Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms
Today, the world’s primary energy demand has been met by the burning of fossil-based fuels at a rate of 85%. This dominant use of fossil-based fuels has led to an accelerating increase in the release of greenhouse gases (GHG) all across the world. The largest share in total GHG emissions belongs to...
Uloženo v:
| Vydáno v: | Journal of cleaner production Ročník 285; s. 125324 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
20.02.2021
|
| Témata: | |
| ISSN: | 0959-6526, 1879-1786 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Today, the world’s primary energy demand has been met by the burning of fossil-based fuels at a rate of 85%. This dominant use of fossil-based fuels has led to an accelerating increase in the release of greenhouse gases (GHG) all across the world. The largest share in total GHG emissions belongs to the electricity and heat production sector with a rate of 25%. With this viewpoint, this paper is aiming to forecast the GHG emissions (CO2, CH4, N2O, F-gases, and total GHG) using deep learning (DL), support vector machine (SVM), and artificial neural network (ANN) algorithms from the electricity production sector in Turkey. The dataset is supplied from the Turkish Statistical Institute and covers the years 1990–2018. In the study, the last four years (2015–2018) is being forecasted. To evaluate the performance success of the algorithms, five metrics (RMSE, MBE, rRMSE, R2, and MAPE) are discussed in detail. In the results, this research is reporting that all algorithms used in the study are giving separately satisfying results for the forecasting of GHG emissions in Turkey. Based on the forecasting results, it is seen that the highest R2 value for the emissions varies from 0.861 to 0.998 and all results are categorized as “excellent” in terms of rRMSE (all rRMSE values < 10%). Besides, MBE changes between −2.427 and 2.235, and all MAPE values are smaller than 1.2%. Total GHG emission is forecasted in DL algorithm with very satisfied R2, RMSE, MBE, rRMSE, and MAPE of 0.998, 2.046, 0.419, 0.406%, and 0.021%, respectively. On the other hand, CO2 accounted for 69.05% of total GHG emissions of Turkey in 1990 but rising by 80.48% in the year 2018. In comparison with those of 1990, electricity production and total GHG emissions of Turkey in 2018 increased by 429.7% and 137.4%, respectively. Total GHG emission corresponding to electricity production is calculated to be 0.3813 Mt-total GHG/MWh in 1990 and 0.1709 Mt-total GHG/MWh in 2018. In conclusion, GHG emissions have recently increased at a high rate, but it is noticed that this increase is considerably higher as compared to the increase in energy production for Turkey.
•Forecasted the GHG emissions using different machine learning algorithms.•Noticed a good correlation between GHG emissions and electricity production.•Increasing shares of both CO2 and F-gases among GHG emissions over the years.•Observed an increment of annum 6% for electricity production, annum 3% for GHG emissions in Turkey.•A respectable reduction in the country’s total GHG emissions per unit electricity production over the years. |
|---|---|
| AbstractList | Today, the world’s primary energy demand has been met by the burning of fossil-based fuels at a rate of 85%. This dominant use of fossil-based fuels has led to an accelerating increase in the release of greenhouse gases (GHG) all across the world. The largest share in total GHG emissions belongs to the electricity and heat production sector with a rate of 25%. With this viewpoint, this paper is aiming to forecast the GHG emissions (CO2, CH4, N2O, F-gases, and total GHG) using deep learning (DL), support vector machine (SVM), and artificial neural network (ANN) algorithms from the electricity production sector in Turkey. The dataset is supplied from the Turkish Statistical Institute and covers the years 1990–2018. In the study, the last four years (2015–2018) is being forecasted. To evaluate the performance success of the algorithms, five metrics (RMSE, MBE, rRMSE, R2, and MAPE) are discussed in detail. In the results, this research is reporting that all algorithms used in the study are giving separately satisfying results for the forecasting of GHG emissions in Turkey. Based on the forecasting results, it is seen that the highest R2 value for the emissions varies from 0.861 to 0.998 and all results are categorized as “excellent” in terms of rRMSE (all rRMSE values < 10%). Besides, MBE changes between −2.427 and 2.235, and all MAPE values are smaller than 1.2%. Total GHG emission is forecasted in DL algorithm with very satisfied R2, RMSE, MBE, rRMSE, and MAPE of 0.998, 2.046, 0.419, 0.406%, and 0.021%, respectively. On the other hand, CO2 accounted for 69.05% of total GHG emissions of Turkey in 1990 but rising by 80.48% in the year 2018. In comparison with those of 1990, electricity production and total GHG emissions of Turkey in 2018 increased by 429.7% and 137.4%, respectively. Total GHG emission corresponding to electricity production is calculated to be 0.3813 Mt-total GHG/MWh in 1990 and 0.1709 Mt-total GHG/MWh in 2018. In conclusion, GHG emissions have recently increased at a high rate, but it is noticed that this increase is considerably higher as compared to the increase in energy production for Turkey.
•Forecasted the GHG emissions using different machine learning algorithms.•Noticed a good correlation between GHG emissions and electricity production.•Increasing shares of both CO2 and F-gases among GHG emissions over the years.•Observed an increment of annum 6% for electricity production, annum 3% for GHG emissions in Turkey.•A respectable reduction in the country’s total GHG emissions per unit electricity production over the years. Today, the world’s primary energy demand has been met by the burning of fossil-based fuels at a rate of 85%. This dominant use of fossil-based fuels has led to an accelerating increase in the release of greenhouse gases (GHG) all across the world. The largest share in total GHG emissions belongs to the electricity and heat production sector with a rate of 25%. With this viewpoint, this paper is aiming to forecast the GHG emissions (CO₂, CH₄, N₂O, F-gases, and total GHG) using deep learning (DL), support vector machine (SVM), and artificial neural network (ANN) algorithms from the electricity production sector in Turkey. The dataset is supplied from the Turkish Statistical Institute and covers the years 1990–2018. In the study, the last four years (2015–2018) is being forecasted. To evaluate the performance success of the algorithms, five metrics (RMSE, MBE, rRMSE, R², and MAPE) are discussed in detail. In the results, this research is reporting that all algorithms used in the study are giving separately satisfying results for the forecasting of GHG emissions in Turkey. Based on the forecasting results, it is seen that the highest R² value for the emissions varies from 0.861 to 0.998 and all results are categorized as “excellent” in terms of rRMSE (all rRMSE values < 10%). Besides, MBE changes between −2.427 and 2.235, and all MAPE values are smaller than 1.2%. Total GHG emission is forecasted in DL algorithm with very satisfied R², RMSE, MBE, rRMSE, and MAPE of 0.998, 2.046, 0.419, 0.406%, and 0.021%, respectively. On the other hand, CO₂ accounted for 69.05% of total GHG emissions of Turkey in 1990 but rising by 80.48% in the year 2018. In comparison with those of 1990, electricity production and total GHG emissions of Turkey in 2018 increased by 429.7% and 137.4%, respectively. Total GHG emission corresponding to electricity production is calculated to be 0.3813 Mt-total GHG/MWh in 1990 and 0.1709 Mt-total GHG/MWh in 2018. In conclusion, GHG emissions have recently increased at a high rate, but it is noticed that this increase is considerably higher as compared to the increase in energy production for Turkey. |
| ArticleNumber | 125324 |
| Author | Bakay, Melahat Sevgül Ağbulut, Ümit |
| Author_xml | – sequence: 1 givenname: Melahat Sevgül orcidid: 0000-0001-6931-3281 surname: Bakay fullname: Bakay, Melahat Sevgül organization: Department of Biomedical Engineering, Faculty of Engineering, 81620, Duzce University, Turkey – sequence: 2 givenname: Ümit surname: Ağbulut fullname: Ağbulut, Ümit email: umitagbulut@duzce.edu.tr organization: Department of Mechanical Engineering, Faculty of Engineering, 81620, Duzce University, Turkey |
| BookMark | eNqFkc1uHCEQhFFkS1k7fgRLfcwhswHmhxnlEEWW8yNZysU-IwaaXdazMAHG1r5OntRs1qdcfGoJqqrVX12QMx88EnLN6JpR1n3erXd6wjmGNae8vPG25s07smK9GCom-u6MrOjQDlXX8u49uUhpRykTVDQr8vd2Qp2j0y4foESYRWcXPIwqoQEbImqVsvMbCBY2EdFvw5IQNioB7l1KRZzAebhf4iMe4NnlLRjEGSZU0RfjJ0jLPIeY4alsChH2Sm-dR1DegIrZ2bJcTeBxif9Gfg7xEdS0CbGE7dMHcm7VlPDqdV6Sh--39zc_q7vfP37dfLurdN0PuWpGIcZm4NQwZXqNjamHvmVKGSEEV3XdtxbZ2ApuaFOPwqLAIqWD5bWty_8l-XjKLRj-LJiyLPdpnCblsdwsectYQdoxWqRfTlIdQ0oRrSz81BFcjspNklF5bEbu5Gsz8tiMPDVT3O1_7jm6vYqHN31fTz4sFJ4cRpm0Q6_RuFJTlia4NxJeALvUssc |
| CitedBy_id | crossref_primary_10_1016_j_scs_2022_103886 crossref_primary_10_1007_s00202_024_02924_5 crossref_primary_10_3390_electronics12102288 crossref_primary_10_1007_s10098_023_02508_0 crossref_primary_10_1007_s00477_025_03099_6 crossref_primary_10_1016_j_enconman_2023_117563 crossref_primary_10_3390_jmmp7060199 crossref_primary_10_1016_j_rser_2021_111571 crossref_primary_10_1016_j_seta_2023_103019 crossref_primary_10_1007_s13762_024_06014_8 crossref_primary_10_3390_systems12120528 crossref_primary_10_1016_j_rser_2021_111338 crossref_primary_10_61435_ijred_2024_60119 crossref_primary_10_1016_j_measurement_2025_118395 crossref_primary_10_1016_j_energy_2023_127438 crossref_primary_10_1016_j_seppur_2023_125550 crossref_primary_10_1016_j_apenergy_2024_122824 crossref_primary_10_1016_j_energy_2021_122424 crossref_primary_10_3390_jrfm16060298 crossref_primary_10_1016_j_heliyon_2024_e31850 crossref_primary_10_3390_en16145383 crossref_primary_10_1016_j_fuproc_2022_107229 crossref_primary_10_2478_amns_2024_2905 crossref_primary_10_1016_j_hybadv_2024_100171 crossref_primary_10_1016_j_ecoinf_2024_102661 crossref_primary_10_1016_j_sftr_2025_100512 crossref_primary_10_1088_1755_1315_1156_1_012020 crossref_primary_10_1016_j_biombioe_2025_107816 crossref_primary_10_3389_fevo_2024_1362541 crossref_primary_10_1016_j_renene_2022_03_141 crossref_primary_10_1088_2515_7620_ad9086 crossref_primary_10_3390_cli10010009 crossref_primary_10_3390_en16093795 crossref_primary_10_1002_er_7341 crossref_primary_10_1007_s13369_021_06433_6 crossref_primary_10_1007_s11356_023_25545_0 crossref_primary_10_1016_j_ecoinf_2023_102253 crossref_primary_10_1007_s42044_024_00185_w crossref_primary_10_1016_j_tws_2023_110670 crossref_primary_10_1016_j_cej_2024_149079 crossref_primary_10_3390_su14084588 crossref_primary_10_1016_j_jclepro_2021_130341 crossref_primary_10_1080_08839514_2021_1995232 crossref_primary_10_3390_en15197222 crossref_primary_10_1016_j_ecoenv_2023_114911 crossref_primary_10_1080_10962247_2022_2028690 crossref_primary_10_1016_j_seta_2021_101853 crossref_primary_10_3390_bdcc9030071 crossref_primary_10_1016_j_spc_2021_10_001 crossref_primary_10_1016_j_scitotenv_2025_179678 crossref_primary_10_1016_j_jcis_2024_04_101 crossref_primary_10_3390_en15113985 crossref_primary_10_3390_su142315595 crossref_primary_10_1007_s11042_023_17278_6 crossref_primary_10_3390_su151511956 crossref_primary_10_1016_j_energy_2021_122603 crossref_primary_10_1108_HFF_03_2021_0160 crossref_primary_10_1002_adts_202301222 crossref_primary_10_1016_j_energy_2021_120548 crossref_primary_10_1080_15623599_2024_2304392 crossref_primary_10_1016_j_jobe_2024_109413 crossref_primary_10_1016_j_jenvman_2024_120335 crossref_primary_10_1016_j_jmrt_2025_05_112 crossref_primary_10_3390_en15103834 crossref_primary_10_1016_j_energy_2021_119942 crossref_primary_10_1007_s13762_022_04159_y crossref_primary_10_3390_su151914357 crossref_primary_10_1007_s11356_024_34654_3 crossref_primary_10_1016_j_asoc_2024_112155 crossref_primary_10_62660_bcstu_1_2024_73 crossref_primary_10_1038_s41598_025_91222_6 crossref_primary_10_1007_s11356_022_19786_8 crossref_primary_10_1111_ijac_15184 crossref_primary_10_1002_mop_70234 crossref_primary_10_1007_s11356_024_33460_1 crossref_primary_10_1515_cppm_2025_0115 crossref_primary_10_1016_j_esr_2022_101017 crossref_primary_10_3390_en15041392 crossref_primary_10_1007_s11356_022_23590_9 crossref_primary_10_1016_j_energy_2025_135981 crossref_primary_10_1007_s11356_023_31783_z crossref_primary_10_3390_pr10061157 crossref_primary_10_3390_su17114851 crossref_primary_10_1134_S1064562423701223 crossref_primary_10_3390_drones6090254 crossref_primary_10_1016_j_ecoinf_2024_102571 crossref_primary_10_1007_s12155_021_10375_0 crossref_primary_10_1007_s00500_023_08196_8 crossref_primary_10_1038_s41598_024_81380_4 crossref_primary_10_3389_fclim_2024_1457441 crossref_primary_10_1016_j_ecoinf_2025_103428 crossref_primary_10_1016_j_cie_2024_110195 crossref_primary_10_1080_15567036_2023_2231898 crossref_primary_10_1016_j_ijhydene_2023_09_130 crossref_primary_10_3390_en18185011 crossref_primary_10_1016_j_seta_2021_101703 crossref_primary_10_1080_15567036_2021_1910756 crossref_primary_10_3390_en17143373 crossref_primary_10_3390_ijerph191912709 crossref_primary_10_1007_s11356_022_20120_5 crossref_primary_10_1007_s11356_022_21723_8 crossref_primary_10_1016_j_eswa_2023_121636 crossref_primary_10_1016_j_fuel_2022_126976 crossref_primary_10_1016_j_est_2023_108133 crossref_primary_10_1109_JSYST_2023_3248658 crossref_primary_10_1016_j_ijepes_2024_110445 crossref_primary_10_3390_forecast6020026 crossref_primary_10_1007_s13762_022_04214_8 crossref_primary_10_1016_j_ref_2022_09_003 crossref_primary_10_1007_s10479_022_04857_3 crossref_primary_10_3390_ma18092101 crossref_primary_10_1016_j_jclepro_2024_140875 crossref_primary_10_3390_math13091481 crossref_primary_10_1109_ACCESS_2023_3302252 crossref_primary_10_3390_app14010389 crossref_primary_10_1108_JSIT_11_2022_0266 crossref_primary_10_1002_ese3_1065 crossref_primary_10_1016_j_energy_2024_132827 crossref_primary_10_1016_j_seta_2023_103109 crossref_primary_10_1109_ACCESS_2024_3390408 crossref_primary_10_1016_j_ceramint_2025_06_060 crossref_primary_10_1007_s10489_025_06292_w crossref_primary_10_1016_j_trd_2024_104276 crossref_primary_10_1016_j_aej_2025_01_019 crossref_primary_10_1002_ghg_2251 crossref_primary_10_1016_j_rcradv_2025_200263 crossref_primary_10_1007_s10661_024_13085_0 crossref_primary_10_1063_5_0083391 crossref_primary_10_3390_app13063832 crossref_primary_10_1016_j_biombioe_2025_107685 crossref_primary_10_1007_s11356_022_23780_5 crossref_primary_10_1111_exsy_12944 crossref_primary_10_1016_j_jclepro_2022_131946 crossref_primary_10_1108_JEIM_01_2022_0025 crossref_primary_10_1016_j_heliyon_2023_e20730 crossref_primary_10_1016_j_biombioe_2025_107969 crossref_primary_10_1007_s10098_024_02822_1 crossref_primary_10_3389_fenrg_2024_1408119 crossref_primary_10_1007_s11269_022_03381_0 crossref_primary_10_1016_j_compeleceng_2023_108885 crossref_primary_10_1016_j_ijhydene_2024_01_284 crossref_primary_10_1002_ese3_1906 crossref_primary_10_1016_j_trpro_2024_12_017 crossref_primary_10_1038_s41598_023_31022_y crossref_primary_10_1016_j_enbuild_2021_111820 crossref_primary_10_1016_j_eurpolymj_2021_110770 crossref_primary_10_1016_j_solener_2021_02_028 crossref_primary_10_1016_j_jobe_2021_103097 crossref_primary_10_2516_stet_2024014 crossref_primary_10_1080_0954898X_2024_2429721 crossref_primary_10_1177_09544062211052824 crossref_primary_10_1007_s00521_024_09742_7 crossref_primary_10_1016_j_gr_2023_10_003 crossref_primary_10_1016_j_energy_2021_120611 crossref_primary_10_1007_s10973_022_11896_2 crossref_primary_10_1016_j_ijhydene_2021_08_186 crossref_primary_10_1007_s10973_024_13879_x crossref_primary_10_1016_j_apenergy_2023_121608 crossref_primary_10_1016_j_comptc_2024_114753 |
| Cites_doi | 10.1016/j.enconman.2020.112520 10.1016/j.agwat.2020.106121 10.30939/ijastech..771789 10.1016/j.rser.2019.01.040 10.1016/j.eswa.2014.01.032 10.3390/w12010145 10.1016/j.energy.2020.117257 10.1002/er.1676 10.1111/ced.14029 10.1111/mice.12313 10.1016/j.rser.2020.109945 10.1016/j.scitotenv.2020.140338 10.1016/j.jclepro.2017.06.167 10.1016/j.jestch.2017.12.010 10.1016/j.energy.2009.02.005 10.1080/15567030802089086 10.1016/S0360-5442(03)00160-9 10.1007/s11425-010-0018-6 10.1016/j.ins.2014.12.031 10.1016/j.jclepro.2019.02.211 10.1111/j.1469-8749.2012.04312.x 10.1016/j.jclepro.2019.119492 10.3390/en11040781 10.1080/07373937.2016.1271338 10.1016/j.jclepro.2020.122353 10.1016/j.mehy.2020.109603 10.1016/j.csite.2014.02.001 10.1590/0101-7438.2016.036.02.0321 10.1016/j.asoc.2015.11.013 10.1016/j.fuel.2019.116608 10.1016/j.enconman.2017.11.085 10.1016/j.enconman.2013.06.034 10.1016/j.rser.2009.10.020 10.16984/saufenbilder.630482 10.1016/j.rser.2015.09.018 10.15244/pjoes/94619 10.1016/j.renene.2013.05.034 10.1016/j.energy.2016.10.068 10.1016/j.enbuild.2014.08.003 10.1016/j.jclepro.2019.05.108 10.1016/j.enmm.2020.100343 10.29130/dubited.659106 10.1080/15567249.2013.830662 10.3390/su10082626 10.1016/j.jclepro.2016.02.053 10.1016/j.ijhydene.2017.01.012 10.1186/s40537-014-0007-7 10.1109/TPAMI.2018.2858821 10.1590/S0006-87052012000400016 10.1016/j.jclepro.2019.119672 10.1016/j.solener.2020.04.030 10.23919/PSCC.2018.8442500 10.1016/j.energy.2019.116502 10.1016/j.energy.2019.03.056 10.1016/j.eswa.2011.01.085 10.1016/j.jclepro.2019.118079 10.1007/s00521-019-04182-0 10.1016/j.jclepro.2017.06.016 10.1016/j.rser.2020.110114 10.3390/su11010107 10.1080/09644016.2019.1661155 10.1016/j.applthermaleng.2017.03.126 10.1016/j.enpol.2007.08.024 10.1016/j.renene.2012.06.051 10.1109/TGRS.2017.2693346 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2020.125324 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2020_125324 S0959652620353695 |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c389t-4b77b4920d1ad8ce4d39851aad7772a3385fe1b572d043b7fe7ed1a09f23f3a33 |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000611934600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Thu Oct 02 09:55:35 EDT 2025 Sat Nov 29 07:07:13 EST 2025 Tue Nov 18 21:39:29 EST 2025 Fri Feb 23 02:48:21 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CO2 emission Greenhouse gases Electricity production GHG Machine learning algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c389t-4b77b4920d1ad8ce4d39851aad7772a3385fe1b572d043b7fe7ed1a09f23f3a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6931-3281 |
| OpenAccessLink | https://hdl.handle.net/20.500.12684/10125 |
| PQID | 2511187610 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2511187610 crossref_citationtrail_10_1016_j_jclepro_2020_125324 crossref_primary_10_1016_j_jclepro_2020_125324 elsevier_sciencedirect_doi_10_1016_j_jclepro_2020_125324 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-20 |
| PublicationDateYYYYMMDD | 2021-02-20 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fan, Wu, Zhang, Cai, Ma, Bai (bib38) 2019; 105 Kumbaroğlu, Or, Işik (bib55) 2017; 14 Chen, Xiyu, Baosen (bib29) 2018 Mei (bib62) 2017; 55 Erdogan, Kaya (bib33) 2015 British Petrol (BP) (bib23) November 11, 2018 Chen, Lee (bib27) 2015; 299 Ağbulut, Bakir (bib10) 2019; 7 Sözen, Gülseven, Arcaklioğlu (bib91) 2009; 31 Yilmaz, Yilmaz (bib113) 2013; 31 Thisted, Thisted (bib97) 2020; 29 Weston (bib109) 2012 Uysal, Korkmaz (bib105) 2019; 22 Ntanos, Skordoulis, Kyriakopoulos, Arabatzis, Chalikias, Galatsidas, Batzios, Katsarou (bib69) 2018; 10 Kurtgoz, Karagoz, Deniz (bib56) 2017; 20 Senturk (bib85) 2020; 24 Amarasinghe, Marino, Manic (bib4) 2017, June Zhou, Wei, Lin, Tian, Lev, Wang (bib119) 2020 (bib32) 2018 Erdogdu (bib34) 2010; 14 Miyato (bib66) 2018; 41 Yamaç, Şeker, Negiş (bib112) 2020; 234 Abbasi, Luithui, Abbasi (bib1) 2020; 12 Sun, Jin, Wang (bib94) 2019; 28 United Nations (bib103) 2020 bib104 Zang, Cheng, Ding, Cheung, Wang, Wei, Sun (bib116) 2020; 191 Yıldız, Çalışkan, Gürel, Ceylan (bib115) 2020 Ağbulut, Gürel, Biçen (bib13) 2021; 135 Bakirci (bib15) 2009; 34 (bib63) November 11, 2018 Verma, Nashine, Singh, Singh, Panwar (bib106) 2017; 120 Sözen, Gülseven, Arcaklioğlu (bib90) 2007; 35 Topcu, Ulengin (bib98) 2004; 29 Basarslan, Kayaalp (bib17) 2018, October Shrivastava, Salam, Verma, Samuel (bib89) 2020; 262 Lin, Nie, Ma (bib57) 2017; 32 Najafabadi (bib67) 2015; 2 Swinscow, Douglas, Michael (bib95) 2002 Turkstat (bib102) 2020 Syal, Garg (bib96) 2014; 4 (bib49) 2014 Park, Kim, Lee (bib76) 2014; 41 Benli (bib20) 2013; 50 Karagöz (bib51) 2020; 4 Manju, Sandeep (bib61) 2019; 230 Aslam, Xue, Wang, Chen, Zhang, Cai, Pan (bib6) 2020; 12 Salam, Verma (bib82) 2020; 207 Sun, Wang, Zhang (bib93) 2017; 162 Tuncer, Sözen, Khanlari, Amini, Şirin (bib100) 2020; 203 Hamzacebi, Karakurt (bib43) 2015; 37 Sever, Bağdadioğlu (bib88) 2016 Turkstat (bib101) 2020 Berber, Gürdal, Bağırsakçı (bib22) 2020 Şahin (bib81) 2019; 239 Ofosu-Adarkwa, Xie, Javed (bib70) 2020; 130 Chen, Li, Wu (bib28) 2013; 75 Ayvaz, Kusakci, Temur (bib8) 2017 Heinemann, Van Oort, Fernandes, Maia (bib46) 2012; 71 bib79 Fan, Wang, Wu, Zhang, Bai, Lu, Xiang (bib37) 2018; 156 Özdemir, Aktaş, Şevik, Khanlari (bib72) 2017; 42 Hasan, Ullah, Khan, Khurshid (bib45) 2019 Ozcan (bib71) 2016; 53 Senturk, Kara (bib87) 2014; 4 Hamrani, Akbarzadeh, Madramootoo (bib42) 2020; 741 Zhao, Huang, Yan (bib118) 2018; 11 Ergün, Ceylan, Acar, Erkaymaz (bib36) 2017; 35 Mitchell (bib65) 2006; vol. 9 Basarslan, Kayaalp (bib18) 2021; vol. 908 Ağbulut, Ayyıldız, Sarıdemir (bib12) 2020 MFA (bib64) 2020 Wen, Cao (bib108) 2020; 250 Collazo, Pessôa, Bahiense, Pereira, Reis (bib30) 2016; 36 (bib48) 2019; vols. 105–118 Ding, Dang, Li, Wang, Zhao (bib31) 2017; 162 Koca, Oztop, Varol, Koca (bib54) 2011; 38 Farhat, Ugursal (bib39) 2010; 34 Başarslan, Argun (bib16) 2019, April Kayaalp, Basarslan, Polat (bib52) 2018 Sen, Roy, Pal (bib83) 2016; 116 Ağbulut, Ceylan, Gürel, Ergün (bib11) 2019 Ağbulut (bib9) 2019; 41 Pabuçcu, Bayramoğlu (bib75) 2016; 18 Yusuf, Ibrahim, Saleh, Ridho, Isk (bib114) 2016; 8 Senturk (bib84) 2020; 138 Ceylan, Gedik, Erkaymaz, Gürel (bib26) 2014; 84 Şentürk, Çekiç (bib86) 2020; 8 Hamzacebi, Karakurt (bib44) 2015; 37 Torabi, Mosavi, Ozturk, Varkonyi-Koczy, Istvan (bib99) 2018, September Gouda, Hussein, Luo, Yuan (bib40) 2019; 221 Erdoğan, Kaya (bib35) 2016; 39 Amarpuri, Yadav, Kumar, Agrawal (bib5) 2019, August; IC3 Berber, Tinkir (bib21) 2011; 6 Wei, He, Li, Li (bib107) 2020; 32 Çelikler (bib24) 2013; 60 Ceylan, Erkaymaz, Gedik, Gürel (bib25) 2014; 3 (bib80) 2010 Ozturk, Ozturk (bib74) 2018; 8 Quan, Hao, Xifeng, Jingchun (bib77) 2020 Özhan (bib73) 2020; 19 Lu, Wagner, Pitta, Larson, Allebach (bib60) 2014; vol. 9015 Ağbulut, Gürel, Sarıdemir (bib14) 2021 Akbaş, Canikli (bib2) 2019; 11 Gürel, Ağbulut, Biçen (bib41) 2020 Lotfalipour, Falahi, Bastam (bib59) 2013; 3 Aydin (bib7) 2015; 10 Khanlari, Sözen, Şirin, Tuncer, Gungor (bib53) 2020; 251 Radojević, Pocajt, Popović, Perić-Grujić, Ristić (bib78) 2013; 35 Basarslan, Bakir, Yücedağ (bib19) 2019, April Alpaydin (bib3) 2020; vol. 4 Zhang, Tian, Deng (bib117) 2010; 53 Jakhar, Kaur (bib50) 2020; 45 Sun, Liu (bib92) 2016; 122 Xu, Ding, Gong, Bai (bib111) 2019; 175 Namboori (bib68) 2020 Hidecker, Ho, Dodge, Hurvitz, Slaughter, Workinger (bib47) 2012; 54 Ağbulut (10.1016/j.jclepro.2020.125324_bib14) 2021 Senturk (10.1016/j.jclepro.2020.125324_bib85) 2020; 24 Yamaç (10.1016/j.jclepro.2020.125324_bib112) 2020; 234 Ağbulut (10.1016/j.jclepro.2020.125324_bib9) 2019; 41 Şentürk (10.1016/j.jclepro.2020.125324_bib86) 2020; 8 Çelikler (10.1016/j.jclepro.2020.125324_bib24) 2013; 60 Fan (10.1016/j.jclepro.2020.125324_bib37) 2018; 156 Weston (10.1016/j.jclepro.2020.125324_bib109) 2012 Radojević (10.1016/j.jclepro.2020.125324_bib78) 2013; 35 Verma (10.1016/j.jclepro.2020.125324_bib106) 2017; 120 Collazo (10.1016/j.jclepro.2020.125324_bib30) 2016; 36 Lotfalipour (10.1016/j.jclepro.2020.125324_bib59) 2013; 3 Manju (10.1016/j.jclepro.2020.125324_bib61) 2019; 230 Fan (10.1016/j.jclepro.2020.125324_bib38) 2019; 105 Ceylan (10.1016/j.jclepro.2020.125324_bib26) 2014; 84 (10.1016/j.jclepro.2020.125324_bib63) 2018 Erdogan (10.1016/j.jclepro.2020.125324_bib33) 2015 (10.1016/j.jclepro.2020.125324_bib80) 2010 Sözen (10.1016/j.jclepro.2020.125324_bib90) 2007; 35 Sun (10.1016/j.jclepro.2020.125324_bib92) 2016; 122 Aydin (10.1016/j.jclepro.2020.125324_bib7) 2015; 10 Chen (10.1016/j.jclepro.2020.125324_bib29) 2018 Ağbulut (10.1016/j.jclepro.2020.125324_bib10) 2019; 7 Alpaydin (10.1016/j.jclepro.2020.125324_bib3) 2020; vol. 4 Jakhar (10.1016/j.jclepro.2020.125324_bib50) 2020; 45 Hasan (10.1016/j.jclepro.2020.125324_bib45) 2019 Ozturk (10.1016/j.jclepro.2020.125324_bib74) 2018; 8 Yıldız (10.1016/j.jclepro.2020.125324_bib115) 2020 Xu (10.1016/j.jclepro.2020.125324_bib111) 2019; 175 Berber (10.1016/j.jclepro.2020.125324_bib21) 2011; 6 Zhou (10.1016/j.jclepro.2020.125324_bib119) 2020 Kayaalp (10.1016/j.jclepro.2020.125324_bib52) 2018 Syal (10.1016/j.jclepro.2020.125324_bib96) 2014; 4 Zang (10.1016/j.jclepro.2020.125324_bib116) 2020; 191 Ceylan (10.1016/j.jclepro.2020.125324_bib25) 2014; 3 Ağbulut (10.1016/j.jclepro.2020.125324_bib13) 2021; 135 Wen (10.1016/j.jclepro.2020.125324_bib108) 2020; 250 Quan (10.1016/j.jclepro.2020.125324_bib77) 2020 Ağbulut (10.1016/j.jclepro.2020.125324_bib12) 2020 Uysal (10.1016/j.jclepro.2020.125324_bib105) 2019; 22 Thisted (10.1016/j.jclepro.2020.125324_bib97) 2020; 29 Namboori (10.1016/j.jclepro.2020.125324_bib68) 2020 (10.1016/j.jclepro.2020.125324_bib49) 2014 Ağbulut (10.1016/j.jclepro.2020.125324_bib11) 2019 Heinemann (10.1016/j.jclepro.2020.125324_bib46) 2012; 71 Senturk (10.1016/j.jclepro.2020.125324_bib84) 2020; 138 Lu (10.1016/j.jclepro.2020.125324_bib60) 2014; vol. 9015 Şahin (10.1016/j.jclepro.2020.125324_bib81) 2019; 239 Shrivastava (10.1016/j.jclepro.2020.125324_bib89) 2020; 262 Benli (10.1016/j.jclepro.2020.125324_bib20) 2013; 50 Erdoğan (10.1016/j.jclepro.2020.125324_bib35) 2016; 39 Basarslan (10.1016/j.jclepro.2020.125324_bib17) 2018 Najafabadi (10.1016/j.jclepro.2020.125324_bib67) 2015; 2 Topcu (10.1016/j.jclepro.2020.125324_bib98) 2004; 29 Hamzacebi (10.1016/j.jclepro.2020.125324_bib43) 2015; 37 Zhang (10.1016/j.jclepro.2020.125324_bib117) 2010; 53 Basarslan (10.1016/j.jclepro.2020.125324_bib18) 2021; vol. 908 Amarpuri (10.1016/j.jclepro.2020.125324_bib5) 2019; IC3 Mei (10.1016/j.jclepro.2020.125324_bib62) 2017; 55 Senturk (10.1016/j.jclepro.2020.125324_bib87) 2014; 4 Özdemir (10.1016/j.jclepro.2020.125324_bib72) 2017; 42 Koca (10.1016/j.jclepro.2020.125324_bib54) 2011; 38 Swinscow (10.1016/j.jclepro.2020.125324_bib95) 2002 Hidecker (10.1016/j.jclepro.2020.125324_bib47) 2012; 54 Gouda (10.1016/j.jclepro.2020.125324_bib40) 2019; 221 Zhao (10.1016/j.jclepro.2020.125324_bib118) 2018; 11 Hamrani (10.1016/j.jclepro.2020.125324_bib42) 2020; 741 Sen (10.1016/j.jclepro.2020.125324_bib83) 2016; 116 Sun (10.1016/j.jclepro.2020.125324_bib94) 2019; 28 Torabi (10.1016/j.jclepro.2020.125324_bib99) 2018 Ayvaz (10.1016/j.jclepro.2020.125324_bib8) 2017 Park (10.1016/j.jclepro.2020.125324_bib76) 2014; 41 Sever (10.1016/j.jclepro.2020.125324_bib88) 2016 Karagöz (10.1016/j.jclepro.2020.125324_bib51) 2020; 4 Erdogdu (10.1016/j.jclepro.2020.125324_bib34) 2010; 14 Kumbaroğlu (10.1016/j.jclepro.2020.125324_bib55) 2017; 14 Ergün (10.1016/j.jclepro.2020.125324_bib36) 2017; 35 Khanlari (10.1016/j.jclepro.2020.125324_bib53) 2020; 251 Başarslan (10.1016/j.jclepro.2020.125324_bib16) 2019 Aslam (10.1016/j.jclepro.2020.125324_bib6) 2020; 12 Basarslan (10.1016/j.jclepro.2020.125324_bib19) 2019 Chen (10.1016/j.jclepro.2020.125324_bib28) 2013; 75 Yilmaz (10.1016/j.jclepro.2020.125324_bib113) 2013; 31 Turkstat (10.1016/j.jclepro.2020.125324_bib102) 2020 Gürel (10.1016/j.jclepro.2020.125324_bib41) 2020 United Nations (10.1016/j.jclepro.2020.125324_bib103) Miyato (10.1016/j.jclepro.2020.125324_bib66) 2018; 41 Pabuçcu (10.1016/j.jclepro.2020.125324_bib75) 2016; 18 British Petrol (BP) (10.1016/j.jclepro.2020.125324_bib23) Ofosu-Adarkwa (10.1016/j.jclepro.2020.125324_bib70) 2020; 130 Sun (10.1016/j.jclepro.2020.125324_bib93) 2017; 162 Hamzacebi (10.1016/j.jclepro.2020.125324_bib44) 2015; 37 Kurtgoz (10.1016/j.jclepro.2020.125324_bib56) 2017; 20 Lin (10.1016/j.jclepro.2020.125324_bib57) 2017; 32 Özhan (10.1016/j.jclepro.2020.125324_bib73) 2020; 19 Ding (10.1016/j.jclepro.2020.125324_bib31) 2017; 162 Mitchell (10.1016/j.jclepro.2020.125324_bib65) 2006; vol. 9 Yusuf (10.1016/j.jclepro.2020.125324_bib114) 2016; 8 Amarasinghe (10.1016/j.jclepro.2020.125324_bib4) 2017 Tuncer (10.1016/j.jclepro.2020.125324_bib100) 2020; 203 MFA (10.1016/j.jclepro.2020.125324_bib64) 2020 Ozcan (10.1016/j.jclepro.2020.125324_bib71) 2016; 53 Abbasi (10.1016/j.jclepro.2020.125324_bib1) 2020; 12 Akbaş (10.1016/j.jclepro.2020.125324_bib2) 2019; 11 Chen (10.1016/j.jclepro.2020.125324_bib27) 2015; 299 (10.1016/j.jclepro.2020.125324_bib48) 2019; vols. 105–118 Berber (10.1016/j.jclepro.2020.125324_bib22) 2020 Ntanos (10.1016/j.jclepro.2020.125324_bib69) 2018; 10 Salam (10.1016/j.jclepro.2020.125324_bib82) 2020; 207 Sözen (10.1016/j.jclepro.2020.125324_bib91) 2009; 31 Turkstat (10.1016/j.jclepro.2020.125324_bib101) 2020 Bakirci (10.1016/j.jclepro.2020.125324_bib15) 2009; 34 Farhat (10.1016/j.jclepro.2020.125324_bib39) 2010; 34 Wei (10.1016/j.jclepro.2020.125324_bib107) 2020; 32 |
| References_xml | – volume: 24 start-page: 424 year: 2020 end-page: 431 ident: bib85 article-title: Artificial Neural Networks based decision support system for the detection of diabetic retinopathy publication-title: Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi – volume: 234 start-page: 106121 year: 2020 ident: bib112 article-title: Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area publication-title: Agric. Water Manag. – volume: 221 start-page: 132 year: 2019 end-page: 144 ident: bib40 article-title: Model selection for accurate daily global solar radiation prediction in China publication-title: J. Clean. Prod. – volume: 3 start-page: 229 year: 2013 ident: bib59 article-title: Prediction of CO2 emissions in Iran using grey and ARIMA models publication-title: Int. J. Energy Econ. Pol. – year: 2021 ident: bib14 article-title: Experimental Investigation and Prediction of Performance and Emission Responses of a CI Engine Fueled with Different Metal-Oxide Based Nanoparticles–Diesel Blends Using Different Machine Learning Algorithms – year: 2020 ident: bib68 article-title: Forecasting Carbon Dioxide Emissions in the United States Using Machine Learning – volume: 122 start-page: 144 year: 2016 end-page: 153 ident: bib92 article-title: Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China publication-title: J. Clean. Prod. – volume: 299 start-page: 99 year: 2015 end-page: 116 ident: bib27 article-title: A weighted LS-SVM based learning system for time series forecasting publication-title: Inf. Sci. – volume: 12 start-page: 145 year: 2020 ident: bib1 article-title: A model to forecast methane emissions from topical and subtropical reservoirs on the basis of artificial neural networks publication-title: Water – volume: 162 start-page: 1527 year: 2017 end-page: 1538 ident: bib31 article-title: Forecasting Chinese CO publication-title: J. Clean. Prod. – volume: 262 start-page: 116608 year: 2020 ident: bib89 article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel publication-title: Fuel – volume: 42 start-page: 18005 year: 2017 end-page: 18013 ident: bib72 article-title: Modeling of a convective-infrared kiwifruit drying process publication-title: Int. J. Hydrogen Energy – volume: 14 year: 2010 ident: bib34 article-title: Turkish support to Kyoto Protocol: a reality or just an illusion publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 1141 year: 2009 end-page: 1159 ident: bib91 article-title: Estimation of GHG emissions in Turkey using energy and economic indicators publication-title: Energy Sources, Part A – start-page: 102295 year: 2020 ident: bib119 article-title: Supply Chain Management under Carbon Taxes: A Review and Bibliometric Analysis – volume: 32 start-page: 1025 year: 2017 end-page: 1046 ident: bib57 article-title: Structural damage detection with automatic feature-extraction through deep learning publication-title: Comput. Aided Civ. Infrastruct. Eng. – start-page: 1 year: 2018, October end-page: 5 ident: bib17 article-title: A hybrid classification example in the diagnosis of skin disease with cryotherapy and immunotherapy treatment publication-title: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) – volume: 2 start-page: 1 year: 2015 ident: bib67 article-title: Deep learning applications and challenges in big data analytics publication-title: Journal of Big Data – volume: 75 start-page: 311 year: 2013 end-page: 318 ident: bib28 article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration publication-title: Energy Convers. Manag. – volume: 203 start-page: 304 year: 2020 end-page: 316 ident: bib100 article-title: Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer publication-title: Sol. Energy – volume: vols. 105–118 year: 2019 ident: bib48 publication-title: Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts: New Technologies, Challenges and Opportunities – volume: 14 start-page: 149 year: 2017 end-page: 174 ident: bib55 article-title: Karbon vergisi ile sera gazı emisyonlarının azaltımı: türkiye vakası publication-title: Uluslararası İlişkiler/International Relations – volume: 4 start-page: 180 year: 2020 end-page: 184 ident: bib51 article-title: ANN based prediction of engine performance and exhaust emission Re-sponses of a CI engine powered by ternary blends publication-title: International Journal of Automotive Science and Technology – volume: 18 start-page: 762 year: 2016 ident: bib75 article-title: Yapay sinir ağları i?le Co2 emisyonu tahmini: türkiye örneği publication-title: Gazi Universitesi Iktisadi ve Idari Bilimler Fakultesi Dergisi – start-page: 1 year: 2020 end-page: 10 ident: bib77 article-title: Research on water temperature prediction based on improved support vector regression publication-title: Neural Comput. Appl. – year: 2020 ident: bib101 – volume: 34 start-page: 1309 year: 2010 end-page: 1327 ident: bib39 article-title: Greenhouse gas emission intensity factors for marginal electricity generation in Canada publication-title: Int. J. Energy Res. – start-page: 117257 year: 2020 ident: bib12 article-title: Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures publication-title: Energy – year: November 11, 2018 ident: bib23 – volume: 207 start-page: 112520 year: 2020 ident: bib82 article-title: Analysis of significance of variables in IC engine operation: an empirical methodology publication-title: Energy Convers. Manag. – volume: 71 start-page: 572 year: 2012 end-page: 582 ident: bib46 article-title: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation publication-title: Bragantia – volume: 7 start-page: 25 year: 2019 end-page: 36 ident: bib10 article-title: The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines publication-title: Duzce University Journal of Science and Technology – volume: 28 year: 2019 ident: bib94 article-title: Predicting and analyzing CO 2 emissions based on an improved least squares support vector machine publication-title: Pol. J. Environ. Stud. – start-page: 639 year: 2012 end-page: 655 ident: bib109 article-title: "Deep Learning via Semi-supervised embedding." Neural Networks: Tricks of the Trade – volume: IC3 start-page: 1 year: 2019, August end-page: 6 ident: bib5 article-title: Prediction of CO 2 emissions using deep learning hybrid approach: a Case Study in Indian Context publication-title: 2019 Twelfth International Conference on Contemporary Computing – volume: 37 start-page: 1023 year: 2015 end-page: 1031 ident: bib43 article-title: Forecasting the energy-related CO2 emissions of Turkey using a grey prediction model publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: 116 start-page: 1031 year: 2016 end-page: 1038 ident: bib83 article-title: Application of ARIMA for forecasting energy consumption and GHG emission: a case study of an Indian pig iron manufacturing organization publication-title: Energy – volume: 35 start-page: 6491 year: 2007 end-page: 6505 ident: bib90 article-title: Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies publication-title: Energy Pol. – volume: 19 start-page: 282 year: 2020 end-page: 289 ident: bib73 article-title: Yapay sinir ağları ve üstel düzleştirme yöntemi ile türkiye’deki CO2 emisyonunun zaman serisi ile tahmini publication-title: Avrupa Bilim ve Teknoloji Dergisi – year: 2020 ident: bib102 – start-page: 1 year: 2018 end-page: 4 ident: bib52 article-title: April). A hybrid classification example in describing chronic kidney disease publication-title: 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) – volume: 29 start-page: 804 year: 2020 end-page: 824 ident: bib97 article-title: The diffusion of carbon taxes and emission trading schemes: the emerging norm of carbon pricing publication-title: Environ. Polit. – volume: 10 start-page: 176 year: 2015 end-page: 182 ident: bib7 article-title: The development and validation of regression models to predict energy-related CO2 emissions in Turkey publication-title: Energy Sources B Energy Econ. Plann. – volume: 191 start-page: 116502 year: 2020 ident: bib116 article-title: Application of functional deep belief network for estimating daily global solar radiation: a case study in China publication-title: Energy – volume: 55 start-page: 4520 year: 2017 end-page: 4533 ident: bib62 article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 8 start-page: 1604 year: 2020 end-page: 1611 ident: bib86 article-title: A machine learning based early diagnosis system for mesothelioma disease publication-title: Düzce Üniversitesi Bilim ve Teknoloji Dergisi – volume: 175 start-page: 218 year: 2019 end-page: 227 ident: bib111 article-title: Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model publication-title: Energy – year: 2017 ident: bib8 article-title: Energy-related CO2 Emission Forecast for Turkey and Europe and Eurasia: A Discrete Grey Model Approach – volume: 60 start-page: 343 year: 2013 end-page: 348 ident: bib24 article-title: Awareness about renewable energy of pre-service science teachers in Turkey publication-title: Renew. Energy – volume: 120 start-page: 219 year: 2017 end-page: 227 ident: bib106 article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes publication-title: Appl. Therm. Eng. – volume: 10 start-page: 2626 year: 2018 ident: bib69 article-title: Renewable energy and economic growth: evidence from European countries publication-title: Sustainability – start-page: 100343 year: 2020 ident: bib115 article-title: Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels publication-title: Environmental Nanotechnology, Monitoring & Management – volume: 31 start-page: 141 year: 2013 end-page: 148 ident: bib113 article-title: Forecasting CO2 emissions for Turkey by using the grey prediction method publication-title: Sigma – year: 2019 ident: bib45 article-title: Comparative Analysis of Svm, Ann and Cnn for Classifying Vegetation Species Using Hyperspectral Thermal Infrared Data. International Archives of the Photogrammetry – volume: 105 start-page: 168 year: 2019 end-page: 186 ident: bib38 article-title: Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China publication-title: Renew. Sustain. Energy Rev. – start-page: 787 year: 2019, April end-page: 800 ident: bib19 article-title: Fuzzy logic and correlation-based hybrid classification on hepatitis disease data set publication-title: The International Conference on Artificial Intelligence and Applied Mathematics in Engineering – year: 2020 ident: bib103 article-title: United Nations climate change – volume: 11 start-page: 781 year: 2018 ident: bib118 article-title: Forecasting energy-related CO2 emissions employing a novel SSA-LSSVM model: considering structural factors in China publication-title: Energies – volume: 35 start-page: 1711 year: 2017 end-page: 1720 ident: bib36 article-title: Energy–exergy–ANN analyses of solar-assisted fluidized bed dryer publication-title: Dry. Technol. – volume: 6 start-page: 3979 year: 2011 end-page: 3992 ident: bib21 article-title: Prediction of a diesel engine characteristics by using different modelling techniques publication-title: Int. J. Phys. Sci. – volume: 29 start-page: 137 year: 2004 end-page: 154 ident: bib98 article-title: Energy for the future: an integrated decision aid for the case of Turkey publication-title: Energy – volume: 53 start-page: 151 year: 2010 end-page: 164 ident: bib117 article-title: The new interpretation of support vector machines on statistical learning theory publication-title: Sci. China, Ser. A: Mathematics – volume: vol. 9 year: 2006 ident: bib65 publication-title: The Discipline of Machine Learning – start-page: 1 year: 2019 end-page: 9 ident: bib11 article-title: The history of greenhouse gas emissions and relation with the nuclear energy policy for Turkey publication-title: Int. J. Ambient Energy – volume: 50 start-page: 33 year: 2013 end-page: 46 ident: bib20 article-title: Potential of renewable energy in electrical energy production and sustainable energy development of Turkey: performance and policies publication-title: Renew. Energy – volume: 39 start-page: 84 year: 2016 end-page: 93 ident: bib35 article-title: A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey publication-title: Appl. Soft Comput. – year: 2020 ident: bib64 article-title: Republic of Turkey Ministry of Foreign – volume: 162 start-page: 1095 year: 2017 end-page: 1101 ident: bib93 article-title: Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization publication-title: J. Clean. Prod. – volume: 250 start-page: 119492 year: 2020 ident: bib108 article-title: Influencing factors analysis and forecasting of residential energy-related CO publication-title: J. Clean. Prod. – volume: 130 start-page: 109945 year: 2020 ident: bib70 article-title: Forecasting CO2 emissions of China’s cement industry using a hybrid Verhulst-GM (1, N) model and emissions’ technical conversion publication-title: Renew. Sustain. Energy Rev. – volume: 12 start-page: 1 year: 2020 end-page: 13 ident: bib6 article-title: SVM based classification and prediction system for gastric cancer using dominant features of saliva publication-title: Nano Biomed. Eng – year: 2015 ident: bib33 article-title: An Integrated Multi-Criteria Decision-Making Methodology Based on Type-2 Fuzzy Sets for Selection Among Energy Alternatives in Turkey – volume: 156 start-page: 618 year: 2018 end-page: 625 ident: bib37 article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China publication-title: Energy Convers. Manag. – volume: 741 start-page: 140338 year: 2020 ident: bib42 article-title: Machine learning for predicting greenhouse gas emissions from agricultural soils publication-title: Sci. Total Environ. – volume: vol. 908 year: 2021 ident: bib18 article-title: Performance evaluation of classification algorithms on diagnosis of breast cancer and skin disease publication-title: Deep Learning for Cancer Diagnosis. Studies in Computational Intelligence – ident: bib104 – volume: 3 start-page: 11 year: 2014 end-page: 20 ident: bib25 article-title: The prediction of photovoltaic module temperature with artificial neural networks publication-title: Case Studies in Thermal Engineering – year: 2014 ident: bib49 article-title: The Intergovernmental Panel on Climate Change, 2014 Mitigation of Climate Change Report – volume: 239 start-page: 118079 year: 2019 ident: bib81 article-title: Forecasting of Turkey’s greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization publication-title: J. Clean. Prod. – volume: 135 start-page: 110114 year: 2021 ident: bib13 article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison publication-title: Renew. Sustain. Energy Rev. – volume: 37 start-page: 1023 year: 2015 end-page: 1031 ident: bib44 article-title: Forecasting the energy-related CO2 emissions of Turkey using a grey prediction model publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: 20 start-page: 1563 year: 2017 end-page: 1570 ident: bib56 article-title: Biogas engine performance estimation using ANN publication-title: Engineering science and technology, an international journal – volume: 11 start-page: 107 year: 2019 ident: bib2 article-title: Determinants of voluntary greenhouse gas emission disclosure: an empirical investigation on Turkish firms publication-title: Sustainability – start-page: 122353 year: 2020 ident: bib41 article-title: Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation publication-title: J. Clean. Prod. – year: 2010 ident: bib80 publication-title: Methane and Climate Change – start-page: 1 year: 2020 end-page: 17 ident: bib22 article-title: Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network publication-title: Exp. Heat Tran. – volume: 38 start-page: 8756 year: 2011 end-page: 8762 ident: bib54 article-title: Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey publication-title: Expert Syst. Appl. – volume: 4 start-page: 477 year: 2014 end-page: 481 ident: bib96 article-title: Text extraction in images using dwt, gradient method and svm classifier publication-title: International Journal of Emerging Technology and Advanced Engineering – volume: 4 start-page: 35 year: 2014 ident: bib87 article-title: Breast cancer diagnosis via data mining: performance analysis of seven different algorithms publication-title: Comput. Sci. Eng. – volume: 230 start-page: 116 year: 2019 end-page: 128 ident: bib61 article-title: Prediction and performance assessment of global solar radiation in Indian cities: a comparison of satellite and surface measured data publication-title: J. Clean. Prod. – volume: 54 start-page: 737 year: 2012 end-page: 742 ident: bib47 article-title: Inter-relationships of functional status in cerebral palsy: analyzing gross motor function, manual ability, and communication function classification systems in children publication-title: Dev. Med. Child Neurol. – volume: 45 start-page: 131 year: 2020 end-page: 132 ident: bib50 article-title: Artificial intelligence, machine learning and deep learning: definitions and differences publication-title: Clin. Exp. Dermatol. – year: 2002 ident: bib95 article-title: Statistics at Square One – volume: 53 start-page: 832 year: 2016 end-page: 840 ident: bib71 article-title: Estimation of Turkey׳ s GHG emissions from electricity generation by fuel types publication-title: Renew. Sustain. Energy Rev. – volume: 32 start-page: 1593 year: 2020 end-page: 1607 ident: bib107 article-title: Research on sound classification based on SVM publication-title: Neural Comput. Appl. – year: 2018 ident: bib32 article-title: United States environmental protection agency – volume: 84 start-page: 258 year: 2014 end-page: 267 ident: bib26 article-title: The artificial neural network model to estimate the photovoltaic modul efficiency for all regions of the Turkey publication-title: Energy Build. – volume: vol. 4 year: 2020 ident: bib3 publication-title: Introduction to Machine Learning – volume: 34 start-page: 485 year: 2009 end-page: 501 ident: bib15 article-title: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey publication-title: Energy – volume: 36 start-page: 321 year: 2016 end-page: 343 ident: bib30 article-title: A comparative study between artificial neural network and support vector machine for acute coronary syndrome prognosis publication-title: Pesqui. Oper. – volume: 41 start-page: 1979 year: 2018 end-page: 1993 ident: bib66 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 22 start-page: 41 year: 2019 end-page: 51 ident: bib105 article-title: Estimation of entropy generation for Ag-MgO/water hybrid nanofluid flow through rectangular minichannel by using artificial neural network publication-title: Politeknik Dergisi – ident: bib79 article-title: RapidMiner © – start-page: 266 year: 2018, September end-page: 274 ident: bib99 article-title: A hybrid machine learning approach for daily prediction of solar radiation publication-title: International Conference on Global Research and Education – volume: 138 start-page: 109603 year: 2020 ident: bib84 article-title: Early diagnosis of Parkinson’s disease using machine learning algorithms publication-title: Med. Hypotheses – volume: 41 start-page: 2281 year: 2019 end-page: 2298 ident: bib9 article-title: Turkey’s electricity generation problem and nuclear energy policy publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – year: November 11, 2018 ident: bib63 article-title: Republic of Turkey Ministry of Energy and Natural Resources – start-page: 49 year: 2016 end-page: 67 ident: bib88 article-title: International arrangements, the Kyoto protocol and the Turkish carbon market publication-title: Energy and Finance – volume: 8 start-page: 52 year: 2018 ident: bib74 article-title: Forecasting energy consumption of Turkey by Arima model publication-title: J. Asian Sci. Res. – volume: 41 start-page: 5227 year: 2014 end-page: 5237 ident: bib76 article-title: Parametric models and non-parametric machine learning models for predicting option prices: empirical comparison study over KOSPI 200 Index options publication-title: Expert Syst. Appl. – volume: 8 year: 2016 ident: bib114 article-title: The relationship between the decline of oxygen and the increase of methane gas (CH4) emissions on the environment health of the plant publication-title: Int. J. Collab. Res. Intern. Med. Public Health – volume: 251 start-page: 119672 year: 2020 ident: bib53 article-title: Performance enhancement of a greenhouse dryer: analysis of a cost-effective alternative solar air heater publication-title: J. Clean. Prod. – start-page: 1483 year: 2017, June end-page: 1488 ident: bib4 article-title: Deep neural networks for energy load forecasting publication-title: 2017 IEEE 26 – start-page: 96 year: 2019, April end-page: 106 ident: bib16 article-title: Prediction of potential bank customers: application on data mining publication-title: The International Conference on Artificial Intelligence and Applied Mathematics in Engineering – volume: 35 start-page: 733 year: 2013 end-page: 740 ident: bib78 article-title: Forecasting of greenhouse gas emissions in Serbia using artificial neural networks publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: vol. 9015 start-page: 90150G year: 2014 ident: bib60 article-title: February). SVM-based automatic scanned image classification with quick decision capability publication-title: Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications – year: 2018 ident: bib29 article-title: An unsupervised deep learning approach for scenario forecasts publication-title: 2018 Power Systems Computation Conference (PSCC) – volume: 207 start-page: 112520 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib82 article-title: Analysis of significance of variables in IC engine operation: an empirical methodology publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112520 – volume: 234 start-page: 106121 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib112 article-title: Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106121 – volume: 31 start-page: 141 year: 2013 ident: 10.1016/j.jclepro.2020.125324_bib113 article-title: Forecasting CO2 emissions for Turkey by using the grey prediction method publication-title: Sigma – volume: 4 start-page: 180 issue: 3 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib51 article-title: ANN based prediction of engine performance and exhaust emission Re-sponses of a CI engine powered by ternary blends publication-title: International Journal of Automotive Science and Technology doi: 10.30939/ijastech..771789 – volume: 105 start-page: 168 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib38 article-title: Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.040 – volume: 6 start-page: 3979 issue: 16 year: 2011 ident: 10.1016/j.jclepro.2020.125324_bib21 article-title: Prediction of a diesel engine characteristics by using different modelling techniques publication-title: Int. J. Phys. Sci. – volume: 41 start-page: 5227 issue: 11 year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib76 article-title: Parametric models and non-parametric machine learning models for predicting option prices: empirical comparison study over KOSPI 200 Index options publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.032 – volume: 12 start-page: 145 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib1 article-title: A model to forecast methane emissions from topical and subtropical reservoirs on the basis of artificial neural networks publication-title: Water doi: 10.3390/w12010145 – volume: vol. 908 year: 2021 ident: 10.1016/j.jclepro.2020.125324_bib18 article-title: Performance evaluation of classification algorithms on diagnosis of breast cancer and skin disease – start-page: 117257 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib12 article-title: Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures publication-title: Energy doi: 10.1016/j.energy.2020.117257 – volume: 34 start-page: 1309 issue: 15 year: 2010 ident: 10.1016/j.jclepro.2020.125324_bib39 article-title: Greenhouse gas emission intensity factors for marginal electricity generation in Canada publication-title: Int. J. Energy Res. doi: 10.1002/er.1676 – volume: 45 start-page: 131 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib50 article-title: Artificial intelligence, machine learning and deep learning: definitions and differences publication-title: Clin. Exp. Dermatol. doi: 10.1111/ced.14029 – volume: 32 start-page: 1025 issue: 12 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib57 article-title: Structural damage detection with automatic feature-extraction through deep learning publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12313 – start-page: 96 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib16 article-title: Prediction of potential bank customers: application on data mining – volume: 130 start-page: 109945 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib70 article-title: Forecasting CO2 emissions of China’s cement industry using a hybrid Verhulst-GM (1, N) model and emissions’ technical conversion publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109945 – volume: 4 start-page: 477 issue: 6 year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib96 article-title: Text extraction in images using dwt, gradient method and svm classifier publication-title: International Journal of Emerging Technology and Advanced Engineering – volume: 741 start-page: 140338 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib42 article-title: Machine learning for predicting greenhouse gas emissions from agricultural soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140338 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib6 article-title: SVM based classification and prediction system for gastric cancer using dominant features of saliva publication-title: Nano Biomed. Eng – volume: 162 start-page: 1527 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib31 article-title: Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.06.167 – volume: 20 start-page: 1563 issue: 6 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib56 article-title: Biogas engine performance estimation using ANN publication-title: Engineering science and technology, an international journal doi: 10.1016/j.jestch.2017.12.010 – volume: IC3 start-page: 1 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib5 article-title: Prediction of CO 2 emissions using deep learning hybrid approach: a Case Study in Indian Context – year: 2015 ident: 10.1016/j.jclepro.2020.125324_bib33 – volume: 34 start-page: 485 issue: 4 year: 2009 ident: 10.1016/j.jclepro.2020.125324_bib15 article-title: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey publication-title: Energy doi: 10.1016/j.energy.2009.02.005 – volume: 31 start-page: 1141 issue: 13 year: 2009 ident: 10.1016/j.jclepro.2020.125324_bib91 article-title: Estimation of GHG emissions in Turkey using energy and economic indicators publication-title: Energy Sources, Part A doi: 10.1080/15567030802089086 – volume: 29 start-page: 137 issue: 1 year: 2004 ident: 10.1016/j.jclepro.2020.125324_bib98 article-title: Energy for the future: an integrated decision aid for the case of Turkey publication-title: Energy doi: 10.1016/S0360-5442(03)00160-9 – volume: 53 start-page: 151 issue: 1 year: 2010 ident: 10.1016/j.jclepro.2020.125324_bib117 article-title: The new interpretation of support vector machines on statistical learning theory publication-title: Sci. China, Ser. A: Mathematics doi: 10.1007/s11425-010-0018-6 – volume: 8 issue: 7 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib114 article-title: The relationship between the decline of oxygen and the increase of methane gas (CH4) emissions on the environment health of the plant publication-title: Int. J. Collab. Res. Intern. Med. Public Health – start-page: 639 year: 2012 ident: 10.1016/j.jclepro.2020.125324_bib109 – start-page: 787 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib19 article-title: Fuzzy logic and correlation-based hybrid classification on hepatitis disease data set – volume: 299 start-page: 99 year: 2015 ident: 10.1016/j.jclepro.2020.125324_bib27 article-title: A weighted LS-SVM based learning system for time series forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.12.031 – volume: 221 start-page: 132 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib40 article-title: Model selection for accurate daily global solar radiation prediction in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.211 – volume: 54 start-page: 737 issue: 8 year: 2012 ident: 10.1016/j.jclepro.2020.125324_bib47 article-title: Inter-relationships of functional status in cerebral palsy: analyzing gross motor function, manual ability, and communication function classification systems in children publication-title: Dev. Med. Child Neurol. doi: 10.1111/j.1469-8749.2012.04312.x – volume: 250 start-page: 119492 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib108 article-title: Influencing factors analysis and forecasting of residential energy-related CO2 emissions utilizing optimized support vector machine publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119492 – volume: 11 start-page: 781 issue: 4 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib118 article-title: Forecasting energy-related CO2 emissions employing a novel SSA-LSSVM model: considering structural factors in China publication-title: Energies doi: 10.3390/en11040781 – volume: 35 start-page: 1711 issue: 14 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib36 article-title: Energy–exergy–ANN analyses of solar-assisted fluidized bed dryer publication-title: Dry. Technol. doi: 10.1080/07373937.2016.1271338 – start-page: 122353 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib41 article-title: Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122353 – volume: 138 start-page: 109603 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib84 article-title: Early diagnosis of Parkinson’s disease using machine learning algorithms publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109603 – volume: 22 start-page: 41 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib105 article-title: Estimation of entropy generation for Ag-MgO/water hybrid nanofluid flow through rectangular minichannel by using artificial neural network publication-title: Politeknik Dergisi – start-page: 1 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib11 article-title: The history of greenhouse gas emissions and relation with the nuclear energy policy for Turkey publication-title: Int. J. Ambient Energy – ident: 10.1016/j.jclepro.2020.125324_bib23 – year: 2021 ident: 10.1016/j.jclepro.2020.125324_bib14 – year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib68 – volume: 3 start-page: 11 year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib25 article-title: The prediction of photovoltaic module temperature with artificial neural networks publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2014.02.001 – volume: 36 start-page: 321 issue: 2 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib30 article-title: A comparative study between artificial neural network and support vector machine for acute coronary syndrome prognosis publication-title: Pesqui. Oper. doi: 10.1590/0101-7438.2016.036.02.0321 – volume: 39 start-page: 84 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib35 article-title: A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.11.013 – volume: 18 start-page: 762 issue: 3 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib75 article-title: Yapay sinir ağları i?le Co2 emisyonu tahmini: türkiye örneği publication-title: Gazi Universitesi Iktisadi ve Idari Bilimler Fakultesi Dergisi – volume: 262 start-page: 116608 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib89 article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel publication-title: Fuel doi: 10.1016/j.fuel.2019.116608 – volume: 156 start-page: 618 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib37 article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.085 – year: 2002 ident: 10.1016/j.jclepro.2020.125324_bib95 – volume: 41 start-page: 2281 issue: 18 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib9 article-title: Turkey’s electricity generation problem and nuclear energy policy publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: 7 start-page: 25 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib10 article-title: The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines publication-title: Duzce University Journal of Science and Technology – volume: 75 start-page: 311 year: 2013 ident: 10.1016/j.jclepro.2020.125324_bib28 article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.06.034 – year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib101 – volume: 14 issue: 3 year: 2010 ident: 10.1016/j.jclepro.2020.125324_bib34 article-title: Turkish support to Kyoto Protocol: a reality or just an illusion publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.10.020 – volume: 37 start-page: 1023 issue: 9 year: 2015 ident: 10.1016/j.jclepro.2020.125324_bib43 article-title: Forecasting the energy-related CO2 emissions of Turkey using a grey prediction model publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: vol. 9 year: 2006 ident: 10.1016/j.jclepro.2020.125324_bib65 – volume: 24 start-page: 424 issue: 2 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib85 article-title: Artificial Neural Networks based decision support system for the detection of diabetic retinopathy publication-title: Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi doi: 10.16984/saufenbilder.630482 – volume: 53 start-page: 832 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib71 article-title: Estimation of Turkey׳ s GHG emissions from electricity generation by fuel types publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.018 – volume: 28 issue: 6 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib94 article-title: Predicting and analyzing CO 2 emissions based on an improved least squares support vector machine publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/94619 – volume: 60 start-page: 343 year: 2013 ident: 10.1016/j.jclepro.2020.125324_bib24 article-title: Awareness about renewable energy of pre-service science teachers in Turkey publication-title: Renew. Energy doi: 10.1016/j.renene.2013.05.034 – volume: vol. 4 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib3 – volume: 37 start-page: 1023 issue: 9 year: 2015 ident: 10.1016/j.jclepro.2020.125324_bib44 article-title: Forecasting the energy-related CO2 emissions of Turkey using a grey prediction model publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: 116 start-page: 1031 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib83 article-title: Application of ARIMA for forecasting energy consumption and GHG emission: a case study of an Indian pig iron manufacturing organization publication-title: Energy doi: 10.1016/j.energy.2016.10.068 – year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib102 – volume: 84 start-page: 258 year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib26 article-title: The artificial neural network model to estimate the photovoltaic modul efficiency for all regions of the Turkey publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.08.003 – volume: 230 start-page: 116 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib61 article-title: Prediction and performance assessment of global solar radiation in Indian cities: a comparison of satellite and surface measured data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.108 – start-page: 100343 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib115 article-title: Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels publication-title: Environmental Nanotechnology, Monitoring & Management doi: 10.1016/j.enmm.2020.100343 – volume: 8 start-page: 1604 issue: 2 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib86 article-title: A machine learning based early diagnosis system for mesothelioma disease publication-title: Düzce Üniversitesi Bilim ve Teknoloji Dergisi doi: 10.29130/dubited.659106 – volume: 10 start-page: 176 issue: 2 year: 2015 ident: 10.1016/j.jclepro.2020.125324_bib7 article-title: The development and validation of regression models to predict energy-related CO2 emissions in Turkey publication-title: Energy Sources B Energy Econ. Plann. doi: 10.1080/15567249.2013.830662 – volume: 10 start-page: 2626 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib69 article-title: Renewable energy and economic growth: evidence from European countries publication-title: Sustainability doi: 10.3390/su10082626 – volume: 122 start-page: 144 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib92 article-title: Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.02.053 – year: 2010 ident: 10.1016/j.jclepro.2020.125324_bib80 – start-page: 1 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib52 article-title: April). A hybrid classification example in describing chronic kidney disease – volume: 42 start-page: 18005 issue: 28 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib72 article-title: Modeling of a convective-infrared kiwifruit drying process publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.01.012 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.jclepro.2020.125324_bib67 article-title: Deep learning applications and challenges in big data analytics publication-title: Journal of Big Data doi: 10.1186/s40537-014-0007-7 – ident: 10.1016/j.jclepro.2020.125324_bib103 – volume: vol. 9015 start-page: 90150G year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib60 article-title: February). SVM-based automatic scanned image classification with quick decision capability – volume: 41 start-page: 1979 issue: 8 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib66 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858821 – volume: 35 start-page: 733 issue: 8 year: 2013 ident: 10.1016/j.jclepro.2020.125324_bib78 article-title: Forecasting of greenhouse gas emissions in Serbia using artificial neural networks publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – start-page: 49 year: 2016 ident: 10.1016/j.jclepro.2020.125324_bib88 article-title: International arrangements, the Kyoto protocol and the Turkish carbon market – volume: 71 start-page: 572 issue: 4 year: 2012 ident: 10.1016/j.jclepro.2020.125324_bib46 article-title: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation publication-title: Bragantia doi: 10.1590/S0006-87052012000400016 – start-page: 1 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib77 article-title: Research on water temperature prediction based on improved support vector regression publication-title: Neural Comput. Appl. – volume: 251 start-page: 119672 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib53 article-title: Performance enhancement of a greenhouse dryer: analysis of a cost-effective alternative solar air heater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119672 – start-page: 1 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib22 article-title: Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network publication-title: Exp. Heat Tran. – volume: 203 start-page: 304 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib100 article-title: Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer publication-title: Sol. Energy doi: 10.1016/j.solener.2020.04.030 – year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib29 article-title: An unsupervised deep learning approach for scenario forecasts doi: 10.23919/PSCC.2018.8442500 – volume: 3 start-page: 229 issue: 3 year: 2013 ident: 10.1016/j.jclepro.2020.125324_bib59 article-title: Prediction of CO2 emissions in Iran using grey and ARIMA models publication-title: Int. J. Energy Econ. Pol. – volume: 191 start-page: 116502 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib116 article-title: Application of functional deep belief network for estimating daily global solar radiation: a case study in China publication-title: Energy doi: 10.1016/j.energy.2019.116502 – start-page: 102295 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib119 – start-page: 1483 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib4 article-title: Deep neural networks for energy load forecasting – start-page: 266 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib99 article-title: A hybrid machine learning approach for daily prediction of solar radiation – volume: 175 start-page: 218 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib111 article-title: Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model publication-title: Energy doi: 10.1016/j.energy.2019.03.056 – year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib45 – volume: 14 start-page: 149 issue: 54 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib55 article-title: Karbon vergisi ile sera gazı emisyonlarının azaltımı: türkiye vakası publication-title: Uluslararası İlişkiler/International Relations – year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib63 – start-page: 1 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib17 article-title: A hybrid classification example in the diagnosis of skin disease with cryotherapy and immunotherapy treatment – volume: 19 start-page: 282 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib73 article-title: Yapay sinir ağları ve üstel düzleştirme yöntemi ile türkiye’deki CO2 emisyonunun zaman serisi ile tahmini publication-title: Avrupa Bilim ve Teknoloji Dergisi – year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib8 – volume: 38 start-page: 8756 issue: 7 year: 2011 ident: 10.1016/j.jclepro.2020.125324_bib54 article-title: Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.085 – volume: 239 start-page: 118079 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib81 article-title: Forecasting of Turkey’s greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118079 – volume: 32 start-page: 1593 issue: 6 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib107 article-title: Research on sound classification based on SVM publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04182-0 – volume: 162 start-page: 1095 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib93 article-title: Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.06.016 – volume: 135 start-page: 110114 year: 2021 ident: 10.1016/j.jclepro.2020.125324_bib13 article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110114 – volume: 11 start-page: 107 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib2 article-title: Determinants of voluntary greenhouse gas emission disclosure: an empirical investigation on Turkish firms publication-title: Sustainability doi: 10.3390/su11010107 – year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib49 – volume: 29 start-page: 804 issue: 5 year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib97 article-title: The diffusion of carbon taxes and emission trading schemes: the emerging norm of carbon pricing publication-title: Environ. Polit. doi: 10.1080/09644016.2019.1661155 – volume: 120 start-page: 219 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib106 article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.126 – volume: 35 start-page: 6491 issue: 12 year: 2007 ident: 10.1016/j.jclepro.2020.125324_bib90 article-title: Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies publication-title: Energy Pol. doi: 10.1016/j.enpol.2007.08.024 – volume: 50 start-page: 33 year: 2013 ident: 10.1016/j.jclepro.2020.125324_bib20 article-title: Potential of renewable energy in electrical energy production and sustainable energy development of Turkey: performance and policies publication-title: Renew. Energy doi: 10.1016/j.renene.2012.06.051 – volume: vols. 105–118 year: 2019 ident: 10.1016/j.jclepro.2020.125324_bib48 – volume: 55 start-page: 4520 issue: 8 year: 2017 ident: 10.1016/j.jclepro.2020.125324_bib62 article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2017.2693346 – volume: 8 start-page: 52 issue: 2 year: 2018 ident: 10.1016/j.jclepro.2020.125324_bib74 article-title: Forecasting energy consumption of Turkey by Arima model publication-title: J. Asian Sci. Res. – year: 2020 ident: 10.1016/j.jclepro.2020.125324_bib64 – volume: 4 start-page: 35 issue: 1 year: 2014 ident: 10.1016/j.jclepro.2020.125324_bib87 article-title: Breast cancer diagnosis via data mining: performance analysis of seven different algorithms publication-title: Comput. Sci. Eng. |
| SSID | ssj0017074 |
| Score | 2.6732445 |
| Snippet | Today, the world’s primary energy demand has been met by the burning of fossil-based fuels at a rate of 85%. This dominant use of fossil-based fuels has led to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125324 |
| SubjectTerms | burning carbon dioxide CO2 emission data collection electricity electricity generation Electricity production fossil fuels GHG greenhouse gas emissions Greenhouse gases heat production Machine learning algorithm neural networks primary energy support vector machines |
| Title | Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms |
| URI | https://dx.doi.org/10.1016/j.jclepro.2020.125324 https://www.proquest.com/docview/2511187610 |
| Volume | 285 |
| WOSCitedRecordID | wos000611934600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xvGQkdiVDnmN7WaqOAMGIRZG6i-zY6bTTSau-NN_DN_CBXL-S0AGGWbBJq8Rxb3NO7OPr62uE3sRKUBHxMmDQHQUpZSIQhYLBCo2FTqQjGTfZ9T-T01M6HrOvnc4PvxZmNydVRS8v2fK_Qg3nAGy9dPYGcNeVwgn4DqDDEWCH4z8BPzQb20wLLa-XNp-rhlh3V1IHFaqCr32s80RH3ZzB4F_1Jnzd03u_rX1s-Wi7ghfcOmqlUku_wYRpG9bbpRbuvZ1x-vcuTEimnYnQJrm0FDpZpvkwoeY9Pp8sVlCdS5B-VRLDP-GVWrXMbhyt59zQ4Yua8zO-gTZuN9GT_O8HdYhIXwtjdiK28HR1UX2ZDS6mm7ZnI47MSvFwz0V5nNkV9b61jmnWam9BniV2DfaVrsB6JWZHM7AdzD6CX9C5NHz5X1Nv73WJdaCij4Gb5a6aXFeT22puoYOYZIx20UH_43D8qZ69IqHN_u3tb1aOvfutPX_SRHvqwEie0X10zwGD-5ZjD1BHVQ_R3VYGy0foe4ttuIENG7bhFtvwosQN2zCwDddsw9MKW7ZhzTas2YY9295ixzVsuYYd1zBwDTdcw5Zr2HENN1x7jL6dDEeDD4Hb9iMoQD1vglQQIlIWhzLikhYqlQmDcQHnksBQkCcJzUoViYzEMkwTQUpFFBQNWRknZQLXn6ButajUU4RTSVUp0oRkWZkSSZiUYcjpMQVVLkXBD1HqH3xeuJz4emuWef5X4A_RUX3b0iaFue4G6lHNnbK1ijUHtl5362vPghxg0dN58CYCVLl2DkQgZqLw2U3teY7uNC_cC9TdrLbqJbpd7DbT9eqVo_NPWAncrg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+production+based+forecasting+of+greenhouse+gas+emissions+in+Turkey+with+deep+learning%2C+support+vector+machine+and+artificial+neural+network+algorithms&rft.jtitle=Journal+of+cleaner+production&rft.au=Bakay%2C+Melahat+Sevg%C3%BCl&rft.au=A%C4%9Fbulut%2C+%C3%9Cmit&rft.date=2021-02-20&rft.issn=0959-6526&rft.volume=285&rft.spage=125324&rft_id=info:doi/10.1016%2Fj.jclepro.2020.125324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2020_125324 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |