Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering

The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in te...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 39; číslo 2; s. 341 - 356
Hlavní autori: Zhao, Yitian, Xie, Jianyang, Zhang, Huaizhong, Zheng, Yalin, Zhao, Yifan, Qi, Hong, Zhao, Yangchun, Su, Pan, Liu, Jiang, Liu, Yonghuai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.
AbstractList The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.
The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.
Author Zhao, Yifan
Zhao, Yangchun
Liu, Yonghuai
Zhang, Huaizhong
Qi, Hong
Xie, Jianyang
Liu, Jiang
Zhao, Yitian
Zheng, Yalin
Su, Pan
Author_xml – sequence: 1
  givenname: Yitian
  orcidid: 0000-0003-4357-4592
  surname: Zhao
  fullname: Zhao, Yitian
  organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China
– sequence: 2
  givenname: Jianyang
  orcidid: 0000-0002-4565-5807
  surname: Xie
  fullname: Xie, Jianyang
  organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China
– sequence: 3
  givenname: Huaizhong
  orcidid: 0000-0001-7867-9453
  surname: Zhang
  fullname: Zhang, Huaizhong
  organization: Department of Computer Science, Edge Hill University, Ormskirk, U.K
– sequence: 4
  givenname: Yalin
  orcidid: 0000-0002-7873-0922
  surname: Zheng
  fullname: Zheng, Yalin
  organization: Department of Eye and Vision Science, University of Liverpool, Liverpool, U.K
– sequence: 5
  givenname: Yifan
  orcidid: 0000-0003-2383-5724
  surname: Zhao
  fullname: Zhao, Yifan
  organization: School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, U.K
– sequence: 6
  givenname: Hong
  surname: Qi
  fullname: Qi, Hong
  organization: Department of Ophthalmology, Peking University Third Hospital, Beijing, China
– sequence: 7
  givenname: Yangchun
  surname: Zhao
  fullname: Zhao, Yangchun
  organization: Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
– sequence: 8
  givenname: Pan
  surname: Su
  fullname: Su, Pan
  email: supan@nimte.ac.cn
  organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China
– sequence: 9
  givenname: Jiang
  orcidid: 0000-0001-6281-6505
  surname: Liu
  fullname: Liu, Jiang
  organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China
– sequence: 10
  givenname: Yonghuai
  orcidid: 0000-0002-3774-2134
  surname: Liu
  fullname: Liu, Yonghuai
  email: yonghuai.liu@edgehill.ac.uk
  organization: Department of Computer Science, Edge Hill University, Ormskirk, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31283498$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEcxYNU7LZ6FwQJePEy2_ycSY5l_VWoCnUp3sJ3MpmSdjZZk4yy_71pd-uhB0_fw_u8B9_3TtBRiMEh9JqSJaVEn62_XiwZoXrJNGuFZs_QgkqpGibFzyO0IKxTDSEtO0YnOd8SQoUk-gU65pQpLrRaoLsrV3yACV9DtvMECX9z5U9Md3gdt3GKNzt85WwMuaTZFh8DhjDg81Rc2p1dOx_waoKc_egtPMi_PeAPcVMzQ8E_XKn6nCvtw81L9HyEKbtXh3uK1p8-rldfmsvvny9W55eN5UqXppNWKKBipJYpq0WvKAwtHaAb224EYYeuU6B5Wz_jvNejbYex1xKo7Klg_BS938duU_w1u1zMxmfrpgmCi3M2rLYjCRdUVvTdE_Q2zqnWUSkuCZWqI7xSbw_U3G_cYLbJbyDtzGOLFWj3gE0x5-RGY315qKMk8JOhxNzPZepc5n4uc5irGskT42P2fyxv9hbvnPuHq04KRRj_C6l3oAQ
CODEN ITMID4
CitedBy_id crossref_primary_10_3390_diagnostics13061148
crossref_primary_10_1109_LCOMM_2024_3428692
crossref_primary_10_1016_j_cmpb_2023_107627
crossref_primary_10_32604_cmes_2021_013632
crossref_primary_10_1016_j_compmedimag_2024_102355
crossref_primary_10_1109_TMI_2019_2950051
crossref_primary_10_1016_j_bspc_2023_105323
crossref_primary_10_1016_j_media_2020_101905
crossref_primary_10_1002_mp_14431
crossref_primary_10_1002_jbio_202000411
crossref_primary_10_1016_j_cmpb_2022_106650
crossref_primary_10_1007_s00521_024_10696_z
crossref_primary_10_1109_ACCESS_2023_3273597
crossref_primary_10_1109_JBHI_2022_3165867
crossref_primary_10_1016_j_optom_2022_11_001
crossref_primary_10_1109_TMI_2022_3214291
crossref_primary_10_1016_j_bspc_2023_105539
crossref_primary_10_1016_j_neucom_2024_127570
crossref_primary_10_1016_j_artmed_2020_101871
crossref_primary_10_3389_fmed_2021_750396
crossref_primary_10_1109_TMI_2021_3110602
crossref_primary_10_1016_j_bspc_2025_108463
crossref_primary_10_1016_j_bspc_2025_107691
crossref_primary_10_1007_s00371_020_01863_z
crossref_primary_10_1109_ACCESS_2022_3187503
crossref_primary_10_1109_TMI_2020_2980117
crossref_primary_10_1016_j_bbe_2021_06_008
crossref_primary_10_3390_diagnostics12010134
crossref_primary_10_1002_aisy_202200413
crossref_primary_10_1038_s41597_022_01507_y
crossref_primary_10_1109_TMI_2020_2974499
crossref_primary_10_1186_s12859_021_04262_w
crossref_primary_10_1016_j_bspc_2025_108621
crossref_primary_10_1016_j_jvcir_2023_103956
crossref_primary_10_1016_j_media_2024_103098
crossref_primary_10_3390_e25081148
crossref_primary_10_1007_s10916_023_01927_2
crossref_primary_10_1016_j_compbiomed_2023_107633
crossref_primary_10_1016_j_cmpb_2020_105629
crossref_primary_10_1016_j_media_2021_102340
Cites_doi 10.1109/TPAMI.2007.250608
10.1016/j.neucom.2016.07.077
10.1007/978-3-319-46484-8_17
10.1007/978-3-642-33783-3_59
10.1117/12.878712
10.1016/j.imavis.2008.02.013
10.1109/TMI.2004.825627
10.1109/TMI.2015.2409024
10.1109/TMI.2013.2247770
10.1007/978-3-030-00934-2_7
10.1371/journal.pone.0122332
10.1007/s00138-017-0867-x
10.1109/ISBI.2018.8363847
10.1117/12.813826
10.1109/TMI.2016.2587062
10.1109/TPAMI.2014.2382116
10.1016/j.cmpb.2012.03.009
10.1109/TBME.2002.800789
10.1109/GlobalSIP.2017.8309054
10.1167/tvst.5.5.7
10.1109/TMI.2017.2762963
10.1109/TMI.2017.2756073
10.1109/TIP.2013.2263809
10.1007/978-3-319-10404-1_78
10.1109/EMBC.2013.6611267
10.1109/TMI.2015.2465962
10.1109/ICCV.2003.1238367
10.1117/1.JMI.2.4.044001
10.1109/TMI.2015.2443117
10.1007/s12021-011-9117-y
10.1016/j.compmedimag.2013.06.003
10.1145/1102351.1102482
10.1371/journal.pone.0032435
10.1016/j.compmedimag.2011.03.002
10.1109/CBMS.2013.6627847
10.1109/TPAMI.2017.2730871
10.1109/TMI.2016.2593725
10.1016/j.media.2014.08.002
10.1007/s00138-012-0442-4
10.1002/mp.12953
10.1109/CVPR.2019.00870
10.1109/TMI.2006.879967
10.1371/journal.pone.0088061
10.1109/TMI.2011.2159619
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2926492
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 356
ExternalDocumentID 31283498
10_1109_TMI_2019_2926492
8754802
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Ningbo
  grantid: 2018A610055
  funderid: 10.13039/100007834
– fundername: Grant of Ningbo 3315 Innovation Team
– fundername: National Natural Science Foundation of China
  grantid: 61601029
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LZ19F010001
  funderid: 10.13039/501100004731
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M652156
  funderid: 10.13039/501100002858
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c389t-75c48a14f1c28c94b81ad61da7f67fa4cd778a93600633b9fc6dfb95a15b1423
IEDL.DBID RIE
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525258900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 06:59:35 EDT 2025
Mon Jun 30 05:30:07 EDT 2025
Wed Feb 19 02:30:14 EST 2025
Tue Nov 18 19:58:24 EST 2025
Sat Nov 29 05:14:07 EST 2025
Wed Aug 27 02:29:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-75c48a14f1c28c94b81ad61da7f67fa4cd778a93600633b9fc6dfb95a15b1423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2383-5724
0000-0002-4565-5807
0000-0002-7873-0922
0000-0001-7867-9453
0000-0001-6281-6505
0000-0002-3774-2134
0000-0003-4357-4592
OpenAccessLink https://research.edgehill.ac.uk/en/publications/9ee70268-37d7-4b03-a04d-907fb1276b08
PMID 31283498
PQID 2350158703
PQPubID 85460
PageCount 16
ParticipantIDs proquest_miscellaneous_2254503415
crossref_primary_10_1109_TMI_2019_2926492
proquest_journals_2350158703
pubmed_primary_31283498
ieee_primary_8754802
crossref_citationtrail_10_1109_TMI_2019_2926492
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref31
ref33
ref11
ref32
ref10
mequanint (ref14) 0
kondermann (ref21) 2007; 6512
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
murphy (ref43) 1999
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
lyu (ref30) 2016
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1109/TPAMI.2007.250608
– ident: ref7
  doi: 10.1016/j.neucom.2016.07.077
– ident: ref13
  doi: 10.1007/978-3-319-46484-8_17
– ident: ref45
  doi: 10.1007/978-3-642-33783-3_59
– ident: ref28
  doi: 10.1117/12.878712
– ident: ref27
  doi: 10.1016/j.imavis.2008.02.013
– ident: ref38
  doi: 10.1109/TMI.2004.825627
– ident: ref34
  doi: 10.1109/TMI.2015.2409024
– ident: ref33
  doi: 10.1109/TMI.2013.2247770
– ident: ref11
  doi: 10.1007/978-3-030-00934-2_7
– ident: ref17
  doi: 10.1371/journal.pone.0122332
– ident: ref26
  doi: 10.1007/s00138-017-0867-x
– ident: ref2
  doi: 10.1109/ISBI.2018.8363847
– ident: ref22
  doi: 10.1117/12.813826
– ident: ref37
  doi: 10.1109/TMI.2016.2587062
– ident: ref5
  doi: 10.1109/TPAMI.2014.2382116
– start-page: 467
  year: 1999
  ident: ref43
  article-title: Loopy belief propagation for approximate inference: An empirical study
  publication-title: Proc ICU
– ident: ref18
  doi: 10.1016/j.cmpb.2012.03.009
– start-page: 375
  year: 2016
  ident: ref30
  article-title: Construction of retinal vascular trees via curvature orientation prior
  publication-title: Proc BIBM
– year: 0
  ident: ref14
  article-title: Dominant sets for 'constrained,' image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref20
  doi: 10.1109/TBME.2002.800789
– ident: ref25
  doi: 10.1109/GlobalSIP.2017.8309054
– ident: ref39
  doi: 10.1167/tvst.5.5.7
– ident: ref41
  doi: 10.1109/TMI.2017.2762963
– ident: ref8
  doi: 10.1109/TMI.2017.2756073
– ident: ref9
  doi: 10.1109/TIP.2013.2263809
– ident: ref46
  doi: 10.1007/978-3-319-10404-1_78
– ident: ref24
  doi: 10.1109/EMBC.2013.6611267
– ident: ref31
  doi: 10.1109/TMI.2015.2465962
– ident: ref12
  doi: 10.1109/ICCV.2003.1238367
– ident: ref47
  doi: 10.1117/1.JMI.2.4.044001
– ident: ref29
  doi: 10.1109/TMI.2015.2443117
– ident: ref48
  doi: 10.1007/s12021-011-9117-y
– ident: ref23
  doi: 10.1016/j.compmedimag.2013.06.003
– ident: ref44
  doi: 10.1145/1102351.1102482
– ident: ref35
  doi: 10.1371/journal.pone.0032435
– ident: ref40
  doi: 10.1016/j.compmedimag.2011.03.002
– ident: ref42
  doi: 10.1109/CBMS.2013.6627847
– ident: ref32
  doi: 10.1109/TPAMI.2017.2730871
– ident: ref15
  doi: 10.1109/TMI.2016.2593725
– volume: 6512
  year: 2007
  ident: ref21
  article-title: Blood vessel classification into arteries and veins in retinal images
  publication-title: Proc SPIE
– ident: ref16
  doi: 10.1016/j.media.2014.08.002
– ident: ref3
  doi: 10.1007/s00138-012-0442-4
– ident: ref4
  doi: 10.1002/mp.12953
– ident: ref6
  doi: 10.1109/CVPR.2019.00870
– ident: ref19
  doi: 10.1109/TMI.2006.879967
– ident: ref10
  doi: 10.1371/journal.pone.0088061
– ident: ref1
  doi: 10.1109/TMI.2011.2159619
SSID ssj0014509
Score 2.5444481
Snippet The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 341
SubjectTerms Algorithms
Annotations
Arteries
Artery/vein classification
Biomedical imaging
blood vessel
Blood vessels
Classification
Cluster Analysis
Clustering
Color vision
Databases, Factual
dominant set clustering
Entropy
Euclidean geometry
Eye diseases
Eye Diseases - diagnostic imaging
Fundus Oculi
Humans
Image classification
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Image segmentation
Mathematical morphology
Medical imaging
Medical treatment
Network topologies
Network topology
Public access
Retina
Retinal Artery - diagnostic imaging
Retinal images
Retinal Vein - diagnostic imaging
Topology
vascular topology
Veins
Veins & arteries
Title Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering
URI https://ieeexplore.ieee.org/document/8754802
https://www.ncbi.nlm.nih.gov/pubmed/31283498
https://www.proquest.com/docview/2350158703
https://www.proquest.com/docview/2254503415
Volume 39
WOSCitedRecordID wos000525258900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qEbEPVVu1qbWs4ItgevnYZHcei1oU7CF6lHsL-xU4Kjlp7wr97zuzyUUFFXwLyWQ35De7O7Pz2xmA185btGRWp0y5SKVBmVqyMlKyntEGX7e6jUlcP6vpVM_n-GUL3o5nYUIIkXwWTvgyxvL90q15q2xCtrXUnDnynlJ1f1ZrjBjIqqdzFJwxNquLTUgyw8ns_BNzuPCkQFr-kQvYlDQtlxL1b6tRLK_yd0szrjhnj_7vWx_D7mBZitNeFZ7AVuj2YOeXfIN78OB8iKTvw-VXPutM8hcDFVVMe0K4mPVlE24Fe6Y_88sK03luPFzdTi7CohOxnCYTjSK24mZhxPtlT6wR38KKnq85CQN1_BRmZx9m7z6mQ-GF1JH9skpV5aQ2uWxzV2iH0urc-Dr3RrW1ao10XiltsKzZwCkttq72rcXK5BXvKZXPYLtbduEARIZaausRvaykI50IaGrl-F5uSrQJTDb_v3FDUnKujfG9ic5Jhg2B1zB4zQBeAm_GN370CTn-IbvPwIxyAyYJHG0gboYRe90UHGGtaPYqE3g1PqaxxgEU04XlmmTIm64yWverBJ73qjG2vdGowz_3-QIeFuypR773EWwTeOEl3Hc3q8X11TEp9FwfR4W-AxLa76s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KFT8e_GitxlZdwRfB9PKxm-w8FrW0eHeIhtK3sNndwGHJSXtX6H_vzCYXFVTwLSST3ZCZ3f3Nzm9nAN5Y12BDsDpmykUsDcq4IZQRE3rGxrui1W1I4jot53N9fo6ft-DdeBbGex_IZ_6QL0Ms3y3tmrfKJoStpebMkbeUlFnSn9YaYwZS9YSOjHPGJkW2CUomOKlmp8ziwsMMCQAgl7DJaWLOJerf1qNQYOXvWDOsOccP_-9rH8GDAVuKo94YHsOW73bg_i8ZB3fgzmyIpe_Cty982pnkzwYyqpj3lHBR9YUTbgT7pj8zzArTOW7cX95MzvyiE6GgJlONgnbF9cKID8ueWiO--hU9X3MaBur4CVTHH6v3J_FQeiG2hGBWcams1CaVbWozbVE2OjWuSJ0p26JsjbSuLLXBvGCIkzfY2sK1DSqTKt5Vyvdgu1t2_hmIBLXUjUN0UklLVuHRFKXle6nJsYlgsvn_tR3SknN1jIs6uCcJ1qS8mpVXD8qL4O34xvc-Jcc_ZHdZMaPcoJMIDjYqrocxe1VnHGNVNH_lEbweH9No4xCK6fxyTTLkT6uEVn4VwdPeNMa2Nxb1_M99voK7J9VsWk9P55_24V7Gfntgfx_ANinSv4Db9nq1uLp8Gcz6Bwg38go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+Vascular+Network+Topology+Reconstruction+and+Artery%2FVein+Classification+via+Dominant+Set+Clustering&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhao%2C+Yitian&rft.au=Liu%2C+Yonghuai&rft.au=Xie%2C+Jianyang&rft.au=Zhang%2C+Huaizhong&rft.date=2020-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=2&rft.spage=341&rft.epage=356&rft_id=info:doi/10.1109%2FTMI.2019.2926492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2926492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon