Convolutional Sparse Modular Fusion Algorithm for Non-Rigid Registration of Visible–Infrared Images
Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering applications. To tackle this challenge, this study proposes a comprehensive framewor...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 15; číslo 5; s. 2508 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.03.2025
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering applications. To tackle this challenge, this study proposes a comprehensive framework for convolutional sparse fusion in the context of non-rigid registration of visible–infrared images. Our approach begins with an attention-based convolutional sparse encoder to extract cross-modal feature encodings from source images. To enhance feature extraction, we introduce a feature-guided loss and an information entropy loss to guide the extraction of homogeneous and isolated features, resulting in a feature decomposition network. Next, we create a registration module that estimates the registration parameters based on homogeneous feature pairs. Finally, we develop an image fusion module by applying homogeneous and isolated feature filtering to the feature groups, resulting in high-quality fused images with maximized information retention. Experimental results on multiple datasets indicate that, compared with similar studies, the proposed algorithm achieves an average improvement of 8.3% in image registration and 30.6% in fusion performance in mutual information. In addition, in downstream target recognition tasks, the fusion images generated by the proposed algorithm show a maximum improvement of 20.1% in average relative accuracy compared with the original images. Importantly, our algorithm maintains a relatively lightweight computational and parameter load. |
|---|---|
| AbstractList | Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering applications. To tackle this challenge, this study proposes a comprehensive framework for convolutional sparse fusion in the context of non-rigid registration of visible–infrared images. Our approach begins with an attention-based convolutional sparse encoder to extract cross-modal feature encodings from source images. To enhance feature extraction, we introduce a feature-guided loss and an information entropy loss to guide the extraction of homogeneous and isolated features, resulting in a feature decomposition network. Next, we create a registration module that estimates the registration parameters based on homogeneous feature pairs. Finally, we develop an image fusion module by applying homogeneous and isolated feature filtering to the feature groups, resulting in high-quality fused images with maximized information retention. Experimental results on multiple datasets indicate that, compared with similar studies, the proposed algorithm achieves an average improvement of 8.3% in image registration and 30.6% in fusion performance in mutual information. In addition, in downstream target recognition tasks, the fusion images generated by the proposed algorithm show a maximum improvement of 20.1% in average relative accuracy compared with the original images. Importantly, our algorithm maintains a relatively lightweight computational and parameter load. |
| Audience | Academic |
| Author | Luo, Tao Chen, Ning Yi, Heyuan Zhu, Xianyou Duan, Weiwen |
| Author_xml | – sequence: 1 givenname: Tao surname: Luo fullname: Luo, Tao – sequence: 2 givenname: Ning surname: Chen fullname: Chen, Ning – sequence: 3 givenname: Xianyou surname: Zhu fullname: Zhu, Xianyou – sequence: 4 givenname: Heyuan orcidid: 0009-0008-4450-6392 surname: Yi fullname: Yi, Heyuan – sequence: 5 givenname: Weiwen surname: Duan fullname: Duan, Weiwen |
| BookMark | eNptUc1u1DAYtFArUUpPvIAljijFf0ns42pF6UoFpBa4Wo79OXiVxMFOKnHrO_QN-yS4LIIi8fnwWaOZsTzzAh1NcQKEXlFyzrkib80805rUrCbyGTphpG0qLmh79OT-HJ3lvCdlFOWSkhME2zjdxmFdQpzMgG9mkzLgD9Gtg0n4Ys0Fx5uhjyks30bsY8If41Rdhz44fA19yEsyj2IcPf4acugGeLi7300-mQQO70bTQ36Jjr0ZMpz93qfoy8W7z9vL6urT-912c1VZLtVSMSWE5UJI512tOmqBOGJ909aN6Bplqaipb3ljwDLfgTWklh0IkI5apYzkp2h38HXR7PWcwmjSDx1N0L-AmHpt0hLsAJpR1nHwpLxlBSdSCd95aTvWeEOE7IrX64PXnOL3FfKi93FNJaSsOW0bTplsxV9Wb4ppmHwsedgxZKs3klMpGROqsM7_wyrHwRhsqdGHgv8jeHMQ2BRzTuD_fIYS_di2ftI2_wk-bZ62 |
| Cites_doi | 10.1145/3612922 10.1109/TCSVT.2023.3296745 10.1016/j.ins.2024.121772 10.1109/TIP.2023.3240024 10.3390/e25010169 10.1109/CVPR52729.2023.00572 10.1109/CVPR52688.2022.00564 10.1109/CVPRW50498.2020.00060 10.1016/j.dib.2017.09.038 10.1016/j.inffus.2025.102944 10.1145/3126686.3126727 10.1109/TPAMI.2014.2361512 10.1109/TIM.2024.3522423 10.1016/j.inffus.2023.101870 10.1016/j.inffus.2025.102931 10.1109/ICCVW54120.2021.00389 10.1109/CVPR52688.2022.00571 10.1016/j.inffus.2021.12.004 10.1109/JAS.2022.106082 10.1109/ICASSP.2018.8462313 10.3390/s24123994 10.1109/TGRS.2024.3459416 10.1109/JSTARS.2025.3527175 10.1109/TIP.2003.819861 10.1109/TPAMI.2020.3012548 10.1016/j.inffus.2022.03.007 10.1007/978-3-031-20083-0 10.1109/CVPR.2018.00474 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15052508 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_212b3ef08dfc430894fbf8cb26fa048b A831882249 10_3390_app15052508 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c389t-2944c3448dfd59b1ce0d0cf67564b69c1451f736aec2fbeca058be4e8d1c99a83 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442381700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:06:35 EDT 2025 Mon Jun 30 12:12:59 EDT 2025 Tue Nov 11 10:52:22 EST 2025 Tue Nov 04 18:14:29 EST 2025 Sat Nov 29 07:14:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-2944c3448dfd59b1ce0d0cf67564b69c1451f736aec2fbeca058be4e8d1c99a83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-4450-6392 |
| OpenAccessLink | https://www.proquest.com/docview/3176312874?pq-origsite=%requestingapplication% |
| PQID | 3176312874 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_212b3ef08dfc430894fbf8cb26fa048b proquest_journals_3176312874 gale_infotracmisc_A831882249 gale_infotracacademiconefile_A831882249 crossref_primary_10_3390_app15052508 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhou (ref_22) 2022; 60 Deng (ref_14) 2023; 32 Qi (ref_13) 2025; 74 ref_12 Li (ref_7) 2024; 20 Zhao (ref_10) 2024; 34 ref_33 ref_32 ref_31 ref_30 ref_19 Toet (ref_28) 2017; 15 Wang (ref_11) 2025; 118 Fang (ref_9) 2025; 698 Tang (ref_17) 2022; 9 ref_15 Tang (ref_4) 2023; 99 Zhang (ref_1) 2022; 44 Tang (ref_3) 2022; 83–84 Tian (ref_18) 2025; 18 Quan (ref_16) 2024; 62 ref_24 Yang (ref_5) 2025; 118 ref_21 ref_20 Tagare (ref_23) 2015; 37 ref_2 Xu (ref_27) 2022; 44 ref_29 Wang (ref_25) 2004; 13 ref_26 ref_8 Tang (ref_6) 2022; 82 |
| References_xml | – volume: 20 start-page: 9 year: 2024 ident: ref_7 article-title: Edge-Assisted Object Segmentation Using Multimodal Feature Aggregation and Learning publication-title: Acm Trans. Sens. Netw. doi: 10.1145/3612922 – volume: 34 start-page: 1712 year: 2024 ident: ref_10 article-title: TUFusion: A Transformer-Based Universal Fusion Algorithm for Multimodal Images publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2023.3296745 – volume: 698 start-page: 121772 year: 2025 ident: ref_9 article-title: DCAFusion: A Novel General Image Fusion Framework Based on Reference Image Reconstruction and Dual-Cross Attention Mechanism publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.121772 – ident: ref_24 – volume: 32 start-page: 1078 year: 2023 ident: ref_14 article-title: Interpretable Multi-Modal Image Registration Network Based on Disentangled Convolutional Sparse Coding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2023.3240024 – ident: ref_2 doi: 10.3390/e25010169 – volume: 60 start-page: 1 year: 2022 ident: ref_22 article-title: Effective Pan-Sharpening with Transformer and Invertible Neural Network publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_8 doi: 10.1109/CVPR52729.2023.00572 – ident: ref_20 doi: 10.1109/CVPR52688.2022.00564 – volume: 44 start-page: 4819 year: 2022 ident: ref_1 article-title: Deep Learning-Based Multi-Focus Image Fusion: A Survey and a Comparative Study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_26 doi: 10.1109/CVPRW50498.2020.00060 – volume: 15 start-page: 249 year: 2017 ident: ref_28 article-title: The TNO Multiband Image Data Collection publication-title: Data Brief doi: 10.1016/j.dib.2017.09.038 – volume: 118 start-page: 102944 year: 2025 ident: ref_5 article-title: KDFuse: A High-Level Vision Task-Driven Infrared and Visible Image Fusion Method Based on Cross-Domain Knowledge Distillation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.102944 – ident: ref_30 doi: 10.1145/3126686.3126727 – volume: 37 start-page: 1286 year: 2015 ident: ref_23 article-title: Why Does Mutual-Information Work for Image Registration? A Deterministic Explanation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2361512 – volume: 74 start-page: 5004815 year: 2025 ident: ref_13 article-title: Infrared and Visible Image Fusion via Sparse Representation and Adaptive Dual-Channel PCNN Model Based on Co-Occurrence Analysis Shearlet Transform publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3522423 – volume: 99 start-page: 101870 year: 2023 ident: ref_4 article-title: Rethinking the Necessity of Image Fusion in High-Level Vision Tasks: A Practical Infrared and Visible Image Fusion Network Based on Progressive Semantic Injection and Scene Fidelity publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101870 – volume: 118 start-page: 102931 year: 2025 ident: ref_11 article-title: A Degradation-Aware Guided Fusion Network for Infrared and Visible Image publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.102931 – ident: ref_29 – ident: ref_33 – ident: ref_31 doi: 10.1109/ICCVW54120.2021.00389 – ident: ref_32 doi: 10.1109/CVPR52688.2022.00571 – volume: 82 start-page: 28 year: 2022 ident: ref_6 article-title: Image Fusion in the Loop of High-Level Vision Tasks: A Semantic-Aware Real-Time Infrared and Visible Image Fusion Network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.12.004 – volume: 9 start-page: 2121 year: 2022 ident: ref_17 article-title: SuperFusion: A Versatile Image Registration and Fusion Network with Semantic Awareness publication-title: IEEE/Caa J. Autom. Sin. doi: 10.1109/JAS.2022.106082 – ident: ref_19 doi: 10.1109/ICASSP.2018.8462313 – ident: ref_12 doi: 10.3390/s24123994 – volume: 62 start-page: 5222813 year: 2024 ident: ref_16 article-title: F3Net: Adaptive Frequency Feature Filtering Network for Multimodal Remote Sensing Image Registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3459416 – volume: 18 start-page: 3686 year: 2025 ident: ref_18 article-title: Semantic-Injected Bidirectional Multiscale Flow Estimation Network for Infrared and Visible Image Registration publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2025.3527175 – volume: 13 start-page: 600 year: 2004 ident: ref_25 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 44 start-page: 502 year: 2022 ident: ref_27 article-title: U2Fusion: A Unified Unsupervised Image Fusion Network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 83–84 start-page: 79 year: 2022 ident: ref_3 article-title: PIAFusion: A Progressive Infrared and Visible Image Fusion Network Based on Illumination Aware publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.03.007 – ident: ref_15 doi: 10.1007/978-3-031-20083-0 – ident: ref_21 doi: 10.1109/CVPR.2018.00474 |
| RelatedPersons | Liu E |
| RelatedPersons_xml | – fullname: Liu E |
| SSID | ssj0000913810 |
| Score | 2.3120801 |
| Snippet | Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration,... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 2508 |
| SubjectTerms | Accuracy Algorithms convolutional sparse coding Decomposition Deep learning Dictionaries feature extraction image registration Liu E Medical imaging equipment multimodal image fusion Optimization Registration Semantics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQooAC8TqxvOQCCSiicxJvYpcLYgUSrBBwiM7yc4m0JGh3ob7_cP_wfsnNJAGF4kRDkyJxosmMZzxfMv6GkMPM5cxaA9iEZ3BIAouMlTLSNtMBEIkTNX3xw1U-GonHR3nTafWFNWENPXCjuJ8QWk3qAxMuWJ4yIXkwQViTZEHD7DMYfVkuO2CqjsEyRuqqZkNeCrge_wfHddM2bCTZWYJqpv7_xeN6kRmukdU2O6SDRqp1suDLDbLS4QzcIOutN87ocUsZfbJJ_FlVvrWTCO6_ewG46ul15bDIlA5f8ZMYHUzG1bSYPz1TSFTpqCqj22JcOHrrxx_subQK9KEAN5n4v7__XJZhigXq9PIZws5si_want-fXURtA4XIQh4yjxLJuU0BgLng-tLE1jPHbACMkHGTSYtdekOeZtrbJIAxNesL47kXLgZ7aZH-IItlVfptQlM0A0RVE-CZ2MYq1QCEZKxzrpntyx45fNepeml4MhTgC1S96qi-R05R3x9DkNy6PgEmV63J1Vcm75EjtJZCFwTtWN3uJABJkcxKDQQEKqyOBan2Po0E17GfL7_bW7WuO1OQUGXwtiLnO98h7C5ZTrBlcF22tkcW59NXv0-W7Nu8mE0P6ln7D5kw8t4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Convolutional Sparse Modular Fusion Algorithm for Non-Rigid Registration of Visible–Infrared Images |
| URI | https://www.proquest.com/docview/3176312874 https://doaj.org/article/212b3ef08dfc430894fbf8cb26fa048b |
| Volume | 15 |
| WOSCitedRecordID | wos001442381700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BywEOQAuIQKl8qAQcVngf2dgnlFaNiESjKEBVTpafIVK7G7Jpz_wH_iG_hJmNE9IDXListOvd9cjzsGc8_gbgqHQ9bq1B36Qo8ZIFnhgrZaJtqQN6JE608MXnH3ujkbi4kOMYcGtiWuXaJraG2tWWYuTvcJ4r85TQ2d_PvydUNYp2V2MJjbuwS0hlKOe7x6ej8WQTZSHUS5Hy1cG8HP172hdO2-JtVFByaypqEfv_ZpfbyWbw6H_JfAwP4zKT9VdysQd3fLUPD7bAB_dhL6p1w95E7Om3T8Cf1NVNlEb8_tMc_V7PzmpH2apscE2xNda_nGKXy29XDFe8bFRXyWQ2nTk28dMNDC-rAzufob5d-l8_fg6rsKBMdza8QvvVPIUvg9PPJx-SWIkhsbigWSaZLAqboyfngutKk1rPHbcBnY2yMKW0VO439PJSe5sFlArNu8L4wguXIuO1yJ_BTlVX_jkwHByTo3k2Af9J9bByjR6VTHWv0Nx2ZQeO1kxR8xXghkJHhXintnjXgWNi2OYVQsluH9SLqYpKpzLqyweOZNsi50IWwQRhTVYGjZbLdOA1sVuRLuPoWB2PJCClhIql-gItHqXZIlUHt95EHbS3m9fSoKINaNQfUXjx7-aXcD-jqsJtZtsB7CwX1_4V3LM3y1mzOIwifdhGC_BuPDwbf_0N45UEIw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4AC0gAgX2UAQcLNYfcbwHhEIhqtUkikqpymnZXe-GSK0d4rSIG_-B_8GP6i_pjOOE9AC3Hrj4EDv2rv38Zmc9-x7Adpy1uTEac5Moxk3guKeNEJ4ysXKYkWRJJV982GsPBsnRkRiuwe_FWhgqq1xwYkXUWWFojvw1xrk49Emd_e3km0euUfR1dWGhMYfFnv3xHVO28k36Hp_v8yDofjjY2fVqVwHPYHCeeYGIIhNiVpK5rCW0byzPuHE4cI4jHQtD1rWuHcbKmsBhDxVvJdpGNsl87IRKQjzvNViPEOy8AevDtD_8vJzVIZXNxOfzhYBhKDh9h_YrszgysFwJfZVDwN_iQBXcunf-t9tyF27Xw2jWmeN-A9Zsvgm3VsQVN2Gjpq2Svay1tV_dA7tT5Gf124b__zjBvN6yfpFRNS7rntLcIescj7CLs68nDEf0bFDk3v54NM7Yvh0tZYZZ4djhGPnk2J7__JXmbkqV_Cw9QX4u78OnK-n8A2jkRW4fAsOHoUMMP9rhOcnvK1SYMQpftSPFTUs0YXsBAjmZC4pITMQIK3IFK014RwBZHkIq4NUPxXQka1KRAV3LOo7NNlHIExE57RKjg9gpZGbdhBcEL0lchXfHqHrJBbaUVL9kJ0FGpzJibNXWpSORY8zl3Qv0yZrjSvkHeo_-vfsZ3Ng96PdkLx3sPYabATkoV1V8W9CYTU_tE7huzmbjcvq0fp0YfLlqqF4Aj_xgMw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC0gAgX2UAQcrK69juM9IJR-REQtVhSg6s2s17shUmuHOC3ixn_g3_Bz-CXMOOuQHuDWA5ccYsfZtd--2VnPvgewHeVdrnWGuUkY4UdguZdpKT2lI2UxI8njWr74-KibJPHJiRyuwc9mLwyVVTacWBN1XmpaI9_BOBcJn9TZd6wrixju999Mv3jkIEVvWhs7jQVEDs23r5i-Va8H-_isnwdB_-DD3lvPOQx4GgP13AtkGGqBGUpu847MfG14zrXFSXQUZpHUZGNruyJSRgcWe6t4J85MaOLcxw6pWOB1r8F6V2DS04L13YNkOFqu8JDiZuzzxaZAISSnd9J-bRxHZpYrYbB2C_hbTKgDXf_O_3yL7sJtN71mvcV42IA1U2zCrRXRxU3YcHRWsZdOc_vVPTB7ZXHhRiH-_v0U833D3pU5Vemy_jmtKbLe6Ri7OP98xnCmz5Ky8EaT8SRnIzNeyg-z0rLjCfLMqfn1_cegsDOq8GeDM-Tt6j58vJLOP4BWURbmITB8MJnAsJRZvCb5gAmFmaT0VTdUXHdkG7YbQKTThdBIigka4SZdwU0bdgksy1NIHbz-opyNU0c2aUD_ZSzHZutQ8FiGNrOxzoLIKmTsrA0vCGopcRjeHa3cVgxsKamBpb0YmZ7Ki7FVW5fORO7Rlw83SEwd91XpHxg--vfhZ3AD8ZkeDZLDx3AzIGPlurhvC1rz2bl5Atf1xXxSzZ66kcXg01Uj9Td4K2jN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Sparse+Modular+Fusion+Algorithm+for+Non-Rigid+Registration+of+Visible%E2%80%93Infrared+Images&rft.jtitle=Applied+sciences&rft.au=Luo%2C+Tao&rft.au=Chen%2C+Ning&rft.au=Zhu%2C+Xianyou&rft.au=Yi%2C+Heyuan&rft.date=2025-03-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=5&rft.spage=2508&rft_id=info:doi/10.3390%2Fapp15052508&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15052508 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |