Convolutional Sparse Modular Fusion Algorithm for Non-Rigid Registration of Visible–Infrared Images

Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering applications. To tackle this challenge, this study proposes a comprehensive framewor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 15; číslo 5; s. 2508
Hlavní autoři: Luo, Tao, Chen, Ning, Zhu, Xianyou, Yi, Heyuan, Duan, Weiwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.03.2025
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering applications. To tackle this challenge, this study proposes a comprehensive framework for convolutional sparse fusion in the context of non-rigid registration of visible–infrared images. Our approach begins with an attention-based convolutional sparse encoder to extract cross-modal feature encodings from source images. To enhance feature extraction, we introduce a feature-guided loss and an information entropy loss to guide the extraction of homogeneous and isolated features, resulting in a feature decomposition network. Next, we create a registration module that estimates the registration parameters based on homogeneous feature pairs. Finally, we develop an image fusion module by applying homogeneous and isolated feature filtering to the feature groups, resulting in high-quality fused images with maximized information retention. Experimental results on multiple datasets indicate that, compared with similar studies, the proposed algorithm achieves an average improvement of 8.3% in image registration and 30.6% in fusion performance in mutual information. In addition, in downstream target recognition tasks, the fusion images generated by the proposed algorithm show a maximum improvement of 20.1% in average relative accuracy compared with the original images. Importantly, our algorithm maintains a relatively lightweight computational and parameter load.
AbstractList Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering applications. To tackle this challenge, this study proposes a comprehensive framework for convolutional sparse fusion in the context of non-rigid registration of visible–infrared images. Our approach begins with an attention-based convolutional sparse encoder to extract cross-modal feature encodings from source images. To enhance feature extraction, we introduce a feature-guided loss and an information entropy loss to guide the extraction of homogeneous and isolated features, resulting in a feature decomposition network. Next, we create a registration module that estimates the registration parameters based on homogeneous feature pairs. Finally, we develop an image fusion module by applying homogeneous and isolated feature filtering to the feature groups, resulting in high-quality fused images with maximized information retention. Experimental results on multiple datasets indicate that, compared with similar studies, the proposed algorithm achieves an average improvement of 8.3% in image registration and 30.6% in fusion performance in mutual information. In addition, in downstream target recognition tasks, the fusion images generated by the proposed algorithm show a maximum improvement of 20.1% in average relative accuracy compared with the original images. Importantly, our algorithm maintains a relatively lightweight computational and parameter load.
Audience Academic
Author Luo, Tao
Chen, Ning
Yi, Heyuan
Zhu, Xianyou
Duan, Weiwen
Author_xml – sequence: 1
  givenname: Tao
  surname: Luo
  fullname: Luo, Tao
– sequence: 2
  givenname: Ning
  surname: Chen
  fullname: Chen, Ning
– sequence: 3
  givenname: Xianyou
  surname: Zhu
  fullname: Zhu, Xianyou
– sequence: 4
  givenname: Heyuan
  orcidid: 0009-0008-4450-6392
  surname: Yi
  fullname: Yi, Heyuan
– sequence: 5
  givenname: Weiwen
  surname: Duan
  fullname: Duan, Weiwen
BookMark eNptUc1u1DAYtFArUUpPvIAljijFf0ns42pF6UoFpBa4Wo79OXiVxMFOKnHrO_QN-yS4LIIi8fnwWaOZsTzzAh1NcQKEXlFyzrkib80805rUrCbyGTphpG0qLmh79OT-HJ3lvCdlFOWSkhME2zjdxmFdQpzMgG9mkzLgD9Gtg0n4Ys0Fx5uhjyks30bsY8If41Rdhz44fA19yEsyj2IcPf4acugGeLi7300-mQQO70bTQ36Jjr0ZMpz93qfoy8W7z9vL6urT-912c1VZLtVSMSWE5UJI512tOmqBOGJ909aN6Bplqaipb3ljwDLfgTWklh0IkI5apYzkp2h38HXR7PWcwmjSDx1N0L-AmHpt0hLsAJpR1nHwpLxlBSdSCd95aTvWeEOE7IrX64PXnOL3FfKi93FNJaSsOW0bTplsxV9Wb4ppmHwsedgxZKs3klMpGROqsM7_wyrHwRhsqdGHgv8jeHMQ2BRzTuD_fIYS_di2ftI2_wk-bZ62
Cites_doi 10.1145/3612922
10.1109/TCSVT.2023.3296745
10.1016/j.ins.2024.121772
10.1109/TIP.2023.3240024
10.3390/e25010169
10.1109/CVPR52729.2023.00572
10.1109/CVPR52688.2022.00564
10.1109/CVPRW50498.2020.00060
10.1016/j.dib.2017.09.038
10.1016/j.inffus.2025.102944
10.1145/3126686.3126727
10.1109/TPAMI.2014.2361512
10.1109/TIM.2024.3522423
10.1016/j.inffus.2023.101870
10.1016/j.inffus.2025.102931
10.1109/ICCVW54120.2021.00389
10.1109/CVPR52688.2022.00571
10.1016/j.inffus.2021.12.004
10.1109/JAS.2022.106082
10.1109/ICASSP.2018.8462313
10.3390/s24123994
10.1109/TGRS.2024.3459416
10.1109/JSTARS.2025.3527175
10.1109/TIP.2003.819861
10.1109/TPAMI.2020.3012548
10.1016/j.inffus.2022.03.007
10.1007/978-3-031-20083-0
10.1109/CVPR.2018.00474
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15052508
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_212b3ef08dfc430894fbf8cb26fa048b
A831882249
10_3390_app15052508
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-2944c3448dfd59b1ce0d0cf67564b69c1451f736aec2fbeca058be4e8d1c99a83
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442381700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:06:35 EDT 2025
Mon Jun 30 12:12:59 EDT 2025
Tue Nov 11 10:52:22 EST 2025
Tue Nov 04 18:14:29 EST 2025
Sat Nov 29 07:14:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-2944c3448dfd59b1ce0d0cf67564b69c1451f736aec2fbeca058be4e8d1c99a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-4450-6392
OpenAccessLink https://www.proquest.com/docview/3176312874?pq-origsite=%requestingapplication%
PQID 3176312874
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_212b3ef08dfc430894fbf8cb26fa048b
proquest_journals_3176312874
gale_infotracmisc_A831882249
gale_infotracacademiconefile_A831882249
crossref_primary_10_3390_app15052508
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_22) 2022; 60
Deng (ref_14) 2023; 32
Qi (ref_13) 2025; 74
ref_12
Li (ref_7) 2024; 20
Zhao (ref_10) 2024; 34
ref_33
ref_32
ref_31
ref_30
ref_19
Toet (ref_28) 2017; 15
Wang (ref_11) 2025; 118
Fang (ref_9) 2025; 698
Tang (ref_17) 2022; 9
ref_15
Tang (ref_4) 2023; 99
Zhang (ref_1) 2022; 44
Tang (ref_3) 2022; 83–84
Tian (ref_18) 2025; 18
Quan (ref_16) 2024; 62
ref_24
Yang (ref_5) 2025; 118
ref_21
ref_20
Tagare (ref_23) 2015; 37
ref_2
Xu (ref_27) 2022; 44
ref_29
Wang (ref_25) 2004; 13
ref_26
ref_8
Tang (ref_6) 2022; 82
References_xml – volume: 20
  start-page: 9
  year: 2024
  ident: ref_7
  article-title: Edge-Assisted Object Segmentation Using Multimodal Feature Aggregation and Learning
  publication-title: Acm Trans. Sens. Netw.
  doi: 10.1145/3612922
– volume: 34
  start-page: 1712
  year: 2024
  ident: ref_10
  article-title: TUFusion: A Transformer-Based Universal Fusion Algorithm for Multimodal Images
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2023.3296745
– volume: 698
  start-page: 121772
  year: 2025
  ident: ref_9
  article-title: DCAFusion: A Novel General Image Fusion Framework Based on Reference Image Reconstruction and Dual-Cross Attention Mechanism
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121772
– ident: ref_24
– volume: 32
  start-page: 1078
  year: 2023
  ident: ref_14
  article-title: Interpretable Multi-Modal Image Registration Network Based on Disentangled Convolutional Sparse Coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3240024
– ident: ref_2
  doi: 10.3390/e25010169
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_22
  article-title: Effective Pan-Sharpening with Transformer and Invertible Neural Network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_8
  doi: 10.1109/CVPR52729.2023.00572
– ident: ref_20
  doi: 10.1109/CVPR52688.2022.00564
– volume: 44
  start-page: 4819
  year: 2022
  ident: ref_1
  article-title: Deep Learning-Based Multi-Focus Image Fusion: A Survey and a Comparative Study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_26
  doi: 10.1109/CVPRW50498.2020.00060
– volume: 15
  start-page: 249
  year: 2017
  ident: ref_28
  article-title: The TNO Multiband Image Data Collection
  publication-title: Data Brief
  doi: 10.1016/j.dib.2017.09.038
– volume: 118
  start-page: 102944
  year: 2025
  ident: ref_5
  article-title: KDFuse: A High-Level Vision Task-Driven Infrared and Visible Image Fusion Method Based on Cross-Domain Knowledge Distillation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.102944
– ident: ref_30
  doi: 10.1145/3126686.3126727
– volume: 37
  start-page: 1286
  year: 2015
  ident: ref_23
  article-title: Why Does Mutual-Information Work for Image Registration? A Deterministic Explanation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2361512
– volume: 74
  start-page: 5004815
  year: 2025
  ident: ref_13
  article-title: Infrared and Visible Image Fusion via Sparse Representation and Adaptive Dual-Channel PCNN Model Based on Co-Occurrence Analysis Shearlet Transform
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3522423
– volume: 99
  start-page: 101870
  year: 2023
  ident: ref_4
  article-title: Rethinking the Necessity of Image Fusion in High-Level Vision Tasks: A Practical Infrared and Visible Image Fusion Network Based on Progressive Semantic Injection and Scene Fidelity
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101870
– volume: 118
  start-page: 102931
  year: 2025
  ident: ref_11
  article-title: A Degradation-Aware Guided Fusion Network for Infrared and Visible Image
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.102931
– ident: ref_29
– ident: ref_33
– ident: ref_31
  doi: 10.1109/ICCVW54120.2021.00389
– ident: ref_32
  doi: 10.1109/CVPR52688.2022.00571
– volume: 82
  start-page: 28
  year: 2022
  ident: ref_6
  article-title: Image Fusion in the Loop of High-Level Vision Tasks: A Semantic-Aware Real-Time Infrared and Visible Image Fusion Network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.12.004
– volume: 9
  start-page: 2121
  year: 2022
  ident: ref_17
  article-title: SuperFusion: A Versatile Image Registration and Fusion Network with Semantic Awareness
  publication-title: IEEE/Caa J. Autom. Sin.
  doi: 10.1109/JAS.2022.106082
– ident: ref_19
  doi: 10.1109/ICASSP.2018.8462313
– ident: ref_12
  doi: 10.3390/s24123994
– volume: 62
  start-page: 5222813
  year: 2024
  ident: ref_16
  article-title: F3Net: Adaptive Frequency Feature Filtering Network for Multimodal Remote Sensing Image Registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3459416
– volume: 18
  start-page: 3686
  year: 2025
  ident: ref_18
  article-title: Semantic-Injected Bidirectional Multiscale Flow Estimation Network for Infrared and Visible Image Registration
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2025.3527175
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_25
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 44
  start-page: 502
  year: 2022
  ident: ref_27
  article-title: U2Fusion: A Unified Unsupervised Image Fusion Network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 83–84
  start-page: 79
  year: 2022
  ident: ref_3
  article-title: PIAFusion: A Progressive Infrared and Visible Image Fusion Network Based on Illumination Aware
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.03.007
– ident: ref_15
  doi: 10.1007/978-3-031-20083-0
– ident: ref_21
  doi: 10.1109/CVPR.2018.00474
RelatedPersons Liu E
RelatedPersons_xml – fullname: Liu E
SSID ssj0000913810
Score 2.3120801
Snippet Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2508
SubjectTerms Accuracy
Algorithms
convolutional sparse coding
Decomposition
Deep learning
Dictionaries
feature extraction
image registration
Liu E
Medical imaging equipment
multimodal image fusion
Optimization
Registration
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQooAC8TqxvOQCCSiicxJvYpcLYgUSrBBwiM7yc4m0JGh3ob7_cP_wfsnNJAGF4kRDkyJxosmMZzxfMv6GkMPM5cxaA9iEZ3BIAouMlTLSNtMBEIkTNX3xw1U-GonHR3nTafWFNWENPXCjuJ8QWk3qAxMuWJ4yIXkwQViTZEHD7DMYfVkuO2CqjsEyRuqqZkNeCrge_wfHddM2bCTZWYJqpv7_xeN6kRmukdU2O6SDRqp1suDLDbLS4QzcIOutN87ocUsZfbJJ_FlVvrWTCO6_ewG46ul15bDIlA5f8ZMYHUzG1bSYPz1TSFTpqCqj22JcOHrrxx_subQK9KEAN5n4v7__XJZhigXq9PIZws5si_want-fXURtA4XIQh4yjxLJuU0BgLng-tLE1jPHbACMkHGTSYtdekOeZtrbJIAxNesL47kXLgZ7aZH-IItlVfptQlM0A0RVE-CZ2MYq1QCEZKxzrpntyx45fNepeml4MhTgC1S96qi-R05R3x9DkNy6PgEmV63J1Vcm75EjtJZCFwTtWN3uJABJkcxKDQQEKqyOBan2Po0E17GfL7_bW7WuO1OQUGXwtiLnO98h7C5ZTrBlcF22tkcW59NXv0-W7Nu8mE0P6ln7D5kw8t4
  priority: 102
  providerName: Directory of Open Access Journals
Title Convolutional Sparse Modular Fusion Algorithm for Non-Rigid Registration of Visible–Infrared Images
URI https://www.proquest.com/docview/3176312874
https://doaj.org/article/212b3ef08dfc430894fbf8cb26fa048b
Volume 15
WOSCitedRecordID wos001442381700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BywEOQAuIQKl8qAQcVngf2dgnlFaNiESjKEBVTpafIVK7G7Jpz_wH_iG_hJmNE9IDXListOvd9cjzsGc8_gbgqHQ9bq1B36Qo8ZIFnhgrZaJtqQN6JE608MXnH3ujkbi4kOMYcGtiWuXaJraG2tWWYuTvcJ4r85TQ2d_PvydUNYp2V2MJjbuwS0hlKOe7x6ej8WQTZSHUS5Hy1cG8HP172hdO2-JtVFByaypqEfv_ZpfbyWbw6H_JfAwP4zKT9VdysQd3fLUPD7bAB_dhL6p1w95E7Om3T8Cf1NVNlEb8_tMc_V7PzmpH2apscE2xNda_nGKXy29XDFe8bFRXyWQ2nTk28dMNDC-rAzufob5d-l8_fg6rsKBMdza8QvvVPIUvg9PPJx-SWIkhsbigWSaZLAqboyfngutKk1rPHbcBnY2yMKW0VO439PJSe5sFlArNu8L4wguXIuO1yJ_BTlVX_jkwHByTo3k2Af9J9bByjR6VTHWv0Nx2ZQeO1kxR8xXghkJHhXintnjXgWNi2OYVQsluH9SLqYpKpzLqyweOZNsi50IWwQRhTVYGjZbLdOA1sVuRLuPoWB2PJCClhIql-gItHqXZIlUHt95EHbS3m9fSoKINaNQfUXjx7-aXcD-jqsJtZtsB7CwX1_4V3LM3y1mzOIwifdhGC_BuPDwbf_0N45UEIw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4AC0gAgX2UAQcLNYfcbwHhEIhqtUkikqpymnZXe-GSK0d4rSIG_-B_8GP6i_pjOOE9AC3Hrj4EDv2rv38Zmc9-x7Adpy1uTEac5Moxk3guKeNEJ4ysXKYkWRJJV982GsPBsnRkRiuwe_FWhgqq1xwYkXUWWFojvw1xrk49Emd_e3km0euUfR1dWGhMYfFnv3xHVO28k36Hp_v8yDofjjY2fVqVwHPYHCeeYGIIhNiVpK5rCW0byzPuHE4cI4jHQtD1rWuHcbKmsBhDxVvJdpGNsl87IRKQjzvNViPEOy8AevDtD_8vJzVIZXNxOfzhYBhKDh9h_YrszgysFwJfZVDwN_iQBXcunf-t9tyF27Xw2jWmeN-A9Zsvgm3VsQVN2Gjpq2Svay1tV_dA7tT5Gf124b__zjBvN6yfpFRNS7rntLcIescj7CLs68nDEf0bFDk3v54NM7Yvh0tZYZZ4djhGPnk2J7__JXmbkqV_Cw9QX4u78OnK-n8A2jkRW4fAsOHoUMMP9rhOcnvK1SYMQpftSPFTUs0YXsBAjmZC4pITMQIK3IFK014RwBZHkIq4NUPxXQka1KRAV3LOo7NNlHIExE57RKjg9gpZGbdhBcEL0lchXfHqHrJBbaUVL9kJ0FGpzJibNXWpSORY8zl3Qv0yZrjSvkHeo_-vfsZ3Ng96PdkLx3sPYabATkoV1V8W9CYTU_tE7huzmbjcvq0fp0YfLlqqF4Aj_xgMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC0gAgX2UAQcrK69juM9IJR-REQtVhSg6s2s17shUmuHOC3ixn_g3_Bz-CXMOOuQHuDWA5ccYsfZtd--2VnPvgewHeVdrnWGuUkY4UdguZdpKT2lI2UxI8njWr74-KibJPHJiRyuwc9mLwyVVTacWBN1XmpaI9_BOBcJn9TZd6wrixju999Mv3jkIEVvWhs7jQVEDs23r5i-Va8H-_isnwdB_-DD3lvPOQx4GgP13AtkGGqBGUpu847MfG14zrXFSXQUZpHUZGNruyJSRgcWe6t4J85MaOLcxw6pWOB1r8F6V2DS04L13YNkOFqu8JDiZuzzxaZAISSnd9J-bRxHZpYrYbB2C_hbTKgDXf_O_3yL7sJtN71mvcV42IA1U2zCrRXRxU3YcHRWsZdOc_vVPTB7ZXHhRiH-_v0U833D3pU5Vemy_jmtKbLe6Ri7OP98xnCmz5Ky8EaT8SRnIzNeyg-z0rLjCfLMqfn1_cegsDOq8GeDM-Tt6j58vJLOP4BWURbmITB8MJnAsJRZvCb5gAmFmaT0VTdUXHdkG7YbQKTThdBIigka4SZdwU0bdgksy1NIHbz-opyNU0c2aUD_ZSzHZutQ8FiGNrOxzoLIKmTsrA0vCGopcRjeHa3cVgxsKamBpb0YmZ7Ki7FVW5fORO7Rlw83SEwd91XpHxg--vfhZ3AD8ZkeDZLDx3AzIGPlurhvC1rz2bl5Atf1xXxSzZ66kcXg01Uj9Td4K2jN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Sparse+Modular+Fusion+Algorithm+for+Non-Rigid+Registration+of+Visible%E2%80%93Infrared+Images&rft.jtitle=Applied+sciences&rft.au=Luo%2C+Tao&rft.au=Chen%2C+Ning&rft.au=Zhu%2C+Xianyou&rft.au=Yi%2C+Heyuan&rft.date=2025-03-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=5&rft.spage=2508&rft_id=info:doi/10.3390%2Fapp15052508&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15052508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon