Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering
The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in te...
Uložené v:
| Vydané v: | IEEE transactions on medical imaging Ročník 39; číslo 2; s. 341 - 356 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community. |
|---|---|
| AbstractList | The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community. The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast, and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization, and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, namely INSPIRE, IOSTAR, VICAVR, DRIVE, and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community. |
| Author | Zhao, Yifan Zhao, Yangchun Liu, Yonghuai Zhang, Huaizhong Qi, Hong Xie, Jianyang Liu, Jiang Zhao, Yitian Zheng, Yalin Su, Pan |
| Author_xml | – sequence: 1 givenname: Yitian orcidid: 0000-0003-4357-4592 surname: Zhao fullname: Zhao, Yitian organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China – sequence: 2 givenname: Jianyang orcidid: 0000-0002-4565-5807 surname: Xie fullname: Xie, Jianyang organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China – sequence: 3 givenname: Huaizhong orcidid: 0000-0001-7867-9453 surname: Zhang fullname: Zhang, Huaizhong organization: Department of Computer Science, Edge Hill University, Ormskirk, U.K – sequence: 4 givenname: Yalin orcidid: 0000-0002-7873-0922 surname: Zheng fullname: Zheng, Yalin organization: Department of Eye and Vision Science, University of Liverpool, Liverpool, U.K – sequence: 5 givenname: Yifan orcidid: 0000-0003-2383-5724 surname: Zhao fullname: Zhao, Yifan organization: School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, U.K – sequence: 6 givenname: Hong surname: Qi fullname: Qi, Hong organization: Department of Ophthalmology, Peking University Third Hospital, Beijing, China – sequence: 7 givenname: Yangchun surname: Zhao fullname: Zhao, Yangchun organization: Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China – sequence: 8 givenname: Pan surname: Su fullname: Su, Pan email: supan@nimte.ac.cn organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China – sequence: 9 givenname: Jiang orcidid: 0000-0001-6281-6505 surname: Liu fullname: Liu, Jiang organization: Chinese Academy of Sciences, Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China – sequence: 10 givenname: Yonghuai orcidid: 0000-0002-3774-2134 surname: Liu fullname: Liu, Yonghuai email: yonghuai.liu@edgehill.ac.uk organization: Department of Computer Science, Edge Hill University, Ormskirk, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31283498$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9rFDEcxYNU7LZ6FwQJePEy2_ycSY5l_VWoCnUp3sJ3MpmSdjZZk4yy_71pd-uhB0_fw_u8B9_3TtBRiMEh9JqSJaVEn62_XiwZoXrJNGuFZs_QgkqpGibFzyO0IKxTDSEtO0YnOd8SQoUk-gU65pQpLrRaoLsrV3yACV9DtvMECX9z5U9Md3gdt3GKNzt85WwMuaTZFh8DhjDg81Rc2p1dOx_waoKc_egtPMi_PeAPcVMzQ8E_XKn6nCvtw81L9HyEKbtXh3uK1p8-rldfmsvvny9W55eN5UqXppNWKKBipJYpq0WvKAwtHaAb224EYYeuU6B5Wz_jvNejbYex1xKo7Klg_BS938duU_w1u1zMxmfrpgmCi3M2rLYjCRdUVvTdE_Q2zqnWUSkuCZWqI7xSbw_U3G_cYLbJbyDtzGOLFWj3gE0x5-RGY315qKMk8JOhxNzPZepc5n4uc5irGskT42P2fyxv9hbvnPuHq04KRRj_C6l3oAQ |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_3390_diagnostics13061148 crossref_primary_10_1109_LCOMM_2024_3428692 crossref_primary_10_1016_j_cmpb_2023_107627 crossref_primary_10_32604_cmes_2021_013632 crossref_primary_10_1016_j_compmedimag_2024_102355 crossref_primary_10_1109_TMI_2019_2950051 crossref_primary_10_1016_j_bspc_2023_105323 crossref_primary_10_1016_j_media_2020_101905 crossref_primary_10_1002_mp_14431 crossref_primary_10_1002_jbio_202000411 crossref_primary_10_1016_j_cmpb_2022_106650 crossref_primary_10_1007_s00521_024_10696_z crossref_primary_10_1109_ACCESS_2023_3273597 crossref_primary_10_1109_JBHI_2022_3165867 crossref_primary_10_1016_j_optom_2022_11_001 crossref_primary_10_1109_TMI_2022_3214291 crossref_primary_10_1016_j_bspc_2023_105539 crossref_primary_10_1016_j_neucom_2024_127570 crossref_primary_10_1016_j_artmed_2020_101871 crossref_primary_10_3389_fmed_2021_750396 crossref_primary_10_1109_TMI_2021_3110602 crossref_primary_10_1016_j_bspc_2025_108463 crossref_primary_10_1016_j_bspc_2025_107691 crossref_primary_10_1007_s00371_020_01863_z crossref_primary_10_1109_ACCESS_2022_3187503 crossref_primary_10_1109_TMI_2020_2980117 crossref_primary_10_1016_j_bbe_2021_06_008 crossref_primary_10_3390_diagnostics12010134 crossref_primary_10_1002_aisy_202200413 crossref_primary_10_1038_s41597_022_01507_y crossref_primary_10_1109_TMI_2020_2974499 crossref_primary_10_1186_s12859_021_04262_w crossref_primary_10_1016_j_bspc_2025_108621 crossref_primary_10_1016_j_jvcir_2023_103956 crossref_primary_10_1016_j_media_2024_103098 crossref_primary_10_3390_e25081148 crossref_primary_10_1007_s10916_023_01927_2 crossref_primary_10_1016_j_compbiomed_2023_107633 crossref_primary_10_1016_j_cmpb_2020_105629 crossref_primary_10_1016_j_media_2021_102340 |
| Cites_doi | 10.1109/TPAMI.2007.250608 10.1016/j.neucom.2016.07.077 10.1007/978-3-319-46484-8_17 10.1007/978-3-642-33783-3_59 10.1117/12.878712 10.1016/j.imavis.2008.02.013 10.1109/TMI.2004.825627 10.1109/TMI.2015.2409024 10.1109/TMI.2013.2247770 10.1007/978-3-030-00934-2_7 10.1371/journal.pone.0122332 10.1007/s00138-017-0867-x 10.1109/ISBI.2018.8363847 10.1117/12.813826 10.1109/TMI.2016.2587062 10.1109/TPAMI.2014.2382116 10.1016/j.cmpb.2012.03.009 10.1109/TBME.2002.800789 10.1109/GlobalSIP.2017.8309054 10.1167/tvst.5.5.7 10.1109/TMI.2017.2762963 10.1109/TMI.2017.2756073 10.1109/TIP.2013.2263809 10.1007/978-3-319-10404-1_78 10.1109/EMBC.2013.6611267 10.1109/TMI.2015.2465962 10.1109/ICCV.2003.1238367 10.1117/1.JMI.2.4.044001 10.1109/TMI.2015.2443117 10.1007/s12021-011-9117-y 10.1016/j.compmedimag.2013.06.003 10.1145/1102351.1102482 10.1371/journal.pone.0032435 10.1016/j.compmedimag.2011.03.002 10.1109/CBMS.2013.6627847 10.1109/TPAMI.2017.2730871 10.1109/TMI.2016.2593725 10.1016/j.media.2014.08.002 10.1007/s00138-012-0442-4 10.1002/mp.12953 10.1109/CVPR.2019.00870 10.1109/TMI.2006.879967 10.1371/journal.pone.0088061 10.1109/TMI.2011.2159619 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2019.2926492 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 356 |
| ExternalDocumentID | 31283498 10_1109_TMI_2019_2926492 8754802 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Ningbo grantid: 2018A610055 funderid: 10.13039/100007834 – fundername: Grant of Ningbo 3315 Innovation Team – fundername: National Natural Science Foundation of China grantid: 61601029 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province grantid: LZ19F010001 funderid: 10.13039/501100004731 – fundername: China Postdoctoral Science Foundation grantid: 2019M652156 funderid: 10.13039/501100002858 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c389t-75c48a14f1c28c94b81ad61da7f67fa4cd778a93600633b9fc6dfb95a15b1423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525258900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 06:59:35 EDT 2025 Mon Jun 30 05:30:07 EDT 2025 Wed Feb 19 02:30:14 EST 2025 Tue Nov 18 19:58:24 EST 2025 Sat Nov 29 05:14:07 EST 2025 Wed Aug 27 02:29:47 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-75c48a14f1c28c94b81ad61da7f67fa4cd778a93600633b9fc6dfb95a15b1423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2383-5724 0000-0002-4565-5807 0000-0002-7873-0922 0000-0001-7867-9453 0000-0001-6281-6505 0000-0002-3774-2134 0000-0003-4357-4592 |
| OpenAccessLink | https://research.edgehill.ac.uk/en/publications/9ee70268-37d7-4b03-a04d-907fb1276b08 |
| PMID | 31283498 |
| PQID | 2350158703 |
| PQPubID | 85460 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2254503415 crossref_primary_10_1109_TMI_2019_2926492 proquest_journals_2350158703 pubmed_primary_31283498 ieee_primary_8754802 crossref_citationtrail_10_1109_TMI_2019_2926492 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref31 ref33 ref11 ref32 ref10 mequanint (ref14) 0 kondermann (ref21) 2007; 6512 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 murphy (ref43) 1999 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 lyu (ref30) 2016 ref6 ref5 ref40 |
| References_xml | – ident: ref36 doi: 10.1109/TPAMI.2007.250608 – ident: ref7 doi: 10.1016/j.neucom.2016.07.077 – ident: ref13 doi: 10.1007/978-3-319-46484-8_17 – ident: ref45 doi: 10.1007/978-3-642-33783-3_59 – ident: ref28 doi: 10.1117/12.878712 – ident: ref27 doi: 10.1016/j.imavis.2008.02.013 – ident: ref38 doi: 10.1109/TMI.2004.825627 – ident: ref34 doi: 10.1109/TMI.2015.2409024 – ident: ref33 doi: 10.1109/TMI.2013.2247770 – ident: ref11 doi: 10.1007/978-3-030-00934-2_7 – ident: ref17 doi: 10.1371/journal.pone.0122332 – ident: ref26 doi: 10.1007/s00138-017-0867-x – ident: ref2 doi: 10.1109/ISBI.2018.8363847 – ident: ref22 doi: 10.1117/12.813826 – ident: ref37 doi: 10.1109/TMI.2016.2587062 – ident: ref5 doi: 10.1109/TPAMI.2014.2382116 – start-page: 467 year: 1999 ident: ref43 article-title: Loopy belief propagation for approximate inference: An empirical study publication-title: Proc ICU – ident: ref18 doi: 10.1016/j.cmpb.2012.03.009 – start-page: 375 year: 2016 ident: ref30 article-title: Construction of retinal vascular trees via curvature orientation prior publication-title: Proc BIBM – year: 0 ident: ref14 article-title: Dominant sets for 'constrained,' image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref20 doi: 10.1109/TBME.2002.800789 – ident: ref25 doi: 10.1109/GlobalSIP.2017.8309054 – ident: ref39 doi: 10.1167/tvst.5.5.7 – ident: ref41 doi: 10.1109/TMI.2017.2762963 – ident: ref8 doi: 10.1109/TMI.2017.2756073 – ident: ref9 doi: 10.1109/TIP.2013.2263809 – ident: ref46 doi: 10.1007/978-3-319-10404-1_78 – ident: ref24 doi: 10.1109/EMBC.2013.6611267 – ident: ref31 doi: 10.1109/TMI.2015.2465962 – ident: ref12 doi: 10.1109/ICCV.2003.1238367 – ident: ref47 doi: 10.1117/1.JMI.2.4.044001 – ident: ref29 doi: 10.1109/TMI.2015.2443117 – ident: ref48 doi: 10.1007/s12021-011-9117-y – ident: ref23 doi: 10.1016/j.compmedimag.2013.06.003 – ident: ref44 doi: 10.1145/1102351.1102482 – ident: ref35 doi: 10.1371/journal.pone.0032435 – ident: ref40 doi: 10.1016/j.compmedimag.2011.03.002 – ident: ref42 doi: 10.1109/CBMS.2013.6627847 – ident: ref32 doi: 10.1109/TPAMI.2017.2730871 – ident: ref15 doi: 10.1109/TMI.2016.2593725 – volume: 6512 year: 2007 ident: ref21 article-title: Blood vessel classification into arteries and veins in retinal images publication-title: Proc SPIE – ident: ref16 doi: 10.1016/j.media.2014.08.002 – ident: ref3 doi: 10.1007/s00138-012-0442-4 – ident: ref4 doi: 10.1002/mp.12953 – ident: ref6 doi: 10.1109/CVPR.2019.00870 – ident: ref19 doi: 10.1109/TMI.2006.879967 – ident: ref10 doi: 10.1371/journal.pone.0088061 – ident: ref1 doi: 10.1109/TMI.2011.2159619 |
| SSID | ssj0014509 |
| Score | 2.5444481 |
| Snippet | The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 341 |
| SubjectTerms | Algorithms Annotations Arteries Artery/vein classification Biomedical imaging blood vessel Blood vessels Classification Cluster Analysis Clustering Color vision Databases, Factual dominant set clustering Entropy Euclidean geometry Eye diseases Eye Diseases - diagnostic imaging Fundus Oculi Humans Image classification Image processing Image Processing, Computer-Assisted - methods Image reconstruction Image segmentation Mathematical morphology Medical imaging Medical treatment Network topologies Network topology Public access Retina Retinal Artery - diagnostic imaging Retinal images Retinal Vein - diagnostic imaging Topology vascular topology Veins Veins & arteries |
| Title | Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering |
| URI | https://ieeexplore.ieee.org/document/8754802 https://www.ncbi.nlm.nih.gov/pubmed/31283498 https://www.proquest.com/docview/2350158703 https://www.proquest.com/docview/2254503415 |
| Volume | 39 |
| WOSCitedRecordID | wos000525258900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qEbEPVVu1qbWs4ItgevnYZHcei1oU7CF6lHsL-xU4Kjlp7wr97zuzyUUFFXwLyWQ35De7O7Pz2xmA185btGRWp0y5SKVBmVqyMlKyntEGX7e6jUlcP6vpVM_n-GUL3o5nYUIIkXwWTvgyxvL90q15q2xCtrXUnDnynlJ1f1ZrjBjIqqdzFJwxNquLTUgyw8ns_BNzuPCkQFr-kQvYlDQtlxL1b6tRLK_yd0szrjhnj_7vWx_D7mBZitNeFZ7AVuj2YOeXfIN78OB8iKTvw-VXPutM8hcDFVVMe0K4mPVlE24Fe6Y_88sK03luPFzdTi7CohOxnCYTjSK24mZhxPtlT6wR38KKnq85CQN1_BRmZx9m7z6mQ-GF1JH9skpV5aQ2uWxzV2iH0urc-Dr3RrW1ao10XiltsKzZwCkttq72rcXK5BXvKZXPYLtbduEARIZaausRvaykI50IaGrl-F5uSrQJTDb_v3FDUnKujfG9ic5Jhg2B1zB4zQBeAm_GN370CTn-IbvPwIxyAyYJHG0gboYRe90UHGGtaPYqE3g1PqaxxgEU04XlmmTIm64yWverBJ73qjG2vdGowz_3-QIeFuypR773EWwTeOEl3Hc3q8X11TEp9FwfR4W-AxLa76s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KFT8e_GitxlZdwRfB9PKxm-w8FrW0eHeIhtK3sNndwGHJSXtX6H_vzCYXFVTwLSST3ZCZ3f3Nzm9nAN5Y12BDsDpmykUsDcq4IZQRE3rGxrui1W1I4jot53N9fo6ft-DdeBbGex_IZ_6QL0Ms3y3tmrfKJoStpebMkbeUlFnSn9YaYwZS9YSOjHPGJkW2CUomOKlmp8ziwsMMCQAgl7DJaWLOJerf1qNQYOXvWDOsOccP_-9rH8GDAVuKo94YHsOW73bg_i8ZB3fgzmyIpe_Cty982pnkzwYyqpj3lHBR9YUTbgT7pj8zzArTOW7cX95MzvyiE6GgJlONgnbF9cKID8ueWiO--hU9X3MaBur4CVTHH6v3J_FQeiG2hGBWcams1CaVbWozbVE2OjWuSJ0p26JsjbSuLLXBvGCIkzfY2sK1DSqTKt5Vyvdgu1t2_hmIBLXUjUN0UklLVuHRFKXle6nJsYlgsvn_tR3SknN1jIs6uCcJ1qS8mpVXD8qL4O34xvc-Jcc_ZHdZMaPcoJMIDjYqrocxe1VnHGNVNH_lEbweH9No4xCK6fxyTTLkT6uEVn4VwdPeNMa2Nxb1_M99voK7J9VsWk9P55_24V7Gfntgfx_ANinSv4Db9nq1uLp8Gcz6Bwg38go |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+Vascular+Network+Topology+Reconstruction+and+Artery%2FVein+Classification+via+Dominant+Set+Clustering&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhao%2C+Yitian&rft.au=Liu%2C+Yonghuai&rft.au=Xie%2C+Jianyang&rft.au=Zhang%2C+Huaizhong&rft.date=2020-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=2&rft.spage=341&rft.epage=356&rft_id=info:doi/10.1109%2FTMI.2019.2926492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2926492 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |