis.2022.01.068_b0520
  article-title: Petrophysical assessment of a carbonate-rich caprock for CO2 geological storage purposes
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.02.527
– volume: 608
  start-page: 1457
  year: 2022
  ident: 10.1016/j.jcis.2022.01.068_b0110
  article-title: Hydrogen diffusion in coal: Implications for Hydrogen Geo-Storage
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.050
– volume: 50
  start-page: 1134
  issue: 5
  year: 2017
  ident: 10.1016/j.jcis.2022.01.068_b0455
  article-title: CO2–water–rock wettability: variability, influencing factors, and implications for CO2 geostorage
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00602
– volume: 26
  start-page: 6053
  issue: 9
  year: 2012
  ident: 10.1016/j.jcis.2022.01.068_b0405
  article-title: Supercritical CO2 and ionic strength effects on wettability of silica surfaces: Equilibrium contact angle measurements
  publication-title: Energy Fuels
  doi: 10.1021/ef300913t
– volume: 45
  start-page: 6793
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0075
  article-title: Technical potential of salt caverns for hydrogen storage in Europe
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.161
– volume: 298
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0240
  article-title: Impact of a novel biosynthesized nanocomposite (SiO2@ Montmorilant@ Xanthan) on wettability shift and interfacial tension: Applications for enhanced oil recovery
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120773
– volume: 119
  start-page: 29038
  issue: 52
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0285
  publication-title: Underlying mechanism of time dependent surface properties of calcite (CaCO3): a baseline for investigations of reservoirs wettability
– volume: 11
  start-page: 639
  issue: 2
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0130
  article-title: Characterization and analysis of naturally fractured gas reservoirs based on stimulated reservoir volume and petro-physical parameters
  publication-title: J. Petrol. Exploration Production
  doi: 10.1007/s13202-020-01081-2
– volume: 83
  start-page: 61
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0255
  article-title: CO2-wettability of sandstones exposed to traces of organic acids: Implications for CO2 geo-storage
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2019.02.002
– volume: 441
  start-page: 59
  year: 2015
  ident: 10.1016/j.jcis.2022.01.068_b0400
  article-title: Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2–water interfacial tension
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.11.010
– volume: 48
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0090
  article-title: Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL090814
– volume: 22
  start-page: 504
  issue: 1
  year: 2008
  ident: 10.1016/j.jcis.2022.01.068_b0415
  article-title: Wettability determination of the reservoir brine− reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures
  publication-title: Energy Fuels
  doi: 10.1021/ef700383x
– ident: 10.1016/j.jcis.2022.01.068_b0265
  doi: 10.1016/j.ijhydene.2021.05.067
– volume: 608
  start-page: 1739
  year: 2022
  ident: 10.1016/j.jcis.2022.01.068_b0105
  article-title: Science, Influence of organic molecules on wetting characteristics of mica/H2/brine systems: Implications for hydrogen structural trapping capacities
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.080
– volume: 60
  start-page: 45
  issue: 1
  year: 2013
  ident: 10.1016/j.jcis.2022.01.068_b0340
  article-title: South West Hub: a carbon capture and storage project
  publication-title: Aust. J. Earth Sci.
  doi: 10.1080/08120099.2013.756830
– volume: 462
  start-page: 208
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0385
  article-title: Impact of pressure and temperature on CO2–brine–mica contact angles and CO2–brine interfacial tension: Implications for carbon geo-sequestration
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.09.076
– volume: 9
  start-page: 116
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0050
  article-title: Hydrogen production by solar thermochemical water-splitting cycle via a beam down concentrator
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.666191
– volume: 42
  start-page: 1280
  issue: 5
  year: 2005
  ident: 10.1016/j.jcis.2022.01.068_b0460
  article-title: Zeta potential of clay minerals and quartz contaminated by heavy metals
  publication-title: Can. Geotech. J.
  doi: 10.1139/t05-048
– volume: 434
  start-page: 260
  year: 2013
  ident: 10.1016/j.jcis.2022.01.068_b0465
  article-title: Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2013.05.070
– year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0245
– volume: 386
  start-page: 405
  issue: 1
  year: 2012
  ident: 10.1016/j.jcis.2022.01.068_b0420
  article-title: i. science, Molecular dynamics computations of brine–CO2 interfacial tensions and brine–CO2–quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.06.052
– volume: 7
  start-page: 112
  issue: 2
  year: 2007
  ident: 10.1016/j.jcis.2022.01.068_b0350
  article-title: Wettability alteration of caprock minerals by carbon dioxide
  publication-title: Geofluids
  doi: 10.1111/j.1468-8123.2007.00168.x
– volume: 25
  start-page: 1509
  issue: 6
  year: 1996
  ident: 10.1016/j.jcis.2022.01.068_b0430
  article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555991
– volume: 122
  start-page: 333
  issue: 2
  year: 2018
  ident: 10.1016/j.jcis.2022.01.068_b0165
  article-title: Determination of hydrogen–water relative permeability and capillary pressure in sandstone: application to underground hydrogen injection in sedimentary formations
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-018-1004-7
– volume: 159
  start-page: 30
  year: 2018
  ident: 10.1016/j.jcis.2022.01.068_b0040
  article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.12.096
– volume: 34
  start-page: 2160
  issue: 2
  year: 2020
  ident: 10.1016/j.jcis.2022.01.068_b0170
  article-title: Influence of cryogenic liquid nitrogen on petro-physical characteristics of mancos shale: an experimental investigation
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b03700
– volume: 58
  start-page: 142
  year: 2017
  ident: 10.1016/j.jcis.2022.01.068_b0540
  article-title: Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2017.01.012
– volume: 62
  start-page: 113
  year: 2017
  ident: 10.1016/j.jcis.2022.01.068_b0175
  article-title: CO2 storage in carbonates: Wettability of calcite
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2017.04.014
– volume: 38
  start-page: 721
  issue: 3
  year: 2009
  ident: 10.1016/j.jcis.2022.01.068_b0425
  article-title: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.3160306
– volume: 95
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0120
  article-title: Liquid nitrogen fracturing efficiency as a function of coal rank: A multi-scale tomographic study
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.104177
– volume: 461
  start-page: 435
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0345
  article-title: Wettability alteration of oil-wet carbonate by silica nanofluid
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.09.051
– volume: 46
  issue: 7
  year: 2010
  ident: 10.1016/j.jcis.2022.01.068_b0445
  article-title: Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008634
– volume: 7
  start-page: 5988
  year: 2021
  ident: 10.1016/j.jcis.2022.01.068_b0275
  article-title: Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.09.016
– volume: 33
  start-page: 739
  issue: 2
  year: 2019
  ident: 10.1016/j.jcis.2022.01.068_b0555
  article-title: Low-salinity surfactant nanofluid formulations for wettability alteration of sandstone: role of the SiO2 nanoparticle concentration and divalent cation/SO42–ratio
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b03406
– volume: 41
  start-page: 14535
  issue: 33
  year: 2016
  ident: 10.1016/j.jcis.2022.01.068_b0060
  article-title: The survey of key technologies in hydrogen energy storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.293
SSID ssj0011559
Score 2.6765924
Snippet [Display omitted] •Hydrogen wettability increases with pressure, organic surface concentration, and salinity.•Hydrogen wettability decreases with temperature...
The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 256
SubjectTerms calcite
Calcite-rich formation
carbonates
Contact angle
energy
greenhouse gases
Hydrogen
Hydrogen geo-storage
salinity
stearic acid
surface roughness
temperature
Wettability
Title Hydrogen wettability of carbonate formations: Implications for hydrogen geo-storage
URI https://dx.doi.org/10.1016/j.jcis.2022.01.068
https://www.ncbi.nlm.nih.gov/pubmed/35101673
https://www.proquest.com/docview/2624658995
https://www.proquest.com/docview/2636551088
Volume 614
WOSCitedRecordID wos000750145000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DsE4IBgDyscUJG5TUOMkTsytmjZtSJuQGFJvke3Ya6o2qbK2Grvxn_Mcx0lU1AoOXKIq_mjr38_Pz_b7QOiTzwNQslXqwq6NuAGnscu9SLiBYBQLymMl0irZRHR9HY_H9Fuv98v6wqxnUZ7H9_d08V-hhncAtnad_Qe4m07hBXwG0OEJsMPzr4C_-JmWxa12z5bLpYnCXd2iC1ZyfVQuW4fFyhzusmtTro0OJ7aDW1m42niSbdgLtTqsZlGRpXUIJ53xmumQtUZeNIyBdVhmVeqok6usnLCOHdA5m2TzBXRoLHZnrDH4GBm_7avVhM3nLG0XhrsJW7PywXjngMB-YN2TC9j06qCn5gpbGmkL-p02BvW74ph4QVegmrDjfwh6c-Yw_TwVmQ66jnEVfNVk6OmAvJhXKPta8hCTM2UjvLYt2kP7OApp3Ef7o8uz8dfmKkrf29beVsYwcPMrD9Bj28k25Wbb5qVSYm6eo2c1cs7IsOYF6sn8ED05tUn_DtHTTnzKl-i75ZLT4ZJTKKfhktNy6YvTZZIucCyTnA6TjtCP87Ob0wu3zsLhClBml24UC4pjxbFSESOCC_ifQ0W8lJjdqCdjwnGYUpjYUUCURzAPAgWKJmylsST-K9TPi1y-QU5MfA9jLiVRacAIhdahwpQTpbwhS8kAeXb4ElGHqNeZUmaJtUWcJnr0Ez36ydBLYPQH6KRpszABWnbWDi0qST0ZjOqYALF2tvtoIUwAEX2pxnJZrKASwQFo8ZSGu-r4BHYmsKAP0GuDf_NbLXXebi15hw7a2fMe9ZflSn5Aj8R6md2Vx2gvGsfHNWl_A1BZulk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+wettability+of+carbonate+formations%3A+Implications+for+hydrogen+geo-storage&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Hosseini%2C+Mirhasan&rft.au=Fahimpour%2C+Jalal&rft.au=Ali%2C+Muhammad&rft.au=Keshavarz%2C+Alireza&rft.date=2022-05-15&rft.eissn=1095-7103&rft.volume=614&rft.spage=256&rft_id=info:doi/10.1016%2Fj.jcis.2022.01.068&rft_id=info%3Apmid%2F35101673&rft.externalDocID=35101673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon