Exosomal long non-coding RNA LIPCAR derived from oxLDL-treated THP-1 cells regulates the proliferation of human umbilical vein endothelial cells and human vascular smooth muscle cells

It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear. Reverse transcription-quantitative PCR was perform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biochemical and biophysical research communications Ročník 575; s. 65 - 72
Hlavní autoři: Hu, Nan, Zeng, Xixi, Tang, Feifei, Xiong, Sizheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 20.10.2021
Témata:
ISSN:0006-291X, 1090-2104, 1090-2104
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear. Reverse transcription-quantitative PCR was performed to detect the levels of LIPCAR in the plasma of patients with atherosclerosis and in THP-1 macrophages. THP-1 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. Furthermore, Transwell assay was carried out to evaluate the migration ability of vascular smooth muscle cells (VSMCs). The expression of LIPCAR in the plasma of patients with atherosclerosis was significantly higher compared with that in healthy subjects, while LIPCAR knockdown notably reversed ox-LDL-induced THP-1 cell apoptosis. In addition, LIPCAR was upregulated in exosomes derived from THP-1 cells treated with ox-LDL (THP-1/ox-LDL Exo). Furthermore, THP-1/ox-LDL Exo significantly increased the expression levels of CDK2 and proliferative cell nuclear antigen in human VSMCs, while these effects were reversed following LIPCAR silencing. The results of the present study suggested that exosomal lncRNA LIPCAR derived from ox-LDL modified THP-1 cells could promote the progression of atherosclerosis. Therefore, LIPCAR may be considered as a novel biomarker for the development of new strategies to treat atherosclerosis. •The level of Long non-coding RNAs (lncRNA) LIPCAR was upregulated in exosomes derived from THP-1 cells that were treated with oxidized low density lipoprotein (oxLDL).•THP-1/oxLDL Exo reduced the viability of human umbilical vein endothelial cells by inducing apoptosis; however, these phenomena were reversed by LIPCAR knockdown.•THP-1/oxLDL Exo obviously upregulated the levels of CDK2 and PCNA in human vascular smooth muscle cells (VSMCs).
AbstractList It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear. Reverse transcription-quantitative PCR was performed to detect the levels of LIPCAR in the plasma of patients with atherosclerosis and in THP-1 macrophages. THP-1 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. Furthermore, Transwell assay was carried out to evaluate the migration ability of vascular smooth muscle cells (VSMCs). The expression of LIPCAR in the plasma of patients with atherosclerosis was significantly higher compared with that in healthy subjects, while LIPCAR knockdown notably reversed ox-LDL-induced THP-1 cell apoptosis. In addition, LIPCAR was upregulated in exosomes derived from THP-1 cells treated with ox-LDL (THP-1/ox-LDL Exo). Furthermore, THP-1/ox-LDL Exo significantly increased the expression levels of CDK2 and proliferative cell nuclear antigen in human VSMCs, while these effects were reversed following LIPCAR silencing. The results of the present study suggested that exosomal lncRNA LIPCAR derived from ox-LDL modified THP-1 cells could promote the progression of atherosclerosis. Therefore, LIPCAR may be considered as a novel biomarker for the development of new strategies to treat atherosclerosis.
It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear.Reverse transcription-quantitative PCR was performed to detect the levels of LIPCAR in the plasma of patients with atherosclerosis and in THP-1 macrophages. THP-1 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. Furthermore, Transwell assay was carried out to evaluate the migration ability of vascular smooth muscle cells (VSMCs).The expression of LIPCAR in the plasma of patients with atherosclerosis was significantly higher compared with that in healthy subjects, while LIPCAR knockdown notably reversed ox-LDL-induced THP-1 cell apoptosis. In addition, LIPCAR was upregulated in exosomes derived from THP-1 cells treated with ox-LDL (THP-1/ox-LDL Exo). Furthermore, THP-1/ox-LDL Exo significantly increased the expression levels of CDK2 and proliferative cell nuclear antigen in human VSMCs, while these effects were reversed following LIPCAR silencing.The results of the present study suggested that exosomal lncRNA LIPCAR derived from ox-LDL modified THP-1 cells could promote the progression of atherosclerosis. Therefore, LIPCAR may be considered as a novel biomarker for the development of new strategies to treat atherosclerosis.
It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear. Reverse transcription-quantitative PCR was performed to detect the levels of LIPCAR in the plasma of patients with atherosclerosis and in THP-1 macrophages. THP-1 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. Furthermore, Transwell assay was carried out to evaluate the migration ability of vascular smooth muscle cells (VSMCs). The expression of LIPCAR in the plasma of patients with atherosclerosis was significantly higher compared with that in healthy subjects, while LIPCAR knockdown notably reversed ox-LDL-induced THP-1 cell apoptosis. In addition, LIPCAR was upregulated in exosomes derived from THP-1 cells treated with ox-LDL (THP-1/ox-LDL Exo). Furthermore, THP-1/ox-LDL Exo significantly increased the expression levels of CDK2 and proliferative cell nuclear antigen in human VSMCs, while these effects were reversed following LIPCAR silencing. The results of the present study suggested that exosomal lncRNA LIPCAR derived from ox-LDL modified THP-1 cells could promote the progression of atherosclerosis. Therefore, LIPCAR may be considered as a novel biomarker for the development of new strategies to treat atherosclerosis. •The level of Long non-coding RNAs (lncRNA) LIPCAR was upregulated in exosomes derived from THP-1 cells that were treated with oxidized low density lipoprotein (oxLDL).•THP-1/oxLDL Exo reduced the viability of human umbilical vein endothelial cells by inducing apoptosis; however, these phenomena were reversed by LIPCAR knockdown.•THP-1/oxLDL Exo obviously upregulated the levels of CDK2 and PCNA in human vascular smooth muscle cells (VSMCs).
It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear.BACKGROUNDIt has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects of LIPCAR on regulating the occurrence and development of atherosclerosis remains unclear.Reverse transcription-quantitative PCR was performed to detect the levels of LIPCAR in the plasma of patients with atherosclerosis and in THP-1 macrophages. THP-1 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. Furthermore, Transwell assay was carried out to evaluate the migration ability of vascular smooth muscle cells (VSMCs).METHODSReverse transcription-quantitative PCR was performed to detect the levels of LIPCAR in the plasma of patients with atherosclerosis and in THP-1 macrophages. THP-1 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. Furthermore, Transwell assay was carried out to evaluate the migration ability of vascular smooth muscle cells (VSMCs).The expression of LIPCAR in the plasma of patients with atherosclerosis was significantly higher compared with that in healthy subjects, while LIPCAR knockdown notably reversed ox-LDL-induced THP-1 cell apoptosis. In addition, LIPCAR was upregulated in exosomes derived from THP-1 cells treated with ox-LDL (THP-1/ox-LDL Exo). Furthermore, THP-1/ox-LDL Exo significantly increased the expression levels of CDK2 and proliferative cell nuclear antigen in human VSMCs, while these effects were reversed following LIPCAR silencing.RESULTSThe expression of LIPCAR in the plasma of patients with atherosclerosis was significantly higher compared with that in healthy subjects, while LIPCAR knockdown notably reversed ox-LDL-induced THP-1 cell apoptosis. In addition, LIPCAR was upregulated in exosomes derived from THP-1 cells treated with ox-LDL (THP-1/ox-LDL Exo). Furthermore, THP-1/ox-LDL Exo significantly increased the expression levels of CDK2 and proliferative cell nuclear antigen in human VSMCs, while these effects were reversed following LIPCAR silencing.The results of the present study suggested that exosomal lncRNA LIPCAR derived from ox-LDL modified THP-1 cells could promote the progression of atherosclerosis. Therefore, LIPCAR may be considered as a novel biomarker for the development of new strategies to treat atherosclerosis.CONCLUSIONThe results of the present study suggested that exosomal lncRNA LIPCAR derived from ox-LDL modified THP-1 cells could promote the progression of atherosclerosis. Therefore, LIPCAR may be considered as a novel biomarker for the development of new strategies to treat atherosclerosis.
Author Hu, Nan
Tang, Feifei
Xiong, Sizheng
Zeng, Xixi
Author_xml – sequence: 1
  givenname: Nan
  surname: Hu
  fullname: Hu, Nan
  organization: Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
– sequence: 2
  givenname: Xixi
  surname: Zeng
  fullname: Zeng, Xixi
  organization: Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
– sequence: 3
  givenname: Feifei
  surname: Tang
  fullname: Tang, Feifei
  organization: Department of Cardiothoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
– sequence: 4
  givenname: Sizheng
  surname: Xiong
  fullname: Xiong, Sizheng
  email: D201981805@hust.edu.cn
  organization: Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34455222$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxi1URP_AC3BAPnLJMnZiJ5G4rJZCK62gqorEzXLsSeuVExc7WZW34TE482R42e2FQznZGv2-bzzj75QcjWFEQl4zWDBg8t1m0XXRLDhwtoBmAaJ8Rk4YtFBwBtUROQEAWfCWfTsmpyltABirZPuCHJdVJQTn_IT8On8IKQzaUx_GW5o7FCZYl6_Xn5d0fXm1Wl5Ti9Ft0dI-hoGGh_WHdTFF1FMu3VxcFez3T4PeJxrxdva5nOh0h_Q-Bu96jHpyYaShp3fzoEc6D53zzuSOW3QjxdGGTHuXC3sXPdoDutXJZMNI0xAyRIc5GY977CV53muf8NXhPCNfP57frC6K9ZdPl6vlujBl005FncdEsKIs8y46UfcVSmFYB1XXlcxCxbVoWw6iRobcgBTMil4zLVhdg7HlGXm7983jfJ8xTWpwafcCPWKYk-KylHUredv8HxVSclE2jczomwM6dwNadR_doOMP9fgxGWj2gIkhpYi9Mm76u8kpaucVA7XLgNqoXQbULgMKGpUzkKX8H-mj-5Oi93sR5l1uHUaVjMPRoHURzaRscE_J_wDLV8xf
CitedBy_id crossref_primary_10_1155_sci_9986368
crossref_primary_10_3389_fcvm_2023_1235953
crossref_primary_10_3389_fmed_2023_1193660
crossref_primary_10_3389_fphar_2022_857331
crossref_primary_10_1113_JP288459
crossref_primary_10_1007_s40120_023_00482_9
crossref_primary_10_1016_j_jad_2025_119653
crossref_primary_10_3389_fbioe_2022_913791
crossref_primary_10_3390_ijms23021002
crossref_primary_10_1016_j_bcp_2023_115572
crossref_primary_10_3389_fcvm_2023_1090909
crossref_primary_10_3390_ijms26031008
crossref_primary_10_3389_fphar_2025_1563800
crossref_primary_10_1016_j_molimm_2022_02_018
crossref_primary_10_3390_ijms23073534
crossref_primary_10_3390_ijms241512076
crossref_primary_10_3390_molecules27207025
crossref_primary_10_3390_cells12141832
crossref_primary_10_1038_s41598_022_11260_2
crossref_primary_10_1186_s12964_022_00949_6
crossref_primary_10_2174_0109298673302220240430173404
Cites_doi 10.1161/ATVBAHA.119.313749
10.1007/s00109-017-1575-8
10.1016/j.cub.2018.01.059
10.1038/s41418-018-0235-z
10.2147/DDDT.S194787
10.1002/stem.3061
10.1016/j.bbrc.2019.01.094
10.1159/000478872
10.1016/j.vph.2018.08.002
10.1038/s41419-019-1667-1
10.1016/j.pharmthera.2017.02.020
10.1016/j.lfs.2019.116733
10.3390/ijms21082992
10.1097/MD.0000000000010473
10.3389/fphar.2018.01105
10.2174/1574888X13666180403163456
10.1038/aps.2017.12
10.1093/cvr/cvz203
10.1016/j.apsb.2016.02.001
10.1161/CIRCRESAHA.115.307611
10.18632/aging.103034
10.1124/pr.118.017178
10.1039/C9FO02934F
10.1161/CIRCRESAHA.114.303915
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbrc.2021.08.053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 72
ExternalDocumentID 34455222
10_1016_j_bbrc_2021_08_053
S0006291X21012304
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9DU
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~HD
~KM
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-7522e0d533006b57f4e65c1b04bb31d042a5992057e1e2c0651d5fa1a51770cd3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690878800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-291X
1090-2104
IngestDate Wed Oct 01 14:36:21 EDT 2025
Sat Sep 27 20:16:46 EDT 2025
Mon Jul 21 05:58:10 EDT 2025
Tue Nov 18 20:51:52 EST 2025
Sat Nov 29 07:31:33 EST 2025
Fri Feb 23 02:43:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Knockdown
Foam cell
Exosome
lncRNA LIPCAR
Atherosclerosis
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-7522e0d533006b57f4e65c1b04bb31d042a5992057e1e2c0651d5fa1a51770cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34455222
PQID 2566253886
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2636796298
proquest_miscellaneous_2566253886
pubmed_primary_34455222
crossref_citationtrail_10_1016_j_bbrc_2021_08_053
crossref_primary_10_1016_j_bbrc_2021_08_053
elsevier_sciencedirect_doi_10_1016_j_bbrc_2021_08_053
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Elahi, Farwell, Nolta, Anderson (bib13) 2020; 38
Wang, Song, Li, Wu, Gu, Yuan (bib19) 2019; 13
Zárate, Manuel-Apolinar, Basurto, De la Chesnaye, Saldívar (bib1) 2016; 86
Kumarswamy, Bauters, Volkmann, Maury, Fetisch, Holzmann, Lemesle, de Groote, Pinet, Thum (bib16) 2014; 114
Yaghoubi, Movassaghpour, Zamani, Talebi, Mehdizadeh, Yousefi (bib12) 2019; 233
Wang, Yang, Lei, Tzvetkov, Liu, Yeung, Xu, Atanasov (bib5) 2019; 71
Herrington, Lacey, Sherliker, Armitage, Lewington (bib7) 2016; 118
Mushenkova, Summerhill, Zhang, Romanenko, Grechko, Orekhov (bib2) 2020; 21
Luan, Sansanaphongpricha, Myers, Chen, Yuan, Sun (bib28) 2017; 38
Meldolesi (bib22) 2018; 28
Guo, Wu, Li, Zheng, Ye, Dai, Kang, Lu, Xu, Xu, Xiao, Lu, Bai, Hu, Wang (bib8) 2019; 26
Chistiakov, Melnichenko, Myasoedova, Grechko, Orekhov (bib4) 2017; 95
Li, Jin, Xie, Wen, Chen, Xu, Ding, Ren, Xiao (bib14) 2018; 13
Chen, Yang, Guo, Chen, Zheng, Zeng, Tong (bib15) 2017; 12
Bian, Jing, Yang, Shi, Chen, Xu, Wang, Jiang, Yang, Zhang, Li, Wang, Wang, Sun, Zhang (bib9) 2020; 12
Wang, Li, Chen, Wei, Xu (bib17) 2019; 25
Fasolo, Di Gregoli, Maegdefessel, Johnson (bib6) 2019; 115
Barile, Vassalli (bib27) 2017; 174
Kalluri, LeBleu (bib23) 2020
Chen, Zhao, Ma, Zhang, Lu, Wang, Zong, Qin, Wang, Yingfeng Yang, Wang, Liu (bib18) 2017; 42
Baek, Kwak, Yoon, Kim, Lee (bib21) 2019; 510
Wang, Zhu, Shi, Zhao, Gao, Weng, Liu, Li, Zou, Hu, Sun, Ge (bib25) 2019; 10
Yao, Yan, Zhang, Li, Wan (bib10) 2018; 97
Liu, Li, Wu, Xie, Sun, Dai (bib24) 2018; 9
Ha, Yang, Nadithe (bib26) 2016; 6
Li, Li, Zhang, Shi, Yang, Zheng, Cao, Yue, Ma (bib20) 2020; 11
Maguire, Pearce, Xiao (bib3) 2019; 112
Sun, Fu, Gu, Xi, Peng, Wang, Sun, Wang, Qian, Qin, Qu, Piao, Zhong, Liu, Zhang, Fang, Tian, Li, Maegdefessel, Tian, Yu (bib11) 2020; 40
Ha (10.1016/j.bbrc.2021.08.053_bib26) 2016; 6
Wang (10.1016/j.bbrc.2021.08.053_bib5) 2019; 71
Li (10.1016/j.bbrc.2021.08.053_bib20) 2020; 11
Bian (10.1016/j.bbrc.2021.08.053_bib9) 2020; 12
Sun (10.1016/j.bbrc.2021.08.053_bib11) 2020; 40
Baek (10.1016/j.bbrc.2021.08.053_bib21) 2019; 510
Li (10.1016/j.bbrc.2021.08.053_bib14) 2018; 13
Wang (10.1016/j.bbrc.2021.08.053_bib19) 2019; 13
Luan (10.1016/j.bbrc.2021.08.053_bib28) 2017; 38
Kalluri (10.1016/j.bbrc.2021.08.053_bib23) 2020
Mushenkova (10.1016/j.bbrc.2021.08.053_bib2) 2020; 21
Herrington (10.1016/j.bbrc.2021.08.053_bib7) 2016; 118
Wang (10.1016/j.bbrc.2021.08.053_bib25) 2019; 10
Fasolo (10.1016/j.bbrc.2021.08.053_bib6) 2019; 115
Maguire (10.1016/j.bbrc.2021.08.053_bib3) 2019; 112
Elahi (10.1016/j.bbrc.2021.08.053_bib13) 2020; 38
Guo (10.1016/j.bbrc.2021.08.053_bib8) 2019; 26
Liu (10.1016/j.bbrc.2021.08.053_bib24) 2018; 9
Yao (10.1016/j.bbrc.2021.08.053_bib10) 2018; 97
Meldolesi (10.1016/j.bbrc.2021.08.053_bib22) 2018; 28
Yaghoubi (10.1016/j.bbrc.2021.08.053_bib12) 2019; 233
Barile (10.1016/j.bbrc.2021.08.053_bib27) 2017; 174
Chistiakov (10.1016/j.bbrc.2021.08.053_bib4) 2017; 95
Chen (10.1016/j.bbrc.2021.08.053_bib15) 2017; 12
Zárate (10.1016/j.bbrc.2021.08.053_bib1) 2016; 86
Kumarswamy (10.1016/j.bbrc.2021.08.053_bib16) 2014; 114
Wang (10.1016/j.bbrc.2021.08.053_bib17) 2019; 25
Chen (10.1016/j.bbrc.2021.08.053_bib18) 2017; 42
References_xml – volume: 11
  start-page: 3053
  year: 2020
  end-page: 3065
  ident: bib20
  article-title: Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression
  publication-title: Food & function
– volume: 12
  start-page: 6385
  year: 2020
  end-page: 6400
  ident: bib9
  article-title: Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis
  publication-title: Aging
– start-page: 367
  year: 2020
  ident: bib23
  article-title: The Biology, Function, and Biomedical Applications of Exosomes
– volume: 42
  start-page: 1165
  year: 2017
  end-page: 1176
  ident: bib18
  article-title: GLP-1/GLP-1R signaling in regulation of adipocyte differentiation and lipogenesis, cellular physiology and biochemistry
  publication-title: Inter. J. Exp. Cellular Physiol. Biochemist. Pharmacol.
– volume: 510
  start-page: 296
  year: 2019
  end-page: 302
  ident: bib21
  article-title: Role of ANTXR1 in the regulation of RANKL-induced osteoclast differentiation and function
  publication-title: BBRC (Biochem. Biophys. Res. Commun.)
– volume: 12
  year: 2017
  ident: bib15
  article-title: Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis
  publication-title: PloS One
– volume: 233
  start-page: 116733
  year: 2019
  ident: bib12
  article-title: Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment
  publication-title: Life Sci.
– volume: 9
  start-page: 1105
  year: 2018
  ident: bib24
  article-title: Paeonol attenuated inflammatory response of endothelial cells via stimulating monocytes-derived exosomal MicroRNA-223
  publication-title: Front. Pharmacol.
– volume: 40
  start-page: 1464
  year: 2020
  end-page: 1478
  ident: bib11
  article-title: Macrophage-enriched lncRNA RAPIA: a novel therapeutic target for atherosclerosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 71
  start-page: 596
  year: 2019
  end-page: 670
  ident: bib5
  article-title: Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products
  publication-title: Pharmacol. Rev.
– volume: 174
  start-page: 63
  year: 2017
  end-page: 78
  ident: bib27
  article-title: Exosomes: therapy delivery tools and biomarkers of diseases
  publication-title: Pharmacol. Therapeut.
– volume: 118
  start-page: 535
  year: 2016
  end-page: 546
  ident: bib7
  article-title: Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease
  publication-title: Circ. Res.
– volume: 13
  start-page: 362
  year: 2018
  end-page: 368
  ident: bib14
  article-title: Mesenchymal stem cells-derived exosomes: a possible therapeutic strategy for osteoporosis
  publication-title: Curr. Stem Cell Res. Ther.
– volume: 13
  start-page: 1889
  year: 2019
  end-page: 1900
  ident: bib19
  article-title: Salvianolic acid A attenuates CCl(4)-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways
  publication-title: Drug Des. Dev. Ther.
– volume: 115
  start-page: 1732
  year: 2019
  end-page: 1756
  ident: bib6
  article-title: Non-coding RNAs in cardiovascular cell biology and atherosclerosis
  publication-title: Cardiovasc. Res.
– volume: 38
  start-page: 754
  year: 2017
  end-page: 763
  ident: bib28
  article-title: Engineering exosomes as refined biological nanoplatforms for drug delivery
  publication-title: Acta Pharmacol. Sin.
– volume: 26
  start-page: 1670
  year: 2019
  end-page: 1687
  ident: bib8
  article-title: The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling
  publication-title: Cell Death Differ.
– volume: 21
  year: 2020
  ident: bib2
  article-title: Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque
  publication-title: Int. J. Mol. Sci.
– volume: 38
  start-page: 15
  year: 2020
  end-page: 21
  ident: bib13
  article-title: Preclinical translation of exosomes derived from mesenchymal stem/stromal cells
  publication-title: Stem Cells (Dayton)
– volume: 114
  start-page: 1569
  year: 2014
  end-page: 1575
  ident: bib16
  article-title: Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure
  publication-title: Circ. Res.
– volume: 6
  start-page: 287
  year: 2016
  end-page: 296
  ident: bib26
  article-title: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges
  publication-title: Acta Pharm. Sin. B
– volume: 25
  start-page: 7645
  year: 2019
  end-page: 7651
  ident: bib17
  article-title: Expression of long noncoding RNA LIPCAR promotes cell proliferation, cell migration, and change in phenotype of vascular smooth muscle cells
  publication-title: Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. : international medical journal of experimental and clinical research
– volume: 28
  start-page: R435
  year: 2018
  end-page: r444
  ident: bib22
  article-title: Exosomes and ectosomes in intercellular communication
  publication-title: Curr. Biol. : CB
– volume: 97
  year: 2018
  ident: bib10
  article-title: LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis
  publication-title: Medicine
– volume: 95
  start-page: 1153
  year: 2017
  end-page: 1165
  ident: bib4
  article-title: Mechanisms of foam cell formation in atherosclerosis
  publication-title: J. Mol. Med. (Berl.)
– volume: 112
  start-page: 54
  year: 2019
  end-page: 71
  ident: bib3
  article-title: Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease
  publication-title: Vasc. Pharmacol.
– volume: 10
  start-page: 422
  year: 2019
  ident: bib25
  article-title: Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway
  publication-title: Cell Death Dis.
– volume: 86
  start-page: 163
  year: 2016
  end-page: 169
  ident: bib1
  article-title: [Cholesterol and atherosclerosis. Historical considerations and treatment]
  publication-title: Arch. Cardiol. Mex.
– volume: 40
  start-page: 1464
  year: 2020
  ident: 10.1016/j.bbrc.2021.08.053_bib11
  article-title: Macrophage-enriched lncRNA RAPIA: a novel therapeutic target for atherosclerosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.119.313749
– start-page: 367
  year: 2020
  ident: 10.1016/j.bbrc.2021.08.053_bib23
– volume: 95
  start-page: 1153
  year: 2017
  ident: 10.1016/j.bbrc.2021.08.053_bib4
  article-title: Mechanisms of foam cell formation in atherosclerosis
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-017-1575-8
– volume: 28
  start-page: R435
  year: 2018
  ident: 10.1016/j.bbrc.2021.08.053_bib22
  article-title: Exosomes and ectosomes in intercellular communication
  publication-title: Curr. Biol. : CB
  doi: 10.1016/j.cub.2018.01.059
– volume: 26
  start-page: 1670
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib8
  article-title: The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0235-z
– volume: 13
  start-page: 1889
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib19
  article-title: Salvianolic acid A attenuates CCl(4)-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways
  publication-title: Drug Des. Dev. Ther.
  doi: 10.2147/DDDT.S194787
– volume: 38
  start-page: 15
  year: 2020
  ident: 10.1016/j.bbrc.2021.08.053_bib13
  article-title: Preclinical translation of exosomes derived from mesenchymal stem/stromal cells
  publication-title: Stem Cells (Dayton)
  doi: 10.1002/stem.3061
– volume: 510
  start-page: 296
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib21
  article-title: Role of ANTXR1 in the regulation of RANKL-induced osteoclast differentiation and function
  publication-title: BBRC (Biochem. Biophys. Res. Commun.)
  doi: 10.1016/j.bbrc.2019.01.094
– volume: 42
  start-page: 1165
  year: 2017
  ident: 10.1016/j.bbrc.2021.08.053_bib18
  article-title: GLP-1/GLP-1R signaling in regulation of adipocyte differentiation and lipogenesis, cellular physiology and biochemistry
  publication-title: Inter. J. Exp. Cellular Physiol. Biochemist. Pharmacol.
  doi: 10.1159/000478872
– volume: 112
  start-page: 54
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib3
  article-title: Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2018.08.002
– volume: 10
  start-page: 422
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib25
  article-title: Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1667-1
– volume: 174
  start-page: 63
  year: 2017
  ident: 10.1016/j.bbrc.2021.08.053_bib27
  article-title: Exosomes: therapy delivery tools and biomarkers of diseases
  publication-title: Pharmacol. Therapeut.
  doi: 10.1016/j.pharmthera.2017.02.020
– volume: 233
  start-page: 116733
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib12
  article-title: Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.116733
– volume: 21
  year: 2020
  ident: 10.1016/j.bbrc.2021.08.053_bib2
  article-title: Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082992
– volume: 12
  year: 2017
  ident: 10.1016/j.bbrc.2021.08.053_bib15
  article-title: Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis
  publication-title: PloS One
– volume: 97
  year: 2018
  ident: 10.1016/j.bbrc.2021.08.053_bib10
  article-title: LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis
  publication-title: Medicine
  doi: 10.1097/MD.0000000000010473
– volume: 9
  start-page: 1105
  year: 2018
  ident: 10.1016/j.bbrc.2021.08.053_bib24
  article-title: Paeonol attenuated inflammatory response of endothelial cells via stimulating monocytes-derived exosomal MicroRNA-223
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01105
– volume: 13
  start-page: 362
  year: 2018
  ident: 10.1016/j.bbrc.2021.08.053_bib14
  article-title: Mesenchymal stem cells-derived exosomes: a possible therapeutic strategy for osteoporosis
  publication-title: Curr. Stem Cell Res. Ther.
  doi: 10.2174/1574888X13666180403163456
– volume: 38
  start-page: 754
  year: 2017
  ident: 10.1016/j.bbrc.2021.08.053_bib28
  article-title: Engineering exosomes as refined biological nanoplatforms for drug delivery
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2017.12
– volume: 115
  start-page: 1732
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib6
  article-title: Non-coding RNAs in cardiovascular cell biology and atherosclerosis
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvz203
– volume: 6
  start-page: 287
  year: 2016
  ident: 10.1016/j.bbrc.2021.08.053_bib26
  article-title: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2016.02.001
– volume: 118
  start-page: 535
  year: 2016
  ident: 10.1016/j.bbrc.2021.08.053_bib7
  article-title: Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.307611
– volume: 12
  start-page: 6385
  year: 2020
  ident: 10.1016/j.bbrc.2021.08.053_bib9
  article-title: Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis
  publication-title: Aging
  doi: 10.18632/aging.103034
– volume: 25
  start-page: 7645
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib17
  article-title: Expression of long noncoding RNA LIPCAR promotes cell proliferation, cell migration, and change in phenotype of vascular smooth muscle cells
  publication-title: Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. : international medical journal of experimental and clinical research
– volume: 86
  start-page: 163
  year: 2016
  ident: 10.1016/j.bbrc.2021.08.053_bib1
  article-title: [Cholesterol and atherosclerosis. Historical considerations and treatment]
  publication-title: Arch. Cardiol. Mex.
– volume: 71
  start-page: 596
  year: 2019
  ident: 10.1016/j.bbrc.2021.08.053_bib5
  article-title: Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.118.017178
– volume: 11
  start-page: 3053
  year: 2020
  ident: 10.1016/j.bbrc.2021.08.053_bib20
  article-title: Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression
  publication-title: Food & function
  doi: 10.1039/C9FO02934F
– volume: 114
  start-page: 1569
  year: 2014
  ident: 10.1016/j.bbrc.2021.08.053_bib16
  article-title: Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.303915
SSID ssj0011469
Score 2.4945412
Snippet It has been reported that long non-coding RNA (lncRNA) LIPCAR is involved in the progression of atherosclerosis. However, the mechanism underlying the effects...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms apoptosis
Apoptosis - physiology
Atherosclerosis
Atherosclerosis - blood
Atherosclerosis - genetics
Atherosclerosis - pathology
biomarkers
Cell Movement - physiology
Cell Proliferation - physiology
cyclin-dependent kinase
Exosome
Exosomes
Foam cell
foam cells
Human Umbilical Vein Endothelial Cells
Humans
Knockdown
Lipoproteins, LDL - pharmacology
lncRNA LIPCAR
low density lipoprotein
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
non-coding RNA
oxidation
proliferating cell nuclear antigen
RNA, Long Noncoding - blood
RNA, Long Noncoding - genetics
smooth muscle
THP-1 Cells
Title Exosomal long non-coding RNA LIPCAR derived from oxLDL-treated THP-1 cells regulates the proliferation of human umbilical vein endothelial cells and human vascular smooth muscle cells
URI https://dx.doi.org/10.1016/j.bbrc.2021.08.053
https://www.ncbi.nlm.nih.gov/pubmed/34455222
https://www.proquest.com/docview/2566253886
https://www.proquest.com/docview/2636796298
Volume 575
WOSCitedRecordID wos000690878800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011469
  issn: 0006-291X
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bb9MwFICtbgPBC4KNy7hMRkJ7qTIlTpykj6W0Gqgq1ehQ3qJcHJGpTUpvKvwx_g-_hHNsJ22BTeOBlyiynNT1-WIf2-dCyBvAxE1YHBlOlqaGI0xuRHA1Ep9FzI8zU0jj8c99bzDwg6A1bDR-Vr4wq7FXFP563Zr-V1FDGQgbXWf_Qdz1S6EA7kHocAWxw_VWgu-uy3k5gZ4fYxohWN0bSSk9Vy4GbRirhp32RTOFhqxA1ZTOJeW6_65vSItzKBqdDw2rifv5eKAgE9VjFAjpUFWO0RBmo2TKA4DlBO1rUdQrgfFHihSdusa4E6_eglvzqmpt9jqflFCpOVnOofGq2s7pco55vDaBDOK8nFY86ehEaC-_5doy3-Cp54x6R1yo0SzI1_lmm0KV9QT8n7o0yLV58qf8-xehZ3S9IcKkRR4zt8ZwswUFOqvxmfhLmR74uce3hm6VsuKPGUVtblydxfEMI14yFfFVBTjeDd89-Bj2Lvv9cNQNRqfTrwZmNkMLAJ3mZY8cMI-3YOQ9aL_vBh_qsy6Yq1ryTF43Ubt2KSvE33_2OvXpuuWRVJNGD8kDvb6hbcXlI9IQxSE5ahfRopx8o6dUWhzLo5xDcvdtdXevU-UdPCI_KoApAkw3AFMAmCqAqQaYIsB0B2AqAaaSKVoDTAFJugMwLTMqqaQ1wBQBplsA67cAgrpqBTBVAFMFsKr2mFz2uqPOuaHTixgJaOkLw4OlhzBTNK823Zh7mSNcnlix6cSxbaUwm0UgLgYLGmEJloCubqU8i6yIW55nJqn9hOxDH4hnhHIeZTaP3chPEicTbuRlXspSZtuC2Y5pHxOrklqY6Nj7mAJmHFZGllchSjpESYeYF5bDM836mamKPHNjbV7BEGrdWenEIYB843OvK3JCkDP2V1SIcjkPYS3kMlCHfPeGOq6N-9Cs5R-Tpwq7uq2243DoYfb8Fr_wgtzffMkvyf5ithSvyJ1ktcjnsxOy5wX-if5sfgGdPQuT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosomal+long+non-coding+RNA+LIPCAR+derived+from+oxLDL-treated+THP-1+cells+regulates+the+proliferation+of+human+umbilical+vein+endothelial+cells+and+human+vascular+smooth+muscle+cells&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Hu%2C+Nan&rft.au=Zeng%2C+Xixi&rft.au=Tang%2C+Feifei&rft.au=Xiong%2C+Sizheng&rft.date=2021-10-20&rft.issn=1090-2104&rft.eissn=1090-2104&rft.volume=575&rft.spage=65&rft_id=info:doi/10.1016%2Fj.bbrc.2021.08.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon