Optimality Conditions and Geometric Properties of a Linear Multilevel Programming Problem with Dominated Objective Functions
In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(/)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and b...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 123; číslo 2; s. 409 - 429 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Springer
01.11.2004
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(/)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and bounded, a necessary optimality condition is obtained. Two types of geometric properties of the solution sets are studied. It is demonstrated that the feasible set of LMPPD(/) is neither necessarily composed of faces of the constrained set nor necessarily connected. These properties are different from the existing theoretical results for linear multilevel programming problems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-004-5156-y |