Semi-supervised medical image segmentation using adversarial consistency learning and dynamic convolution network

Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 42; H. 5; S. 1
Hauptverfasser: Lei, Tao, Zhang, Dong, Du, Xiaogang, Wang, Xuan, Wan, Yong, Nandi, Asoke K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data, and only compute single pixel-level consistency leading to uncertain prediction results. Besides, these networks often require a large number of parameters since their backbone networks are designed depending on supervised image segmentation tasks. Moreover, these networks often face a high over-fitting risk since a small number of training samples are popular for semi-supervised image segmentation. To address the above problems, in this paper, we propose a novel adversarial self-ensembling network using dynamic convolution (ASE-Net) for semi-supervised medical image segmentation. First, we use an adversarial consistency training strategy (ACTS) that employs two discriminators based on consistency learning to obtain prior relationships between labeled and unlabeled data. The ACTS can simultaneously compute pixel-level and image-level consistency of unlabeled data under different data perturbations to improve the prediction quality of labels. Second, we design a dynamic convolution-based bidirectional attention component (DyBAC) that can be embedded in any segmentation network, aiming at adaptively adjusting the weights of ASE-Net based on the structural information of input samples. This component effectively improves the feature representation ability of ASE-Net and reduces the overfitting risk of the network. The proposed ASE-Net has been extensively tested on three publicly available datasets, and experiments indicate that ASE-Net is superior to state-of-the-art networks, and reduces computational costs and memory overhead. The code is available at: https://github.com/SUST-reynole/ASE-Net.
AbstractList Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data, and only compute single pixel-level consistency leading to uncertain prediction results. Besides, these networks often require a large number of parameters since their backbone networks are designed depending on supervised image segmentation tasks. Moreover, these networks often face a high over-fitting risk since a small number of training samples are popular for semi-supervised image segmentation. To address the above problems, in this paper, we propose a novel adversarial self-ensembling network using dynamic convolution (ASE-Net) for semi-supervised medical image segmentation. First, we use an adversarial consistency training strategy (ACTS) that employs two discriminators based on consistency learning to obtain prior relationships between labeled and unlabeled data. The ACTS can simultaneously compute pixel-level and image-level consistency of unlabeled data under different data perturbations to improve the prediction quality of labels. Second, we design a dynamic convolution-based bidirectional attention component (DyBAC) that can be embedded in any segmentation network, aiming at adaptively adjusting the weights of ASE-Net based on the structural information of input samples. This component effectively improves the feature representation ability of ASE-Net and reduces the overfitting risk of the network. The proposed ASE-Net has been extensively tested on three publicly available datasets, and experiments indicate that ASE-Net is superior to state-of-the-art networks, and reduces computational costs and memory overhead. The code is available at: https://github.com/SUST-reynole/ASE-Net.
Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data, and only compute single pixel-level consistency leading to uncertain prediction results. Besides, these networks often require a large number of parameters since their backbone networks are designed depending on supervised image segmentation tasks. Moreover, these networks often face a high over-fitting risk since a small number of training samples are popular for semi-supervised image segmentation. To address the above problems, in this paper, we propose a novel adversarial self-ensembling network using dynamic convolution (ASE-Net) for semi-supervised medical image segmentation. First, we use an adversarial consistency training strategy (ACTS) that employs two discriminators based on consistency learning to obtain prior relationships between labeled and unlabeled data. The ACTS can simultaneously compute pixel-level and image-level consistency of unlabeled data under different data perturbations to improve the prediction quality of labels. Second, we design a dynamic convolution-based bidirectional attention component (DyBAC) that can be embedded in any segmentation network, aiming at adaptively adjusting the weights of ASE-Net based on the structural information of input samples. This component effectively improves the feature representation ability of ASE-Net and reduces the overfitting risk of the network. The proposed ASE-Net has been extensively tested on three publicly available datasets, and experiments indicate that ASE-Net is superior to state-of-the-art networks, and reduces computational costs and memory overhead. The code is available at: https://github.com/SUST-reynole/ASE-Nethttps://github.com/SUST-reynole/ASE-Net .
Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data, and only compute single pixel-level consistency leading to uncertain prediction results. Besides, these networks often require a large number of parameters since their backbone networks are designed depending on supervised image segmentation tasks. Moreover, these networks often face a high over-fitting risk since a small number of training samples are popular for semi-supervised image segmentation. To address the above problems, in this paper, we propose a novel adversarial self-ensembling network using dynamic convolution (ASE-Net) for semi-supervised medical image segmentation. First, we use an adversarial consistency training strategy (ACTS) that employs two discriminators based on consistency learning to obtain prior relationships between labeled and unlabeled data. The ACTS can simultaneously compute pixel-level and image-level consistency of unlabeled data under different data perturbations to improve the prediction quality of labels. Second, we design a dynamic convolution-based bidirectional attention component (DyBAC) that can be embedded in any segmentation network, aiming at adaptively adjusting the weights of ASE-Net based on the structural information of input samples. This component effectively improves the feature representation ability of ASE-Net and reduces the overfitting risk of the network. The proposed ASE-Net has been extensively tested on three publicly available datasets, and experiments indicate that ASE-Net is superior to state-of-the-art networks, and reduces computational costs and memory overhead. The code is available at: https://github.com/SUST-reynole/ASE-Nethttps://github.com/SUST-reynole/ASE-Net.Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data, and only compute single pixel-level consistency leading to uncertain prediction results. Besides, these networks often require a large number of parameters since their backbone networks are designed depending on supervised image segmentation tasks. Moreover, these networks often face a high over-fitting risk since a small number of training samples are popular for semi-supervised image segmentation. To address the above problems, in this paper, we propose a novel adversarial self-ensembling network using dynamic convolution (ASE-Net) for semi-supervised medical image segmentation. First, we use an adversarial consistency training strategy (ACTS) that employs two discriminators based on consistency learning to obtain prior relationships between labeled and unlabeled data. The ACTS can simultaneously compute pixel-level and image-level consistency of unlabeled data under different data perturbations to improve the prediction quality of labels. Second, we design a dynamic convolution-based bidirectional attention component (DyBAC) that can be embedded in any segmentation network, aiming at adaptively adjusting the weights of ASE-Net based on the structural information of input samples. This component effectively improves the feature representation ability of ASE-Net and reduces the overfitting risk of the network. The proposed ASE-Net has been extensively tested on three publicly available datasets, and experiments indicate that ASE-Net is superior to state-of-the-art networks, and reduces computational costs and memory overhead. The code is available at: https://github.com/SUST-reynole/ASE-Nethttps://github.com/SUST-reynole/ASE-Net.
Author Lei, Tao
Wang, Xuan
Zhang, Dong
Wan, Yong
Nandi, Asoke K.
Du, Xiaogang
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  organization: Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 2
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 3
  givenname: Xiaogang
  surname: Du
  fullname: Du, Xiaogang
  organization: Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 4
  givenname: Xuan
  orcidid: 0000-0002-0842-6511
  surname: Wang
  fullname: Wang, Xuan
  organization: Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, US
– sequence: 5
  givenname: Yong
  surname: Wan
  fullname: Wan, Yong
  organization: Department of Geriatric Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Asoke K.
  orcidid: 0000-0001-6248-2875
  surname: Nandi
  fullname: Nandi, Asoke K.
  organization: Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36449588$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9LHDEYhoModbW9C4IM9NLLrEkmySRHkf4QFA8q9BayyTdLdCZZk5kt-9836649eOjpuzzPy8f7nqDDEAMgdEbwnBCsLh_vbuYUUzpvKOVCtgdoRjiXNeXs9yGaYdrKGmNBj9FJzs8YE8ax-oSOG8GY4lLO0OsDDL7O0wrS2mdw1QDOW9NXfjBLqDIsBwijGX0M1ZR9WFbGrSFlk3yBbAzZ5xGC3VQ9mBTegOAqtwlm8HYLrGM_vekBxj8xvXxGR53pM3zZ31P09OP74_Wv-vb-58311W1tG6nGumUdXXScgaOsIZR00joJxIGknQCGCcfcWQYLoSwWHBYdEQKIlY60TpKuOUXfdrmrFF8nyKMefLbQ9yZAnLKmLWtKBhe8oF8_oM9xSqF8p6nEUjZcKVyoiz01LUpLepVKR2mj38ssgNgBNsWcE3Ta-l11YzK-1wTr7Wq6rKa3q-n9akXEH8T37P8o5zvFA8A_XCkhJCPNX_drpCg
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_ima_70091
crossref_primary_10_1109_TIP_2024_3463412
crossref_primary_10_1016_j_compmedimag_2024_102474
crossref_primary_10_1016_j_neunet_2025_107142
crossref_primary_10_1002_mp_17323
crossref_primary_10_1016_j_medengphy_2025_104337
crossref_primary_10_1016_j_patcog_2024_110856
crossref_primary_10_1007_s11227_025_07824_4
crossref_primary_10_1007_s11760_024_03536_z
crossref_primary_10_1016_j_ijtst_2025_07_002
crossref_primary_10_1109_TIM_2024_3400343
crossref_primary_10_1109_TIM_2024_3488143
crossref_primary_10_3390_bioengineering11121229
crossref_primary_10_1109_TRPMS_2023_3286866
crossref_primary_10_1016_j_compmedimag_2025_102517
crossref_primary_10_1016_j_knosys_2025_113451
crossref_primary_10_1016_j_neunet_2023_11_055
crossref_primary_10_1016_j_engappai_2025_110082
crossref_primary_10_1002_ima_70163
crossref_primary_10_1016_j_eswa_2024_124816
crossref_primary_10_1109_TBME_2025_3541992
crossref_primary_10_1016_j_neucom_2025_131060
crossref_primary_10_1002_acm2_14483
crossref_primary_10_1016_j_neunet_2025_107813
crossref_primary_10_3390_info16060433
crossref_primary_10_1007_s11517_023_02946_4
crossref_primary_10_1109_TMI_2025_3563500
crossref_primary_10_1109_TMI_2025_3570310
crossref_primary_10_1016_j_asoc_2025_112904
crossref_primary_10_1016_j_neucom_2025_129782
crossref_primary_10_1007_s40747_025_01964_z
crossref_primary_10_1016_j_eswa_2025_127467
crossref_primary_10_1016_j_media_2024_103450
crossref_primary_10_1016_j_bspc_2025_107561
crossref_primary_10_1016_j_compbiomed_2024_109572
crossref_primary_10_1016_j_eswa_2024_125456
crossref_primary_10_1016_j_artmed_2025_103229
crossref_primary_10_1177_08953996251367210
crossref_primary_10_1016_j_asoc_2025_113894
crossref_primary_10_1016_j_cmpb_2024_108141
crossref_primary_10_3390_bioengineering12080872
crossref_primary_10_1016_j_bspc_2025_108137
crossref_primary_10_1007_s10278_024_01122_w
crossref_primary_10_1002_ima_70114
crossref_primary_10_1109_TMI_2024_3429340
crossref_primary_10_1109_TIP_2025_3536208
crossref_primary_10_3390_s25154535
crossref_primary_10_1109_TMI_2024_3468896
crossref_primary_10_1109_TMI_2025_3556310
crossref_primary_10_1016_j_engappai_2025_110528
crossref_primary_10_1109_TRPMS_2024_3473929
crossref_primary_10_1109_TMI_2024_3400840
crossref_primary_10_1016_j_bspc_2024_107450
crossref_primary_10_1016_j_compbiomed_2024_108176
crossref_primary_10_1016_j_patcog_2024_110962
crossref_primary_10_1007_s11760_024_03091_7
crossref_primary_10_1016_j_bspc_2025_107956
crossref_primary_10_1016_j_bspc_2024_107412
crossref_primary_10_1016_j_compbiomed_2024_109627
crossref_primary_10_1007_s10489_023_05158_3
crossref_primary_10_1109_TCSVT_2024_3508768
crossref_primary_10_1109_THMS_2024_3390415
crossref_primary_10_1016_j_bbe_2025_07_006
crossref_primary_10_1016_j_compbiomed_2023_107879
crossref_primary_10_1016_j_media_2025_103773
crossref_primary_10_1016_j_knosys_2025_113785
crossref_primary_10_1109_TIM_2025_3547131
crossref_primary_10_1109_TRPMS_2024_3465561
crossref_primary_10_1007_s00500_025_10572_5
crossref_primary_10_1109_TMI_2025_3556482
crossref_primary_10_3390_app13137921
Cites_doi 10.1109/CVPR42600.2020.01269
10.1109/TNNLS.2020.2995319
10.1109/TMI.2018.2845918
10.1109/TMI.2021.3117888
10.1109/CVPR46437.2021.01214
10.1016/j.media.2021.102146
10.1109/TMI.2020.3035253
10.1109/TPAMI.2021.3117837
10.1007/978-3-030-32245-8_67
10.1109/CVPR46437.2021.00264
10.1109/TMI.2019.2959609
10.1016/j.media.2020.101832
10.1109/CVPR42600.2020.00858
10.1049/ipr2.12419
10.1109/WACV51458.2022.00183
10.1007/978-3-030-78191-0_40
10.1016/j.neuroimage.2021.118568
10.1093/nsr/nwx106
10.1609/aaai.v35i10.17066
10.1007/978-3-030-32245-8_6
10.1007/978-3-030-87196-3_40
10.1109/JBHI.2021.3103646
10.1007/978-3-030-87196-3_45
10.1109/ICCV.2019.00683
10.1109/CVPR.2018.00745
10.1109/CVPR46437.2021.00658
10.1109/CVPR42600.2020.01104
10.1007/978-3-030-87196-3_28
10.1109/EMBC46164.2021.9629941
10.1109/TRPMS.2021.3059780
10.1109/ICASSP40776.2020.9053454
10.1109/ISBI48211.2021.9434135
10.1109/3DV.2016.79
10.1109/ICCV48922.2021.00347
10.1109/TMI.2022.3161829
10.1109/CVPR52688.2022.00422
10.1007/978-3-319-66179-7_47
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2022.3225687
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1
ExternalDocumentID 36449588
10_1109_TMI_2022_3225687
9966841
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Key Research and Development Program of Shaanxi
  grantid: 2022GY-436?2021ZDLGY08-07
– fundername: Shaanxi Joint Laboratory of Artificial Intelligence
  grantid: 2020SS-03
– fundername: National Natural Science Foundation of China
  grantid: 62271296, 61871259, 61861024
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2021JC-47
GroupedDBID ---
-DZ
-~X
0R~
29I
4.4
5GY
5RE
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
.GJ
53G
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c389t-74f2bf54ed243121f8cd8e1de82f6e401505dc4eb69c065ebf166e1c8d17d81f3
IEDL.DBID RIE
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982483400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 08:50:14 EDT 2025
Sun Nov 30 03:50:58 EST 2025
Thu Apr 03 07:03:17 EDT 2025
Sat Nov 29 05:14:10 EST 2025
Tue Nov 18 22:11:23 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-74f2bf54ed243121f8cd8e1de82f6e401505dc4eb69c065ebf166e1c8d17d81f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0842-6511
0000-0001-6248-2875
0000-0002-2104-9298
0000-0002-0612-6064
OpenAccessLink https://ieeexplore.ieee.org/document/9966841
PMID 36449588
PQID 2808835990
PQPubID 85460
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TMI_2022_3225687
proquest_miscellaneous_2743505565
proquest_journals_2808835990
ieee_primary_9966841
pubmed_primary_36449588
crossref_primary_10_1109_TMI_2022_3225687
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
feng (ref15) 2020
hung (ref11) 2018
ref10
ref16
ref19
ref18
samuli (ref27) 2017; 4
ref51
ref50
ref46
kozinski (ref28) 2017
ref47
ref42
ref44
ref43
sohn (ref7) 2020; 33
yang (ref41) 2019; 32
zhu (ref14) 2020
ref8
ref9
ref4
ref3
ref6
wang (ref24) 2021
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
codella (ref49) 2019
ref23
ref26
ref25
ref20
ref22
ref21
xiang (ref17) 2021
ronneberger (ref1) 2015
ref29
bilic (ref48) 2019
li (ref45) 2021
tarvainen (ref5) 2017
References_xml – ident: ref10
  doi: 10.1109/CVPR42600.2020.01269
– ident: ref6
  doi: 10.1109/TNNLS.2020.2995319
– volume: 33
  start-page: 596
  year: 2020
  ident: ref7
  article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1109/TMI.2018.2845918
– ident: ref16
  doi: 10.1109/TMI.2021.3117888
– ident: ref43
  doi: 10.1109/CVPR46437.2021.01214
– year: 2019
  ident: ref48
  article-title: The liver tumor segmentation benchmark (LiTS)
  publication-title: arXiv 1901 04056
– year: 2021
  ident: ref17
  article-title: Self-ensembling contrastive learning for semi-supervised medical image segmentation
  publication-title: arXiv 2105 12924
– ident: ref21
  doi: 10.1016/j.media.2021.102146
– ident: ref42
  doi: 10.1109/TMI.2020.3035253
– start-page: 1
  year: 2021
  ident: ref45
  article-title: Omni-dimensional dynamic convolution
  publication-title: Proc Int Conf Learn Represent
– ident: ref38
  doi: 10.1109/TPAMI.2021.3117837
– ident: ref9
  doi: 10.1007/978-3-030-32245-8_67
– ident: ref8
  doi: 10.1109/CVPR46437.2021.00264
– ident: ref2
  doi: 10.1109/TMI.2019.2959609
– volume: 32
  start-page: 1
  year: 2019
  ident: ref41
  article-title: CondConv: Conditionally parameterized convolutions for efficient inference
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref50
  doi: 10.1016/j.media.2020.101832
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00858
– ident: ref22
  doi: 10.1049/ipr2.12419
– start-page: 1
  year: 2017
  ident: ref28
  article-title: An adversarial regularisation for semi-supervised training of structured output neural networks
  publication-title: Proc Conf Neural Inf Process Syst
– start-page: 206
  year: 2021
  ident: ref24
  article-title: Boundary-aware transformers for skin lesion segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref35
  doi: 10.1109/WACV51458.2022.00183
– ident: ref29
  doi: 10.1007/978-3-030-78191-0_40
– ident: ref13
  doi: 10.1016/j.neuroimage.2021.118568
– ident: ref4
  doi: 10.1093/nsr/nwx106
– ident: ref33
  doi: 10.1609/aaai.v35i10.17066
– year: 2020
  ident: ref15
  article-title: DMT: Dynamic mutual training for semi-supervised learning
  publication-title: arXiv 2004 08514
– ident: ref51
  doi: 10.1007/978-3-030-32245-8_6
– ident: ref34
  doi: 10.1007/978-3-030-87196-3_40
– start-page: 1195
  year: 2017
  ident: ref5
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– start-page: 234
  year: 2015
  ident: ref1
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref20
  doi: 10.1109/JBHI.2021.3103646
– year: 2019
  ident: ref49
  article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC)
  publication-title: arXiv 1902 03368
– ident: ref18
  doi: 10.1007/978-3-030-87196-3_45
– year: 2020
  ident: ref14
  article-title: Improving semantic segmentation via self-training
  publication-title: arXiv 2004 14960
– ident: ref46
  doi: 10.1109/ICCV.2019.00683
– ident: ref47
  doi: 10.1109/CVPR.2018.00745
– ident: ref44
  doi: 10.1109/CVPR46437.2021.00658
– ident: ref40
  doi: 10.1109/CVPR42600.2020.01104
– ident: ref31
  doi: 10.1007/978-3-030-87196-3_28
– volume: 4
  start-page: 6
  year: 2017
  ident: ref27
  article-title: Temporal ensembling for semi-supervised learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2018
  ident: ref11
  article-title: Adversarial learning for semi-supervised semantic segmentation
  publication-title: Proc 29th Brit Mach Vis Conf (BMVC)
– ident: ref30
  doi: 10.1109/EMBC46164.2021.9629941
– ident: ref23
  doi: 10.1109/TRPMS.2021.3059780
– ident: ref26
  doi: 10.1109/ICASSP40776.2020.9053454
– ident: ref36
  doi: 10.1109/ISBI48211.2021.9434135
– ident: ref25
  doi: 10.1109/3DV.2016.79
– ident: ref37
  doi: 10.1109/ICCV48922.2021.00347
– ident: ref19
  doi: 10.1109/TMI.2022.3161829
– ident: ref32
  doi: 10.1109/CVPR52688.2022.00422
– ident: ref12
  doi: 10.1007/978-3-319-66179-7_47
SSID ssj0014509
Score 2.6594756
Snippet Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adversarial learning
Adversarial machine learning
Computer networks
Consistency
Convolution
Data models
Dynamic convolution
Image processing
Image Processing, Computer-Assisted
Image segmentation
Learning
Medical diagnosis
Medical diagnostic imaging
Medical image segmentation
Medical imaging
Networks
Perturbation
Perturbation methods
Pixels
Semi-supervised learning
Spine
Supervised Machine Learning
Training
Uncertainty
Title Semi-supervised medical image segmentation using adversarial consistency learning and dynamic convolution network
URI https://ieeexplore.ieee.org/document/9966841
https://www.ncbi.nlm.nih.gov/pubmed/36449588
https://www.proquest.com/docview/2808835990
https://www.proquest.com/docview/2743505565
Volume 42
WOSCitedRecordID wos000982483400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UIqIPXlovo7VE8EVwupvMJcmjiEUfWgQr7Nswk5yUBXe2dnYL_nvPmWRHH1TwbSBnLnC-JF_mXD6A10UgYt8GlVvv5nlZuDpvZaVz7lItaaTUdRSb0OfnZrGwn_fg7VQLg4hj8hme8OUYy_drt-VfZTPm5oar1G9prWOt1hQxKKuYzqG4Y-y8VruQ5NzOLs4-0UFQqRMGb21Yd68gGmCrUW7l1240yqv8nWmOO87pg__71odwPzFL8S5C4RHsYX8A937rN3gAd85SJP0Qvn_B1TIftle8VgzoxSpGbMRyRSuMGPBylaqSesG58ZeiZenmoWXACsdptQPT7R8i6U6QQe-FjwL3bHCTQC36mGn-GL6efrh4_zFP8gu5IxazyXUZVBeqEr0ilqFkMM4blB6NCjWW_Kuk8q7ErraOiAx2QdY1Sme81N7IUDyB_X7d4zMQqiOa46W13lg6QQai9VLLVhOZDFZ2KoPZzg2NS73JWSLjWzOeUea2IR827MMm-TCDN9MdV7Evxz9sD9k_k11yTQZHO083aeIOjTK07BYV7dEZvJqGacpxHKXtcb0lG2JdFTchqjJ4GhEyPXsHrOd_fucLuMt69TFj8gj2N9dbfAm33c1mOVwfE64X5njE9U8LXPJ3
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD6UVrw8eGm1plYdwRfBdHcmk2TmUcTSYncRXKFvIZlLWXCzbbNb6L_vOZnZ6IMKvgXm5ALnm5lvci4fwPvMI7GvvUi1NeNUZqZIa56XKXWp5jgiyyKITZTTqTo_19-24ONQC-Oc65PP3BFd9rF8uzRr-lU2Im6uqEp9J5dS8FCtNcQMZB4SOgT1jB0XYhOUHOvRbHKKR0Ehjgi-hSLlvQyJgM57wZVf-1EvsPJ3rtnvOcdP_u9rn8LjyC3ZpwCGZ7Dl2l149FvHwV24P4mx9D24-u4W87RbX9Jq0TnLFiFmw-YLXGNY5y4WsS6pZZQdf8FqEm_uaoIsM5RY2xHhvmVReQINWstskLgng5sIa9aGXPPn8OP4y-zzSRoFGFKDPGaVltKLxufSWYE8Q3CvjFWOW6eEL5yknyW5NdI1hTZIZVzjeVE4bpTlpVXcZy9gu1227iUw0SDRsVxrqzSeIT0Se17yukQ66TVvRAKjjRsqE7uTk0jGz6o_pYx1hT6syIdV9GECH4Y7LkNnjn_Y7pF_BrvomgQON56u4tTtKqFw4c1y3KUTeDcM46SjSErduuUabZB35dSGKE9gPyBkePYGWAd_fudbeHAym5xVZ6fTr6_gIanXh_zJQ9heXa_da7hnblbz7vpNj-47EmD01g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Medical+Image+Segmentation+Using+Adversarial+Consistency+Learning+and+Dynamic+Convolution+Network&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lei%2C+Tao&rft.au=Zhang%2C+Dong&rft.au=Du%2C+Xiaogang&rft.au=Wang%2C+Xuan&rft.date=2023-05-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=42&rft.issue=5&rft.spage=1265&rft_id=info:doi/10.1109%2FTMI.2022.3225687&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon