Optimality Conditions and Geometric Properties of a Linear Multilevel Programming Problem with Dominated Objective Functions

In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(/)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 123; číslo 2; s. 409 - 429
Hlavní autoři: Ruan, G. Z., Wang, S. Y., Yamamoto, Y., Zhu, S. S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer 01.11.2004
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(/)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and bounded, a necessary optimality condition is obtained. Two types of geometric properties of the solution sets are studied. It is demonstrated that the feasible set of LMPPD(/) is neither necessarily composed of faces of the constrained set nor necessarily connected. These properties are different from the existing theoretical results for linear multilevel programming problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-004-5156-y