Every Large Point Set contains Many Collinear Points or an Empty Pentagon

We prove the following generalised empty pentagon theorem for every integer ℓ  ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Graphs and combinatorics Ročník 27; číslo 1; s. 47 - 60
Hlavní autori: Abel, Zachary, Ballinger, Brad, Bose, Prosenjit, Collette, Sébastien, Dujmović, Vida, Hurtado, Ferran, Kominers, Scott Duke, Langerman, Stefan, Pór, Attila, Wood, David R.
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Japan Springer Japan 01.01.2011
Springer Nature B.V
Predmet:
ISSN:0911-0119, 1435-5914
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove the following generalised empty pentagon theorem for every integer ℓ  ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497–506, 2005].
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-010-0957-2