A Hausdorff-measure boundary element method for acoustic scattering by fractal screens

Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration inv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerische Mathematik Ročník 156; číslo 2; s. 463 - 532
Hlavní autori: Caetano, A. M., Chandler-Wilde, S. N., Gibbs, A., Hewett, D. P., Moiola, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Predmet:
ISSN:0029-599X, 0945-3245
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration involved in the formation of the BEM matrix is with respect to a non-integer order Hausdorff measure rather than the usual (Lebesgue) surface measure. Using recent results on function spaces on fractals, we prove convergence of the Galerkin formulation of this “Hausdorff BEM” for acoustic scattering in R n + 1 ( n = 1 , 2 ) when the scatterer, assumed to be a compact subset of R n × { 0 } , is a d -set for some d ∈ ( n - 1 , n ] , so that, in particular, the scatterer has Hausdorff dimension d . For a class of fractals that are attractors of iterated function systems, we prove convergence rates for the Hausdorff BEM and superconvergence for smooth antilinear functionals, under certain natural regularity assumptions on the solution of the underlying boundary integral equation. We also propose numerical quadrature routines for the implementation of our Hausdorff BEM, along with a fully discrete convergence analysis, via numerical (Hausdorff measure) integration estimates and inverse estimates on fractals, estimating the discrete condition numbers. Finally, we show numerical experiments that support the sharpness of our theoretical results, and our solution regularity assumptions, including results for scattering in R 2 by Cantor sets, and in R 3 by Cantor dusts.
AbstractList Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration involved in the formation of the BEM matrix is with respect to a non-integer order Hausdorff measure rather than the usual (Lebesgue) surface measure. Using recent results on function spaces on fractals, we prove convergence of the Galerkin formulation of this “Hausdorff BEM” for acoustic scattering in $$\mathbb {R}^{n+1}$$ R n + 1 ( $$n=1,2$$ n = 1 , 2 ) when the scatterer, assumed to be a compact subset of $$\mathbb {R}^n\times \{0\}$$ R n × { 0 } , is a d -set for some $$d\in (n-1,n]$$ d ∈ ( n - 1 , n ] , so that, in particular, the scatterer has Hausdorff dimension d . For a class of fractals that are attractors of iterated function systems, we prove convergence rates for the Hausdorff BEM and superconvergence for smooth antilinear functionals, under certain natural regularity assumptions on the solution of the underlying boundary integral equation. We also propose numerical quadrature routines for the implementation of our Hausdorff BEM, along with a fully discrete convergence analysis, via numerical (Hausdorff measure) integration estimates and inverse estimates on fractals, estimating the discrete condition numbers. Finally, we show numerical experiments that support the sharpness of our theoretical results, and our solution regularity assumptions, including results for scattering in $$\mathbb {R}^2$$ R 2 by Cantor sets, and in $$\mathbb {R}^3$$ R 3 by Cantor dusts.
Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration involved in the formation of the BEM matrix is with respect to a non-integer order Hausdorff measure rather than the usual (Lebesgue) surface measure. Using recent results on function spaces on fractals, we prove convergence of the Galerkin formulation of this “Hausdorff BEM” for acoustic scattering in Rn+1 (n=1,2) when the scatterer, assumed to be a compact subset of Rn×{0}, is a d-set for some d∈(n-1,n], so that, in particular, the scatterer has Hausdorff dimension d. For a class of fractals that are attractors of iterated function systems, we prove convergence rates for the Hausdorff BEM and superconvergence for smooth antilinear functionals, under certain natural regularity assumptions on the solution of the underlying boundary integral equation. We also propose numerical quadrature routines for the implementation of our Hausdorff BEM, along with a fully discrete convergence analysis, via numerical (Hausdorff measure) integration estimates and inverse estimates on fractals, estimating the discrete condition numbers. Finally, we show numerical experiments that support the sharpness of our theoretical results, and our solution regularity assumptions, including results for scattering in R2 by Cantor sets, and in R3 by Cantor dusts.
Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration involved in the formation of the BEM matrix is with respect to a non-integer order Hausdorff measure rather than the usual (Lebesgue) surface measure. Using recent results on function spaces on fractals, we prove convergence of the Galerkin formulation of this “Hausdorff BEM” for acoustic scattering in R n + 1 ( n = 1 , 2 ) when the scatterer, assumed to be a compact subset of R n × { 0 } , is a d -set for some d ∈ ( n - 1 , n ] , so that, in particular, the scatterer has Hausdorff dimension d . For a class of fractals that are attractors of iterated function systems, we prove convergence rates for the Hausdorff BEM and superconvergence for smooth antilinear functionals, under certain natural regularity assumptions on the solution of the underlying boundary integral equation. We also propose numerical quadrature routines for the implementation of our Hausdorff BEM, along with a fully discrete convergence analysis, via numerical (Hausdorff measure) integration estimates and inverse estimates on fractals, estimating the discrete condition numbers. Finally, we show numerical experiments that support the sharpness of our theoretical results, and our solution regularity assumptions, including results for scattering in R 2 by Cantor sets, and in R 3 by Cantor dusts.
Author Hewett, D. P.
Chandler-Wilde, S. N.
Caetano, A. M.
Gibbs, A.
Moiola, A.
Author_xml – sequence: 1
  givenname: A. M.
  surname: Caetano
  fullname: Caetano, A. M.
  organization: Center for R &D in Mathematics and Applications, Departamento de Matemática, Universidade de Aveiro
– sequence: 2
  givenname: S. N.
  surname: Chandler-Wilde
  fullname: Chandler-Wilde, S. N.
  organization: Department of Mathematics and Statistics, University of Reading
– sequence: 3
  givenname: A.
  surname: Gibbs
  fullname: Gibbs, A.
  organization: Department of Mathematics, University College London
– sequence: 4
  givenname: D. P.
  surname: Hewett
  fullname: Hewett, D. P.
  email: d.hewett@ucl.ac.uk
  organization: Department of Mathematics, University College London
– sequence: 5
  givenname: A.
  surname: Moiola
  fullname: Moiola, A.
  organization: Dipartimento di Matematica “F. Casorati”, Università degli studi di Pavia
BookMark eNp9kEtLAzEQgINUsK3-AU8Bz9G8Nrs5lqJWKHhR8Ray2YluaTc1yR767926guChpxmG-ebxzdCkCx0gdM3oLaO0vEuUcsYI5ZJQJrQm5RmaUi0LIrgsJkNOuSaF1u8XaJbShlJWKsmm6G2BV7ZPTYjekx3Y1EfAdei7xsYDhi3soMt4B_kzNNiHiK0Lfcqtw8nZnCG23QeuD9hH67LdDtUI0KVLdO7tNsHVb5yj14f7l-WKrJ8fn5aLNXGi0pkUFa8ZVYKLpnK1F5Kpxtal9dp7UBVtFFCruNTSaSs8F3VdDu86xYGXRW3FHN2Mc_cxfPWQstmEPnbDSiOo5FKoiqmhqxq7XAwpRfDGtdnmNnQ52nZrGDVHi2a0aAaL5seiKQeU_0P3sd0Nbk5DYoTS_ugH4t9VJ6hvQhSHaw
CitedBy_id crossref_primary_10_1515_gmj_2025_2067
crossref_primary_10_1007_s11785_025_01717_3
Cites_doi 10.1007/BF02476031
10.1016/S0045-7949(96)00137-X
10.1016/j.jfa.2021.109019
10.1080/03605309108820799
10.1002/mma.1670130403
10.1007/s00211-021-01189-5
10.1142/S0218202522500075
10.1017/CBO9780511618635
10.1007/s00211-021-01182-y
10.1007/BF01396766
10.1007/978-0-387-09432-8
10.1006/jfan.1998.3383
10.1006/jcph.1994.1116
10.1137/17M1131933
10.1007/978-3-642-66451-9
10.1080/17476933.2011.557154
10.1080/00036818408839520
10.1017/S0013091500019076
10.1007/s10543-021-00859-y
10.1007/s00041-011-9202-5
10.1017/CBO9780511623738
10.1093/imanum/drab074
10.1007/s11075-022-01378-9
10.1142/S021953051650024X
10.1007/978-0-387-68805-3
10.1090/S0025-5718-03-01583-7
10.1093/imanum/8.1.105
10.1016/j.jmaa.2004.10.059
10.1017/S0962492912000037
10.1007/978-3-540-68093-2
10.1115/1.3424474
10.1007/s00020-017-2342-5
10.1007/978-3-0348-0034-1
10.1109/MAP.2003.1189650
10.1007/s11075-023-01705-8
10.4171/019
10.1016/j.jmaa.2019.01.036
10.1007/BF01199079
10.1112/mtk.12155
10.1080/02786820117868
10.1090/gsm/019
10.1007/s00020-015-2233-6
10.1112/S0025579314000278
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00211-024-01399-7
DatabaseName Springer Nature OA/Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 532
ExternalDocumentID 10_1007_s00211_024_01399_7
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c389t-582b106323d8cbf3416dab7af9ffe680d6e0a62494c9a3f23bb7007c62e275ba3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172025600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Mon Oct 06 16:24:24 EDT 2025
Sat Nov 29 01:36:01 EST 2025
Tue Nov 18 22:16:38 EST 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 45A05
28A80
46E35
65R20
65N38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-582b106323d8cbf3416dab7af9ffe680d6e0a62494c9a3f23bb7007c62e275ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00211-024-01399-7
PQID 3042436816
PQPubID 2043616
PageCount 70
ParticipantIDs proquest_journals_3042436816
crossref_citationtrail_10_1007_s00211_024_01399_7
crossref_primary_10_1007_s00211_024_01399_7
springer_journals_10_1007_s00211_024_01399_7
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Riddle, L.: Classic Iterated Function Systems. larryriddle.agnesscott.org/ifs/ifs.htm, downloaded 18 July 2023
SloanIHSpenceAThe Galerkin method for integral equations of the first kind with logarithmic kernel: TheoryIMA J. Numer. Anal.1988810512296784610.1093/imanum/8.1.105
Chandler-WildeSNHewettDPMoiolaABessonJBoundary element methods for acoustic scattering by fractal screensNumer. Math.2021147785837424546210.1007/s00211-021-01182-y
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 3rd edn. Wiley (2014)
HewettDPMoiolaAOn the maximal Sobolev regularity of distributions supported by subsets of Euclidean spaceAnal. Appl.201715731770367037810.1142/S021953051650024X
JonssonAWavelets on fractals and Besov spacesJ. Fourier Anal. Appl.19984329340165098010.1007/BF02476031
SorensenCMLight scattering by fractal aggregates: a reviewAerosol Sci. Tech.20013564868710.1080/02786820117868
CwikelMKaltonNJInterpolation of compact operators by the methods of Calderón and Gustavsson–PeetreProc. Edin. Math. Soc.19953826127610.1017/S0013091500019076
Grafakos, L.: Classical Fourier Analysis. Springer (2008)
ClaeysXGiacomelLHiptmairRUrzúa-TorresCQuotient-space boundary element methods for scattering at complex screensBIT Numer. Math.20216111931221433213510.1007/s10543-021-00859-y
GibbsAHewettDPMoiolaANumerical evaluation of singular integrals on fractal setsNumer. Alg.2023922071212410.1007/s11075-022-01378-9
Chandler-WildeSNHewettDPMoiolaASobolev spaces on non-Lipschitz subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^n$$\end{document} with application to boundary integral equations on fractal screensIntegr. Equat. Operat. Th.20178717922410.1007/s00020-017-2342-5
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland (1978)
Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer (2008)
AlougesFAversengMNew preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical resultsNumer. Math.2021148255292427947510.1007/s00211-021-01189-5
ZubermanLExact Hausdorff and packing measure of certain Cantor sets, not necessarily self-similar or homogeneousJ. Math. Anal. Appl.2019474143156391289510.1016/j.jmaa.2019.01.036
CostabelMStephanEPDuality estimates for the numerical solution of integral equationsNumer. Math.19885433935397170710.1007/BF01396766
DahmenWFaermannBGrahamIGHackbuschWSauterSAInverse inequalities on non-quasi-uniform meshes and application to the mortar element methodMath. Comp.20047311071138204708010.1090/S0025-5718-03-01583-7
Falconer, K.: The Geometry of Fractal Sets. CUP (1985)
Jonsson, A., Wallin, H.: Function Spaces on Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}. Math. Rep. 2 (1984)
ErvinVJ StephanEPAbou El-SeoudSAn improved boundary element method for the charge density of a thin electrified plate in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^3$$\end{document}Math. Meth. Appl. Sci.19901329130310.1002/mma.1670130403
Gibbs, A., Hewett, D.P., Major, B.: Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets. arXiv:2303.13141, (2023)
MitreaMTaylorMBoundary layer methods for Lipschitz domains in Riemannian manifoldsJ. Funct. Anal.1999163181251168048710.1006/jfan.1998.3383
WernerDHGangulySAn overview of fractal antenna engineering researchIEEE Ant. Propag. Mag.200345385710.1109/MAP.2003.1189650
Evans, L.C.: Partial Differential Equations. AMS (2010)
Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer (2011)
CaetanoAHewettDPMoiolaADensity results for Sobolev, Besov and Triebel–Lizorkin spaces on rough setsJ. Funct. Anal.2021281424370510.1016/j.jfa.2021.109019
Braess, D.: Finite Elements, third edn. CUP (2007)
Caetano, A.M., Chandler-Wilde, S.N., Claeys, X., Gibbs, A., Hewett, D.P., Moiola, A.: Integral equation methods for acoustic scattering by fractals. arXiv:2309.02184 (2023)
StephanEPWendlandWLAn augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problemsAppl. Anal.19841818321976750010.1080/00036818408839520
StephanEPBoundary integral equations for screen problems in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^3$$\end{document}Integr. Equat. Oper. Th.19871023625710.1007/BF01199079
Jerez-HanckesCPintoJSpectral Galerkin method for solving Helmholtz boundary integral equations on smooth screensIMA J. Numer. Anal.20224235713608449782410.1093/imanum/drab074
Chandler-WildeSNGrahamIGLangdonSSpenceEANumerical-asymptotic boundary integral methods in high-frequency acoustic scatteringActa Numer20122189305291638210.1017/S0962492912000037
Chandler-WildeSNHewettDPWell-posed PDE and integral equation formulations for scattering by fractal screensSIAM J. Math. Anal.201850677717375710010.1137/17M1131933
McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. CUP (2000)
BannisterJGibbsAHewettDPAcoustic scattering by impedance screens/cracks with fractal boundary: well-posedness analysis and boundary element approximationMath. Mod. Meth. Appl. Sci.202232291319439615710.1142/S0218202522500075
ŠneıbergIJSpectral properties of linear operators in interpolation families of Banach spacesMat. Issled19749214229634681
XiongYZhouJThe Hausdorff measure of a class of Sierpinski carpetsJ. Math. Anal. Appl.2005305121129212811610.1016/j.jmaa.2004.10.059
Bricchi, M.: Tailored Function Spaces and h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-sets. PhD thesis, University of Jena (2002)
CaetanoAOn the type of convergence in atomic representationsComplex Var. Elliptic Equat.201156875883283822610.1080/17476933.2011.557154
Chandler-WildeSNHewettDPWavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screensIntegr. Equat. Oper. Th.201582423449335578810.1007/s00020-015-2233-6
PanagiotopoulosP PanagouliOThe FEM and BEM for fractal boundaries and interfaces. Applications to unilateral problemsComput. Struct.19976432933910.1016/S0045-7949(96)00137-X
Chandler-WildeSNHewettDPMoiolaAInterpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamplesMathematika201561414443334306110.1112/S0025579314000278
HsiaoGCWendlandWLThe Aubin-Nitsche lemma for integral equationsJ. Integr. Equat.19813299315634453
Triebel, H.: Function Spaces and Wavelets on Domains. European Mathematical Society (2008)
Caetano, A.M., Chandler-Wilde, S.N., Gibbs, A., Hewett, D.P.: Properties of IFS attractors with non-empty interiors and associated function spaces and scattering problems. (In preparation)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover (1964)
Chandler-Wilde, S.N., Hewett, D.P., Moiola, A., Corrigendum: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples (Mathematika 61, 414–443 (2015)). Mathematika 68, 1393–1400 (2022)
BerghJLöfströmJInterpolation Spaces: An Introduction1976BerlinSpringer10.1007/978-3-642-66451-9
Bezanson, J., Karpinski, S., Shah, V. B., Edelman, A.: Julia: A fast dynamic language for technical computing. arXiv:1209.5145 (2012)
JonesPMaJRokhlinVA fast direct algorithm for the solution of the Laplace equation on regions with fractal boundariesJ. Comput. Phys.19941133551127818910.1006/jcph.1994.1116
SchneiderRReduction of order for pseudodifferential operators on Lipschitz domainsCommun. Partial Differ. Equ.19911612631286113278510.1080/03605309108820799
Triebel, H.: Fractals and Spectra. Birkhäuser (1997)
CarvalhoACaetanoAOn the Hausdorff dimension of continuous functions belonging to Hölder and Besov spaces on fractal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} -setsJ. Fourier Anal. Appl.201218386409289873410.1007/s00041-011-9202-5
EP Stephan (1399_CR49) 1984; 18
M Mitrea (1399_CR39) 1999; 163
1399_CR29
1399_CR28
1399_CR27
1399_CR26
A Caetano (1399_CR9) 2021; 281
VJ Ervin (1399_CR25) 1990; 13
DP Hewett (1399_CR32) 2017; 15
C Jerez-Hanckes (1399_CR34) 2022; 42
1399_CR20
1399_CR7
1399_CR6
1399_CR5
1399_CR38
1399_CR37
A Caetano (1399_CR8) 2011; 56
SN Chandler-Wilde (1399_CR19) 2021; 147
A Carvalho (1399_CR12) 2012; 18
1399_CR1
J Bannister (1399_CR3) 2022; 32
DH Werner (1399_CR52) 2003; 45
L Zuberman (1399_CR54) 2019; 474
M Costabel (1399_CR22) 1988; 54
CM Sorensen (1399_CR46) 2001; 35
F Alouges (1399_CR2) 2021; 148
1399_CR31
SN Chandler-Wilde (1399_CR14) 2015; 82
GC Hsiao (1399_CR33) 1981; 3
A Jonsson (1399_CR36) 1998; 4
W Dahmen (1399_CR24) 2004; 73
SN Chandler-Wilde (1399_CR16) 2015; 61
IH Sloan (1399_CR44) 1988; 8
R Schneider (1399_CR43) 1991; 16
1399_CR47
IJ Šneıberg (1399_CR45) 1974; 9
J Bergh (1399_CR4) 1976
1399_CR42
M Cwikel (1399_CR23) 1995; 38
1399_CR41
SN Chandler-Wilde (1399_CR17) 2017; 87
1399_CR18
X Claeys (1399_CR21) 2021; 61
P Jones (1399_CR35) 1994; 113
SN Chandler-Wilde (1399_CR13) 2012; 21
1399_CR50
EP Stephan (1399_CR48) 1987; 10
Y Xiong (1399_CR53) 2005; 305
1399_CR11
P Panagiotopoulos (1399_CR40) 1997; 64
1399_CR10
SN Chandler-Wilde (1399_CR15) 2018; 50
A Gibbs (1399_CR30) 2023; 92
1399_CR51
References_xml – reference: Chandler-WildeSNHewettDPMoiolaASobolev spaces on non-Lipschitz subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^n$$\end{document} with application to boundary integral equations on fractal screensIntegr. Equat. Operat. Th.20178717922410.1007/s00020-017-2342-5
– reference: Jerez-HanckesCPintoJSpectral Galerkin method for solving Helmholtz boundary integral equations on smooth screensIMA J. Numer. Anal.20224235713608449782410.1093/imanum/drab074
– reference: ZubermanLExact Hausdorff and packing measure of certain Cantor sets, not necessarily self-similar or homogeneousJ. Math. Anal. Appl.2019474143156391289510.1016/j.jmaa.2019.01.036
– reference: JonesPMaJRokhlinVA fast direct algorithm for the solution of the Laplace equation on regions with fractal boundariesJ. Comput. Phys.19941133551127818910.1006/jcph.1994.1116
– reference: Evans, L.C.: Partial Differential Equations. AMS (2010)
– reference: StephanEPBoundary integral equations for screen problems in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^3$$\end{document}Integr. Equat. Oper. Th.19871023625710.1007/BF01199079
– reference: Chandler-WildeSNHewettDPMoiolaAInterpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamplesMathematika201561414443334306110.1112/S0025579314000278
– reference: Chandler-Wilde, S.N., Hewett, D.P., Moiola, A., Corrigendum: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples (Mathematika 61, 414–443 (2015)). Mathematika 68, 1393–1400 (2022)
– reference: Riddle, L.: Classic Iterated Function Systems. larryriddle.agnesscott.org/ifs/ifs.htm, downloaded 18 July 2023
– reference: DahmenWFaermannBGrahamIGHackbuschWSauterSAInverse inequalities on non-quasi-uniform meshes and application to the mortar element methodMath. Comp.20047311071138204708010.1090/S0025-5718-03-01583-7
– reference: Bezanson, J., Karpinski, S., Shah, V. B., Edelman, A.: Julia: A fast dynamic language for technical computing. arXiv:1209.5145 (2012)
– reference: MitreaMTaylorMBoundary layer methods for Lipschitz domains in Riemannian manifoldsJ. Funct. Anal.1999163181251168048710.1006/jfan.1998.3383
– reference: SchneiderRReduction of order for pseudodifferential operators on Lipschitz domainsCommun. Partial Differ. Equ.19911612631286113278510.1080/03605309108820799
– reference: CaetanoAOn the type of convergence in atomic representationsComplex Var. Elliptic Equat.201156875883283822610.1080/17476933.2011.557154
– reference: XiongYZhouJThe Hausdorff measure of a class of Sierpinski carpetsJ. Math. Anal. Appl.2005305121129212811610.1016/j.jmaa.2004.10.059
– reference: Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover (1964)
– reference: CwikelMKaltonNJInterpolation of compact operators by the methods of Calderón and Gustavsson–PeetreProc. Edin. Math. Soc.19953826127610.1017/S0013091500019076
– reference: PanagiotopoulosP PanagouliOThe FEM and BEM for fractal boundaries and interfaces. Applications to unilateral problemsComput. Struct.19976432933910.1016/S0045-7949(96)00137-X
– reference: CarvalhoACaetanoAOn the Hausdorff dimension of continuous functions belonging to Hölder and Besov spaces on fractal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} -setsJ. Fourier Anal. Appl.201218386409289873410.1007/s00041-011-9202-5
– reference: Chandler-WildeSNGrahamIGLangdonSSpenceEANumerical-asymptotic boundary integral methods in high-frequency acoustic scatteringActa Numer20122189305291638210.1017/S0962492912000037
– reference: Jonsson, A., Wallin, H.: Function Spaces on Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}. Math. Rep. 2 (1984)
– reference: BannisterJGibbsAHewettDPAcoustic scattering by impedance screens/cracks with fractal boundary: well-posedness analysis and boundary element approximationMath. Mod. Meth. Appl. Sci.202232291319439615710.1142/S0218202522500075
– reference: WernerDHGangulySAn overview of fractal antenna engineering researchIEEE Ant. Propag. Mag.200345385710.1109/MAP.2003.1189650
– reference: Gibbs, A., Hewett, D.P., Major, B.: Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets. arXiv:2303.13141, (2023)
– reference: Falconer, K.: The Geometry of Fractal Sets. CUP (1985)
– reference: Caetano, A.M., Chandler-Wilde, S.N., Claeys, X., Gibbs, A., Hewett, D.P., Moiola, A.: Integral equation methods for acoustic scattering by fractals. arXiv:2309.02184 (2023)
– reference: Braess, D.: Finite Elements, third edn. CUP (2007)
– reference: CaetanoAHewettDPMoiolaADensity results for Sobolev, Besov and Triebel–Lizorkin spaces on rough setsJ. Funct. Anal.2021281424370510.1016/j.jfa.2021.109019
– reference: ŠneıbergIJSpectral properties of linear operators in interpolation families of Banach spacesMat. Issled19749214229634681
– reference: Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland (1978)
– reference: ErvinVJ StephanEPAbou El-SeoudSAn improved boundary element method for the charge density of a thin electrified plate in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^3$$\end{document}Math. Meth. Appl. Sci.19901329130310.1002/mma.1670130403
– reference: Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 3rd edn. Wiley (2014)
– reference: ClaeysXGiacomelLHiptmairRUrzúa-TorresCQuotient-space boundary element methods for scattering at complex screensBIT Numer. Math.20216111931221433213510.1007/s10543-021-00859-y
– reference: JonssonAWavelets on fractals and Besov spacesJ. Fourier Anal. Appl.19984329340165098010.1007/BF02476031
– reference: Triebel, H.: Function Spaces and Wavelets on Domains. European Mathematical Society (2008)
– reference: Chandler-WildeSNHewettDPMoiolaABessonJBoundary element methods for acoustic scattering by fractal screensNumer. Math.2021147785837424546210.1007/s00211-021-01182-y
– reference: Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer (2008)
– reference: CostabelMStephanEPDuality estimates for the numerical solution of integral equationsNumer. Math.19885433935397170710.1007/BF01396766
– reference: AlougesFAversengMNew preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical resultsNumer. Math.2021148255292427947510.1007/s00211-021-01189-5
– reference: Bricchi, M.: Tailored Function Spaces and h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-sets. PhD thesis, University of Jena (2002)
– reference: Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer (2011)
– reference: Triebel, H.: Fractals and Spectra. Birkhäuser (1997)
– reference: StephanEPWendlandWLAn augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problemsAppl. Anal.19841818321976750010.1080/00036818408839520
– reference: Chandler-WildeSNHewettDPWavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screensIntegr. Equat. Oper. Th.201582423449335578810.1007/s00020-015-2233-6
– reference: BerghJLöfströmJInterpolation Spaces: An Introduction1976BerlinSpringer10.1007/978-3-642-66451-9
– reference: Caetano, A.M., Chandler-Wilde, S.N., Gibbs, A., Hewett, D.P.: Properties of IFS attractors with non-empty interiors and associated function spaces and scattering problems. (In preparation)
– reference: HewettDPMoiolaAOn the maximal Sobolev regularity of distributions supported by subsets of Euclidean spaceAnal. Appl.201715731770367037810.1142/S021953051650024X
– reference: McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. CUP (2000)
– reference: HsiaoGCWendlandWLThe Aubin-Nitsche lemma for integral equationsJ. Integr. Equat.19813299315634453
– reference: Grafakos, L.: Classical Fourier Analysis. Springer (2008)
– reference: SorensenCMLight scattering by fractal aggregates: a reviewAerosol Sci. Tech.20013564868710.1080/02786820117868
– reference: SloanIHSpenceAThe Galerkin method for integral equations of the first kind with logarithmic kernel: TheoryIMA J. Numer. Anal.1988810512296784610.1093/imanum/8.1.105
– reference: Chandler-WildeSNHewettDPWell-posed PDE and integral equation formulations for scattering by fractal screensSIAM J. Math. Anal.201850677717375710010.1137/17M1131933
– reference: GibbsAHewettDPMoiolaANumerical evaluation of singular integrals on fractal setsNumer. Alg.2023922071212410.1007/s11075-022-01378-9
– volume: 4
  start-page: 329
  year: 1998
  ident: 1399_CR36
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02476031
– volume: 64
  start-page: 329
  year: 1997
  ident: 1399_CR40
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(96)00137-X
– ident: 1399_CR41
– ident: 1399_CR5
– volume: 9
  start-page: 214
  year: 1974
  ident: 1399_CR45
  publication-title: Mat. Issled
– ident: 1399_CR1
– volume: 281
  year: 2021
  ident: 1399_CR9
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2021.109019
– volume: 16
  start-page: 1263
  year: 1991
  ident: 1399_CR43
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605309108820799
– volume: 13
  start-page: 291
  year: 1990
  ident: 1399_CR25
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.1670130403
– volume: 148
  start-page: 255
  year: 2021
  ident: 1399_CR2
  publication-title: Numer. Math.
  doi: 10.1007/s00211-021-01189-5
– volume: 32
  start-page: 291
  year: 2022
  ident: 1399_CR3
  publication-title: Math. Mod. Meth. Appl. Sci.
  doi: 10.1142/S0218202522500075
– ident: 1399_CR28
– ident: 1399_CR6
  doi: 10.1017/CBO9780511618635
– volume: 147
  start-page: 785
  year: 2021
  ident: 1399_CR19
  publication-title: Numer. Math.
  doi: 10.1007/s00211-021-01182-y
– volume: 54
  start-page: 339
  year: 1988
  ident: 1399_CR22
  publication-title: Numer. Math.
  doi: 10.1007/BF01396766
– ident: 1399_CR31
  doi: 10.1007/978-0-387-09432-8
– volume: 163
  start-page: 181
  year: 1999
  ident: 1399_CR39
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1998.3383
– volume: 113
  start-page: 35
  year: 1994
  ident: 1399_CR35
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1116
– volume: 50
  start-page: 677
  year: 2018
  ident: 1399_CR15
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1131933
– volume: 3
  start-page: 299
  year: 1981
  ident: 1399_CR33
  publication-title: J. Integr. Equat.
– ident: 1399_CR38
– volume-title: Interpolation Spaces: An Introduction
  year: 1976
  ident: 1399_CR4
  doi: 10.1007/978-3-642-66451-9
– volume: 56
  start-page: 875
  year: 2011
  ident: 1399_CR8
  publication-title: Complex Var. Elliptic Equat.
  doi: 10.1080/17476933.2011.557154
– volume: 18
  start-page: 183
  year: 1984
  ident: 1399_CR49
  publication-title: Appl. Anal.
  doi: 10.1080/00036818408839520
– volume: 38
  start-page: 261
  year: 1995
  ident: 1399_CR23
  publication-title: Proc. Edin. Math. Soc.
  doi: 10.1017/S0013091500019076
– volume: 61
  start-page: 1193
  year: 2021
  ident: 1399_CR21
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-021-00859-y
– volume: 18
  start-page: 386
  year: 2012
  ident: 1399_CR12
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-011-9202-5
– ident: 1399_CR27
  doi: 10.1017/CBO9780511623738
– volume: 42
  start-page: 3571
  year: 2022
  ident: 1399_CR34
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drab074
– ident: 1399_CR7
– volume: 92
  start-page: 2071
  year: 2023
  ident: 1399_CR30
  publication-title: Numer. Alg.
  doi: 10.1007/s11075-022-01378-9
– volume: 15
  start-page: 731
  year: 2017
  ident: 1399_CR32
  publication-title: Anal. Appl.
  doi: 10.1142/S021953051650024X
– ident: 1399_CR37
– ident: 1399_CR10
– ident: 1399_CR47
  doi: 10.1007/978-0-387-68805-3
– volume: 73
  start-page: 1107
  year: 2004
  ident: 1399_CR24
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-03-01583-7
– volume: 8
  start-page: 105
  year: 1988
  ident: 1399_CR44
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.1.105
– volume: 305
  start-page: 121
  year: 2005
  ident: 1399_CR53
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.10.059
– volume: 21
  start-page: 89
  year: 2012
  ident: 1399_CR13
  publication-title: Acta Numer
  doi: 10.1017/S0962492912000037
– ident: 1399_CR42
  doi: 10.1007/978-3-540-68093-2
– ident: 1399_CR20
  doi: 10.1115/1.3424474
– volume: 87
  start-page: 179
  year: 2017
  ident: 1399_CR17
  publication-title: Integr. Equat. Operat. Th.
  doi: 10.1007/s00020-017-2342-5
– ident: 1399_CR50
  doi: 10.1007/978-3-0348-0034-1
– volume: 45
  start-page: 38
  year: 2003
  ident: 1399_CR52
  publication-title: IEEE Ant. Propag. Mag.
  doi: 10.1109/MAP.2003.1189650
– ident: 1399_CR29
  doi: 10.1007/s11075-023-01705-8
– ident: 1399_CR51
  doi: 10.4171/019
– volume: 474
  start-page: 143
  year: 2019
  ident: 1399_CR54
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.01.036
– volume: 10
  start-page: 236
  year: 1987
  ident: 1399_CR48
  publication-title: Integr. Equat. Oper. Th.
  doi: 10.1007/BF01199079
– ident: 1399_CR18
  doi: 10.1112/mtk.12155
– volume: 35
  start-page: 648
  year: 2001
  ident: 1399_CR46
  publication-title: Aerosol Sci. Tech.
  doi: 10.1080/02786820117868
– ident: 1399_CR26
  doi: 10.1090/gsm/019
– volume: 82
  start-page: 423
  year: 2015
  ident: 1399_CR14
  publication-title: Integr. Equat. Oper. Th.
  doi: 10.1007/s00020-015-2233-6
– ident: 1399_CR11
– volume: 61
  start-page: 414
  year: 2015
  ident: 1399_CR16
  publication-title: Mathematika
  doi: 10.1112/S0025579314000278
SSID ssj0017641
Score 2.422708
Snippet Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 463
SubjectTerms Acoustic scattering
Acoustic waves
Acoustics
Basis functions
Boundary element method
Boundary integral method
Convergence
Estimates
Fractals
Function space
Integral equations
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Regularity
Screens
Simulation
Theoretical
Title A Hausdorff-measure boundary element method for acoustic scattering by fractal screens
URI https://link.springer.com/article/10.1007/s00211-024-01399-7
https://www.proquest.com/docview/3042436816
Volume 156
WOSCitedRecordID wos001172025600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD9YnVKjl408B2kya7xyJKD1rER-ltSXYTELSVbiv03zvJPoqigp43r51M8s1kXgBnQgYq4NJQznRKObeS6kBoqriSGdMIqd56PryRg0E0GsV3ZVBYXnm7VyZJf1PXwW4OjlD1DZ3XBMIqlauwhnAXuYIN9w_D2nYgBe9Ujh3dOB6VoTLfj_EZjpYy5hezqEeb6-b_1rkNW6V0SXoFO-zAihnvQrOq3EDKg7wLm7d1ttZ8D4Y90lfzPJtMraWvxaMh0b7e0nRBTOFgTopa0wSFXIK3qC8CRvLUp-fE5RG9INZFXOH0eBM57Xgfnq6vHi_7tKy3QFMUW2a0G4UaNUQWsixKtUV8E5nSUtnYWiOiIBMmUAL1NZ7GitmQaS3xj1MRmlB2tWIH0BhPxuYQiOmyQMk4zHB7OEpkimFXjv0DoVCmD1rQqciepGUyclcT4yWp0yh7MiZIxsSTMZEtOK_7vBWpOH5t3a52MymPZZ64txuXcr8jWnBR7d7y88-jHf2t-TFshJ4BHA-0oTGbzs0JrKfvs-d8eurZ9QPAx-JI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tHdLGAx0b0wrd8ANvYMmNHTt5rBBTEW2FRlf1LbITW5oEHUraSf3vOTsfExMgsef4K-ez78539zuAd1IxzYSyVHCTUyGcooZJQ7XQquAGRWrwni-naj5PVqv0a5MUVrXR7q1LMtzUXbKbF0do-kY-agLFKlX7cCBQYnnE_Otvy853oKQYtYEdcZqumlSZP4_xuzh60DEfuUWDtLnqP22dx_Ci0S7JuGaHl7Bn1yfQbys3kOYgn8DzWYfWWp3CckwmelsVd6Vz9Ef9aEhMqLdU7oitA8xJXWuaoJJL8BYNRcBIlQd4TlweMTvifMYVTo83kbeOX8HN1afFxwlt6i3QHNWWDY2TyKCFyCNeJLlxKN9koY3SLnXOyoQV0jIt0V4Teaq5i7gxCv84l5GNVGw0P4Pe-m5tz4HYmDOt0qhIEyZQI9Mcuwrsz6RGnZ4NYNSSPcsbMHJfE-N71sEoBzJmSMYskDFTA3jf9flZQ3H8s_Ww3c2sOZZV5t9uPOT-SA7gQ7t7D5__Ptrr_2v-Fg4ni9k0m36ef3kDR1FgBs8PQ-htyq29gGf5_ea2Ki8D6_4CZIvlLA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLfYmCZ4oKwDUSgjD3vboqaXNLl7nICqiK6qBKv6dkruEmnSaKtei9T_Hif3UZjGJMTz5escJ7Zj-2eAc6mYZkJZKrjJqBBOUcOkoVpolXODIjV4z2djNZnE83ky_S2LP0S71y7JMqfBozQtNr1V7npN4psXTWgGRz6CAkUsVQfwVPhAem-vf5s1fgQlRb8O8hgkybxKm3l4jD9F017fvOciDZJn2Pr_Nb-EF5XWSa5KNjmBJ3bRhlZd0YFUB7wNz68bFNfiFGZXZKS3Rb5cO0d_lI-JxIQ6TOsdsWXgOSlrUBNUfgnerqE4GCmyANuJSyVmR5zPxMLp8YbyVvMruBl-_v5xRKs6DDRDdWZDB3Fk0HLkEc_jzDiUezLXRmmXOGdlzHJpmZZox4ks0dxF3BiFf5zJyEZqYDR_DYeL5cK-AWIHnGmVRHkSM4GamubYVWB_JjXq-qwD_XoL0qwCKfe1Mu7SBl45kDFFMqaBjKnqwEXTZ1VCdDzaulvvbFod1yL1bzoeir8vO3BZ7-T-899He_tvzT_A8fTTMB1_mXx9B8-iwAueHbpwuFlv7Xs4yn5ubov1WeDiX37C7hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hausdorff-measure+boundary+element+method+for+acoustic+scattering+by+fractal+screens&rft.jtitle=Numerische+Mathematik&rft.au=Caetano%2C+A.+M.&rft.au=Chandler-Wilde%2C+S.+N.&rft.au=Gibbs%2C+A.&rft.au=Hewett%2C+D.+P.&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=156&rft.issue=2&rft.spage=463&rft.epage=532&rft_id=info:doi/10.1007%2Fs00211-024-01399-7&rft.externalDocID=10_1007_s00211_024_01399_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon