Every Large Point Set contains Many Collinear Points or an Empty Pentagon

We prove the following generalised empty pentagon theorem for every integer ℓ  ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics Jg. 27; H. 1; S. 47 - 60
Hauptverfasser: Abel, Zachary, Ballinger, Brad, Bose, Prosenjit, Collette, Sébastien, Dujmović, Vida, Hurtado, Ferran, Kominers, Scott Duke, Langerman, Stefan, Pór, Attila, Wood, David R.
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: Japan Springer Japan 01.01.2011
Springer Nature B.V
Schlagworte:
ISSN:0911-0119, 1435-5914
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the following generalised empty pentagon theorem for every integer ℓ  ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497–506, 2005].
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-010-0957-2