A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition
In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M &...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems for video technology Ročník 21; číslo 9; s. 1255 - 1262 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1051-8215, 1558-2205 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M "nearest neighbors" for the test sample. The second phase represents the test sample as a linear combination of the determined M nearest neighbors and uses the representation result to perform classification. We propose this method with the following assumption: the test sample and its some neighbors are probably from the same class. Thus, we use the first phase to detect the training samples that are far from the test sample and assume that these samples have no effects on the ultimate classification decision. This is helpful to accurately classify the test sample. We will also show the probability explanation of the proposed method. A number of face recognition experiments show that our method performs very well. |
|---|---|
| AbstractList | In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M "nearest neighbors" for the test sample. The second phase represents the test sample as a linear combination of the determined M nearest neighbors and uses the representation result to perform classification. We propose this method with the following assumption: the test sample and its some neighbors are probably from the same class. Thus, we use the first phase to detect the training samples that are far from the test sample and assume that these samples have no effects on the ultimate classification decision. This is helpful to accurately classify the test sample. We will also show the probability explanation of the proposed method. A number of face recognition experiments show that our method performs very well. |
| Author | Zhang, D. Jing-Yu Yang Jian Yang Yong Xu |
| Author_xml | – sequence: 1 surname: Yong Xu fullname: Yong Xu email: laterfa112@yahoo.com.cn organization: Bio-Comput. Res. Center, Harbin Inst. of Technol., Shenzhen, China – sequence: 2 givenname: D. surname: Zhang fullname: Zhang, D. email: csdzhang@comp.polyu.edu.hk organization: Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China – sequence: 3 surname: Jian Yang fullname: Jian Yang email: csjyang@mail.njust.edu.cn organization: Sch. of Comput. Sci. & Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China – sequence: 4 surname: Jing-Yu Yang fullname: Jing-Yu Yang email: yangjy@mai.njust.edu.cn organization: Sch. of Comput. Sci. & Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24504874$$DView record in Pascal Francis |
| BookMark | eNp90U1v1DAQBuAItRL94A_AJUJC7SWLZ2LH9rFa0YJUBOqmcIyMd8y6ysbBzqri3-Owqx566MmW_cz44z0tjoYwUFG8BbYAYPpju1z9aBfIABYItZKavSpOQAhVITJxlOdMQKUQxOviNKUHxoArLk-Ku6uyfQzV941JVLaUpnJltmNP5Wo0MS_d0Rgp0TCZyYeh_ErTJqxLF2J5n3d_-mlTXhs7Oxt-D35G58WxM32iN4fxrLi__tQuP1e3326-LK9uK1srPVUIhjUC0dZOWkJlGyWkqxuHWtb4yxhFjrs1EjaWO7tmawJbgxEaUChU9Vlxse87xvBnl6_ebX2y1PdmoLBLncYGFdeSZXn5ogQGTGmJzdz0_TP6EHZxyO_oNDTZAWBGHw7IJGt6F81gferG6Lcm_u2QC8aV5Nnh3tkYUorkngiwbs6t-59bN-fWHXLLRepZkfX735-i8f3Lpe_2pZ6Ins4SkqNWqv4HBkGlig |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1007_s11042_018_6277_x crossref_primary_10_1109_ACCESS_2017_2767907 crossref_primary_10_1109_TNNLS_2017_2712801 crossref_primary_10_1016_j_ijleo_2015_09_001 crossref_primary_10_1049_iet_bmt_2018_5130 crossref_primary_10_1016_j_ijleo_2014_01_171 crossref_primary_10_1080_09500340_2013_814815 crossref_primary_10_1007_s11042_022_13203_5 crossref_primary_10_1007_s11063_017_9721_4 crossref_primary_10_1049_iet_bmt_2017_0193 crossref_primary_10_1109_TIP_2022_3231083 crossref_primary_10_1016_j_dsp_2016_11_005 crossref_primary_10_1016_j_ins_2017_12_025 crossref_primary_10_1016_j_knosys_2013_12_016 crossref_primary_10_3390_s17112506 crossref_primary_10_1007_s13042_019_01049_7 crossref_primary_10_1016_j_compeleceng_2020_106632 crossref_primary_10_1016_j_sigpro_2020_107485 crossref_primary_10_1016_j_eswa_2017_01_039 crossref_primary_10_3390_app122311885 crossref_primary_10_1016_j_ijleo_2014_01_161 crossref_primary_10_14504_ajr_8_S1_19 crossref_primary_10_3233_JIFS_171342 crossref_primary_10_1016_j_neucom_2015_10_049 crossref_primary_10_1007_s11042_016_4035_5 crossref_primary_10_1016_j_neucom_2014_12_051 crossref_primary_10_1007_s11042_018_6166_3 crossref_primary_10_1007_s12555_017_0308_7 crossref_primary_10_1007_s13369_017_2952_x crossref_primary_10_1109_TIP_2015_2479559 crossref_primary_10_1016_j_ijleo_2015_02_020 crossref_primary_10_1109_TCSVT_2018_2812802 crossref_primary_10_1016_j_knosys_2015_04_003 crossref_primary_10_1016_j_knosys_2018_06_018 crossref_primary_10_1016_j_ijleo_2013_11_042 crossref_primary_10_1145_3625235 crossref_primary_10_1016_j_ijleo_2015_09_142 crossref_primary_10_1080_00207160_2013_805212 crossref_primary_10_1002_int_22411 crossref_primary_10_1007_s10462_016_9537_z crossref_primary_10_1016_j_patcog_2016_03_029 crossref_primary_10_1016_j_ijleo_2013_05_002 crossref_primary_10_1016_j_neunet_2022_02_021 crossref_primary_10_1007_s11042_014_1887_4 crossref_primary_10_1007_s11042_018_6110_6 crossref_primary_10_32604_cmc_2022_019975 crossref_primary_10_1177_17483026211044922 crossref_primary_10_1016_j_trit_2017_03_001 crossref_primary_10_1109_ACCESS_2018_2883527 crossref_primary_10_1016_j_patcog_2018_10_018 crossref_primary_10_1109_ACCESS_2018_2889506 crossref_primary_10_1007_s00138_018_0941_z crossref_primary_10_1007_s00500_016_2064_7 crossref_primary_10_1016_j_ijleo_2014_04_044 crossref_primary_10_1016_j_ijleo_2013_11_072 crossref_primary_10_1016_j_dcmed_2022_12_004 crossref_primary_10_1007_s11042_017_4501_8 crossref_primary_10_1007_s00521_012_1252_3 crossref_primary_10_1109_TIP_2020_3024728 crossref_primary_10_1007_s10462_016_9502_x crossref_primary_10_1007_s41095_016_0061_5 crossref_primary_10_1016_j_patcog_2012_11_019 crossref_primary_10_1109_TIP_2015_2510498 crossref_primary_10_1016_j_neucom_2013_10_025 crossref_primary_10_1049_iet_ipr_2019_0683 crossref_primary_10_1007_s00138_015_0694_x crossref_primary_10_1007_s00521_012_1019_x crossref_primary_10_1049_joe_2018_8304 crossref_primary_10_1016_j_ijleo_2014_08_034 crossref_primary_10_1109_TNNLS_2018_2796133 crossref_primary_10_1007_s11042_017_5399_x crossref_primary_10_1007_s11063_015_9442_5 crossref_primary_10_1007_s00521_012_1265_y crossref_primary_10_1049_joe_2018_8306 crossref_primary_10_1007_s11042_016_3427_x crossref_primary_10_1016_j_amc_2013_07_024 crossref_primary_10_1049_iet_ipr_2014_0078 crossref_primary_10_1049_iet_cvi_2018_5488 crossref_primary_10_1016_j_neucom_2021_11_065 crossref_primary_10_1016_j_patcog_2012_11_003 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1007_s11042_017_5264_y crossref_primary_10_1016_j_neucom_2013_01_036 crossref_primary_10_1109_TMM_2016_2602062 crossref_primary_10_1145_3326919 crossref_primary_10_1016_j_ijleo_2013_03_133 crossref_primary_10_1016_j_imavis_2019_02_012 crossref_primary_10_1016_j_patcog_2014_05_011 crossref_primary_10_1016_j_patcog_2023_110219 crossref_primary_10_1016_j_jvcir_2020_102764 crossref_primary_10_1016_j_jvcir_2020_102763 crossref_primary_10_1007_s00521_017_3204_4 crossref_primary_10_1007_s11042_022_13604_6 crossref_primary_10_1007_s11063_018_9904_7 crossref_primary_10_1016_j_patrec_2018_10_016 crossref_primary_10_1109_TCYB_2014_2300175 crossref_primary_10_1007_s13042_016_0625_9 crossref_primary_10_1016_j_dsp_2018_02_009 crossref_primary_10_1007_s00521_012_1066_3 crossref_primary_10_1109_ACCESS_2020_2997953 crossref_primary_10_3390_electronics12204282 crossref_primary_10_1109_TCBB_2014_2383375 crossref_primary_10_1109_TNNLS_2013_2249088 crossref_primary_10_1007_s00521_014_1564_6 crossref_primary_10_1007_s11042_016_3824_1 crossref_primary_10_1016_j_ijleo_2013_05_099 crossref_primary_10_1109_TCSVT_2016_2615459 crossref_primary_10_1007_s11042_017_5542_8 crossref_primary_10_1007_s00521_013_1399_6 crossref_primary_10_1007_s11042_019_08211_x crossref_primary_10_1007_s00521_012_1093_0 crossref_primary_10_1007_s11042_021_10516_9 crossref_primary_10_1016_j_neucom_2014_07_058 crossref_primary_10_1109_ACCESS_2017_2739807 crossref_primary_10_3390_app9020224 crossref_primary_10_1016_j_cogsys_2020_02_001 crossref_primary_10_1049_iet_cvi_2016_0186 crossref_primary_10_1109_TNNLS_2020_3041636 crossref_primary_10_1155_2015_280318 crossref_primary_10_1016_j_eswa_2015_09_058 crossref_primary_10_1155_2013_248380 crossref_primary_10_1007_s13042_019_00986_7 crossref_primary_10_1016_j_neucom_2018_06_089 crossref_primary_10_1109_TCYB_2016_2516239 crossref_primary_10_1016_j_ijleo_2013_10_074 crossref_primary_10_1016_j_jvcir_2015_01_001 crossref_primary_10_1109_TNNLS_2015_2508025 crossref_primary_10_1080_09500340_2018_1506055 crossref_primary_10_1007_s11063_013_9333_6 crossref_primary_10_1016_j_patcog_2016_04_024 crossref_primary_10_1007_s00500_012_0861_1 crossref_primary_10_1007_s11042_016_4338_6 crossref_primary_10_1016_j_neucom_2013_11_025 crossref_primary_10_3390_app8071210 crossref_primary_10_1007_s11042_017_5407_1 crossref_primary_10_1109_ACCESS_2018_2883288 crossref_primary_10_1109_TCSVT_2012_2202079 crossref_primary_10_1109_TIP_2014_2380171 crossref_primary_10_1016_j_neucom_2019_05_103 crossref_primary_10_1016_j_patcog_2025_111675 crossref_primary_10_1016_j_ins_2017_02_017 crossref_primary_10_1016_j_ins_2022_07_070 crossref_primary_10_1016_j_ijleo_2017_05_032 crossref_primary_10_1016_j_eswa_2019_05_009 crossref_primary_10_1016_j_neucom_2015_09_048 crossref_primary_10_1016_j_ijleo_2016_05_093 crossref_primary_10_1007_s00500_017_2898_7 crossref_primary_10_1155_2017_2691474 crossref_primary_10_1007_s11042_019_07897_3 crossref_primary_10_1109_TNNLS_2016_2580572 crossref_primary_10_1016_j_compeleceng_2019_106451 crossref_primary_10_1109_TCSVT_2015_2473415 crossref_primary_10_1109_TIFS_2018_2833052 crossref_primary_10_1007_s00521_013_1435_6 crossref_primary_10_1007_s11063_015_9448_z crossref_primary_10_1049_iet_cvi_2014_0366 crossref_primary_10_1134_S1054661820010174 crossref_primary_10_1016_j_patcog_2017_10_001 crossref_primary_10_1016_j_patcog_2017_02_004 crossref_primary_10_1109_ACCESS_2019_2960928 crossref_primary_10_1007_s13042_020_01203_6 crossref_primary_10_1016_j_neucom_2014_06_058 crossref_primary_10_1109_ACCESS_2020_2989452 crossref_primary_10_1016_j_eswa_2022_118663 crossref_primary_10_1016_j_ijleo_2015_07_116 crossref_primary_10_1007_s00521_017_2897_8 crossref_primary_10_1007_s11042_021_10661_1 crossref_primary_10_1155_2014_415856 crossref_primary_10_1016_j_neunet_2017_08_002 crossref_primary_10_1049_cit2_12115 crossref_primary_10_7717_peerj_cs_192 crossref_primary_10_1016_j_patcog_2020_107529 crossref_primary_10_1016_j_patrec_2011_11_010 crossref_primary_10_1007_s13042_019_01045_x crossref_primary_10_1016_j_neucom_2014_09_035 crossref_primary_10_1080_09500340_2017_1357850 crossref_primary_10_1109_TIP_2019_2919201 crossref_primary_10_1049_iet_ipr_2019_0613 crossref_primary_10_1016_j_ijleo_2013_05_057 crossref_primary_10_1109_TIP_2015_2405474 crossref_primary_10_1109_TIP_2015_2425545 crossref_primary_10_1007_s40747_022_00868_6 crossref_primary_10_1155_2013_373858 crossref_primary_10_1007_s10489_019_01612_3 crossref_primary_10_1016_j_ijleo_2012_09_015 crossref_primary_10_1109_ACCESS_2015_2430359 crossref_primary_10_1007_s11760_022_02468_w crossref_primary_10_1016_j_ijleo_2015_08_153 crossref_primary_10_1080_09500340_2014_915064 crossref_primary_10_1155_2022_9934144 crossref_primary_10_1109_TCSVT_2021_3135316 crossref_primary_10_1007_s13042_020_01116_4 crossref_primary_10_1109_TIP_2019_2938307 crossref_primary_10_1016_j_neunet_2020_01_020 crossref_primary_10_1016_j_ijleo_2013_04_017 crossref_primary_10_1007_s11042_019_07943_0 crossref_primary_10_1007_s00521_014_1681_2 crossref_primary_10_1080_09500340_2015_1133857 crossref_primary_10_1007_s11063_021_10590_y crossref_primary_10_1080_09500340_2016_1260781 crossref_primary_10_1177_1748302620930943 crossref_primary_10_1007_s00521_016_2299_3 crossref_primary_10_1109_TSMC_2016_2597291 crossref_primary_10_1080_09500340_2015_1005187 crossref_primary_10_1007_s00521_012_1218_5 crossref_primary_10_1155_2019_7835797 crossref_primary_10_1016_j_ijleo_2013_06_096 crossref_primary_10_1080_09500340_2018_1455923 crossref_primary_10_1080_09720529_2020_1726079 crossref_primary_10_1007_s11554_021_01167_y crossref_primary_10_1016_j_ijleo_2014_05_018 crossref_primary_10_1109_TCSVT_2014_2351092 crossref_primary_10_1016_j_ijleo_2013_07_101 crossref_primary_10_1016_j_ijleo_2015_07_144 crossref_primary_10_1109_TCSVT_2014_2380195 crossref_primary_10_1016_j_ijleo_2015_08_172 crossref_primary_10_1016_j_neucom_2016_06_071 crossref_primary_10_3390_info14050278 crossref_primary_10_1007_s11042_017_4627_8 crossref_primary_10_1016_j_neucom_2014_06_044 crossref_primary_10_1080_09500340_2017_1380854 crossref_primary_10_1109_ACCESS_2020_3033093 crossref_primary_10_1109_ACCESS_2017_2730218 crossref_primary_10_1016_j_neucom_2014_10_041 crossref_primary_10_1109_ACCESS_2020_3041154 crossref_primary_10_1080_09500340_2015_1083131 crossref_primary_10_1108_SR_07_2016_0124 crossref_primary_10_1109_ACCESS_2019_2940876 crossref_primary_10_1016_j_compeleceng_2023_109020 crossref_primary_10_1007_s00500_015_1692_7 crossref_primary_10_1007_s10044_023_01151_1 crossref_primary_10_1109_LGRS_2021_3070074 crossref_primary_10_1109_ACCESS_2019_2944484 crossref_primary_10_1109_TAI_2021_3096489 crossref_primary_10_3233_IDA_150296 crossref_primary_10_1016_j_sigpro_2018_01_013 crossref_primary_10_1109_TCSVT_2023_3327012 crossref_primary_10_1007_s00521_014_1665_2 crossref_primary_10_1016_j_patcog_2015_09_035 crossref_primary_10_1016_j_patcog_2018_11_008 crossref_primary_10_3390_s19112609 crossref_primary_10_1016_j_patcog_2016_07_025 crossref_primary_10_1007_s11063_023_11234_z crossref_primary_10_1016_j_ins_2020_09_062 crossref_primary_10_1109_TSP_2024_3446512 crossref_primary_10_1007_s13042_021_01461_y crossref_primary_10_1007_s00521_015_1843_x crossref_primary_10_1109_TSMC_2020_3003021 crossref_primary_10_1016_j_patcog_2020_107204 crossref_primary_10_3390_s19040759 crossref_primary_10_1007_s11042_019_08434_y crossref_primary_10_1109_TIFS_2017_2680403 crossref_primary_10_1016_j_jvcir_2016_09_006 crossref_primary_10_1049_iet_cvi_2018_5096 crossref_primary_10_1007_s13369_018_3612_5 crossref_primary_10_1016_j_patrec_2020_04_027 crossref_primary_10_1109_TCSVT_2020_3032964 crossref_primary_10_1109_TIP_2018_2870946 crossref_primary_10_1016_j_ins_2013_02_051 crossref_primary_10_1016_j_ijleo_2013_05_017 crossref_primary_10_1109_TCYB_2018_2880290 crossref_primary_10_1016_j_ijleo_2014_07_025 crossref_primary_10_1016_j_ijleo_2017_04_055 crossref_primary_10_1016_j_sigpro_2019_03_015 crossref_primary_10_1007_s11042_020_08965_9 crossref_primary_10_1007_s11227_018_2606_0 crossref_primary_10_1016_j_eswa_2018_07_035 crossref_primary_10_1109_TPAMI_2014_2372764 crossref_primary_10_1016_j_image_2018_03_003 crossref_primary_10_1007_s11760_018_1316_7 crossref_primary_10_1016_j_measurement_2025_118368 crossref_primary_10_1016_j_eswa_2018_07_039 crossref_primary_10_1007_s10044_016_0547_x crossref_primary_10_1007_s11063_016_9550_x crossref_primary_10_1007_s11760_020_01755_8 crossref_primary_10_1016_j_ijleo_2016_01_033 crossref_primary_10_1016_j_neucom_2013_08_040 crossref_primary_10_1016_j_neucom_2011_10_013 crossref_primary_10_1109_JSYST_2022_3216547 crossref_primary_10_1109_TCYB_2015_2457234 crossref_primary_10_1016_j_sigpro_2019_03_007 crossref_primary_10_1109_TCYB_2013_2293391 crossref_primary_10_3390_e23091164 crossref_primary_10_1016_j_patrec_2015_05_005 crossref_primary_10_1016_j_cad_2020_102913 crossref_primary_10_1007_s11771_022_4995_8 crossref_primary_10_1109_ACCESS_2020_2975622 crossref_primary_10_1016_j_patcog_2014_07_009 crossref_primary_10_3390_s23073743 crossref_primary_10_1016_j_eswa_2017_05_035 crossref_primary_10_1016_j_asoc_2019_105579 crossref_primary_10_1016_j_patcog_2015_08_001 crossref_primary_10_1109_TNNLS_2019_2910146 crossref_primary_10_1016_j_neucom_2011_08_011 crossref_primary_10_1007_s11042_018_6740_8 crossref_primary_10_1016_j_sigpro_2018_06_005 crossref_primary_10_1016_j_knosys_2017_09_003 crossref_primary_10_1007_s13042_018_0862_1 crossref_primary_10_1016_j_neucom_2015_12_019 crossref_primary_10_1049_iet_cvi_2015_0462 crossref_primary_10_1007_s00138_020_01067_4 crossref_primary_10_1007_s12206_020_0414_y crossref_primary_10_1016_j_artmed_2017_03_006 crossref_primary_10_1117_1_OE_51_1_017205 crossref_primary_10_1016_j_ijleo_2012_10_048 crossref_primary_10_1016_j_patrec_2019_10_026 crossref_primary_10_1016_j_measurement_2019_06_008 crossref_primary_10_1016_j_jvcir_2016_05_013 |
| Cites_doi | 10.1109/72.914517 10.1109/CVPR.2008.4587437 10.1117/1.3359514 10.1016/S0893-6080(03)00015-7 10.1016/j.neucom.2006.09.005 10.1016/j.neucom.2007.09.021 10.1109/CVPR.2009.5206547 10.1109/ICPR.2010.232 10.1155/2010/158395 10.1016/j.pnsc.2009.04.013 10.1109/JPROC.2010.2044470 10.1016/j.ins.2004.02.018 10.1016/j.eswa.2008.10.041 10.1109/CVPR.2006.21 10.1109/TPAMI.2008.79 10.1109/TPAMI.2004.1261097 10.1007/11788034_30 10.1109/34.879790 10.1109/34.41390 10.1007/s11634-010-0068-1 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TCSVT.2011.2138790 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1558-2205 |
| EndPage | 1262 |
| ExternalDocumentID | 2560421501 24504874 10_1109_TCSVT_2011_2138790 5742988 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c389t-21a06522c3f7ce28c6857f36f29732baa8ef4fd2e26c4fcd0de1c31a591258283 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 429 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294669900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Sun Sep 28 02:50:44 EDT 2025 Thu Oct 02 07:40:50 EDT 2025 Sun Nov 09 07:13:52 EST 2025 Mon Jul 21 09:18:12 EDT 2025 Tue Nov 18 22:27:54 EST 2025 Sat Nov 29 01:44:02 EST 2025 Tue Aug 26 17:18:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Learning Biometrics Nearest neighbour Computer vision transform methods Linear combination Face recognition Image processing Test method Sparse representation Pattern recognition Automatic recognition |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-21a06522c3f7ce28c6857f36f29732baa8ef4fd2e26c4fcd0de1c31a591258283 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| PQID | 916010112 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_926284970 proquest_journals_916010112 pascalfrancis_primary_24504874 ieee_primary_5742988 crossref_primary_10_1109_TCSVT_2011_2138790 proquest_miscellaneous_1010897268 crossref_citationtrail_10_1109_TCSVT_2011_2138790 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2011 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref15 ref31 phillips (ref32) 0 ref11 vural (ref14) 2009; 10 ref2 ref1 ref17 fan (ref20) 2006 ref16 ref19 (ref33) 0 ref18 schlkopf (ref9) 1997 tipping (ref8) 2000 sugiyama (ref13) 2007; 8 ref23 tao (ref12) 2004 ref25 ref22 ref21 schlkopf (ref10) 2002 ref28 xu (ref29) 2008 ref27 dikmen (ref26) 2008 mairal (ref24) 2009; 21 (ref30) 0 ref7 ref4 ref3 ref6 ref5 |
| References_xml | – year: 2008 ident: ref26 article-title: Robust estimation of foreground in surveillance videos by sparse error estimation publication-title: Proc Int Conf Pattern Recog – year: 2002 ident: ref10 publication-title: Learning with kernels – ident: ref11 doi: 10.1109/72.914517 – ident: ref28 doi: 10.1109/CVPR.2008.4587437 – ident: ref4 doi: 10.1117/1.3359514 – ident: ref15 doi: 10.1016/S0893-6080(03)00015-7 – year: 0 ident: ref33 – start-page: 1287 year: 2004 ident: ref12 article-title: Kernel full-space biased discriminant analysis publication-title: Proc IEEE ICME – ident: ref7 doi: 10.1016/j.neucom.2006.09.005 – start-page: 633 year: 2000 ident: ref8 publication-title: Neural Information Processing Systems – ident: ref2 doi: 10.1016/j.neucom.2007.09.021 – ident: ref27 doi: 10.1109/CVPR.2009.5206547 – year: 0 ident: ref30 – start-page: 583 year: 1997 ident: ref9 article-title: Kernel principal component analysis publication-title: Proc ICANN – ident: ref21 doi: 10.1109/ICPR.2010.232 – volume: 10 start-page: 183 year: 2009 ident: ref14 article-title: Using local dependencies within batches to improve large margin classifiers publication-title: J Mach Learn Res – ident: ref5 doi: 10.1155/2010/158395 – ident: ref25 doi: 10.1016/j.pnsc.2009.04.013 – ident: ref22 doi: 10.1109/JPROC.2010.2044470 – volume: 21 year: 2009 ident: ref24 article-title: Supervised dictionary learning publication-title: Proc Adv NIPS – year: 0 ident: ref32 publication-title: The Facial Recognition Technology (FERET) Database – ident: ref16 doi: 10.1016/j.ins.2004.02.018 – ident: ref17 doi: 10.1016/j.eswa.2008.10.041 – ident: ref19 doi: 10.1109/CVPR.2006.21 – ident: ref23 doi: 10.1109/TPAMI.2008.79 – ident: ref3 doi: 10.1109/TPAMI.2004.1261097 – volume: 8 start-page: 1027 year: 2007 ident: ref13 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J Mach Learn Res – ident: ref18 doi: 10.1007/11788034_30 – ident: ref31 doi: 10.1109/34.879790 – ident: ref1 doi: 10.1109/34.41390 – ident: ref6 doi: 10.1007/s11634-010-0068-1 – year: 2006 ident: ref20 publication-title: Learning a hierarchy of classifiers for multi-class shape detection – start-page: 392 year: 2008 ident: ref29 article-title: Down-sampling face images and low-resolution face recognition publication-title: Proc Int Conf Innovative Comput Inform Contr |
| SSID | ssj0014847 |
| Score | 2.5406919 |
| Snippet | In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1255 |
| SubjectTerms | Applied sciences Artificial intelligence Circuits Classification Computer science; control theory; systems Computer vision Electronic mail Exact sciences and technology Face recognition Image processing Information, signal and communications theory Materials Nearest neighbor searches Pattern recognition Pattern recognition. Digital image processing. Computational geometry Principal component analysis Representations Signal processing sparse representation Studies Telecommunications and information theory Training transform methods Transforms |
| Title | A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition |
| URI | https://ieeexplore.ieee.org/document/5742988 https://www.proquest.com/docview/916010112 https://www.proquest.com/docview/1010897268 https://www.proquest.com/docview/926284970 |
| Volume | 21 |
| WOSCitedRecordID | wos000294669900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB_a4kEP2lrFtbZE8KbRJPuR5FiKDy8tpW-rvS152QktlN3S957--06y-5aKH-BtIQkJmWTmN5uZ3wC8I5su3CIITlCi5EVwghufKx4I7jo0KjKypGIT-uzMXF3Z8y34MOXCIGIKPsOP8TO95be9X8dfZeS8k_Y0Zhu2ta6GXK3pxaAwqZgYwQXJaYpykyAj7Kf6ZP61Htg6lcyNjvr3gRFKVVViTKRb0raEoZ7Fb6o52ZvZs_9b6S48HXElOx4Owh5sYfccnjxgG9yHi2NW_-j5-TUZLlbTlGzuIjcwm9-Rd4vsIgXFjrlIHTtNtaUZgVp2Sa3fblbXbOZ87DfGHPXdC7icfa5PvvCxpAL3hExWXElHmEMpnwftURlfmVKHvAqxhJVaOGcwFKFVqCpfBN-KFqXPpSstASFyzvKXsNP1Hb4CZkO5wEigFxwNkcFWC5TOmqps0VvRZiA3e9z4kW88lr24bZLfIWyT5NJEuTSjXDJ4P425G9g2_tl7P-781HPc9AyOfhHl1K6KkvSVLjI42Mi2GW_ssiGYHOn2pMrg7dRKVy2-n7gO-_UyRsMJY7WqaAr2lz6RftEUVovXf17cATwe_krHKLU3sLO6X-MhPPLfVzfL-6N0pH8CiaDysw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB6sFmoftK0trlabQt_a2CSb3U0eRXoo6iHe2vq25LIJCmVXvLv23-8ku7dY-gN8W0hCQiaZ-WYz8w3AB7TpzEw9owglMiq9YVTZVFCPcNc4JQIjSyw2UYzH6vpaX6zApyEXxjkXg8_cQfiMb_l1axfhVxk676g9lXoCa5mUgnXZWsObgVSxnBgCBk5xkmyZIsP05_Jo8rXs-DoFT1URNPADMxTrqoSoSDPDjfFdRYs_lHO0OKPNx631BWz0yJIcdkfhJay45hU8f8A3uAWXh6T82dKLGzRdpMQpycQEdmAyuUP_1pHLGBbbZyM15DxWlyYIa8kVtn67nd-QkbGhXx911Dav4Wr0pTw6pn1RBWoRm8yp4AZRhxA29YV1QtlcZYVPcx-KWImpMcp56WvhRG6ltzWrHbcpN5lGKITuWfoGVpu2cdtAtM-mLlDoeYNDuNf51HGjVZ7VzmpWJ8CXe1zZnnE8FL74XkXPg-kqyqUKcql6uSTwcRhz1_Ft_Lf3Vtj5oWe_6Qns_ybKoV3IDDVWIRPYXcq26u_srEKgHAj3uEjg_dCKly28oJjGtYtZiIdjShcixynIP_oEAkYldcF2_r64d_DsuDw_q85Oxqe7sN79ow4xa29hdX6_cHvw1P6Y387u9-Px_gVKevX6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Phase+Test+Sample+Sparse+Representation+Method+for+Use+With+Face+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Xu%2C+Yong&rft.au=Zhang%2C+David&rft.au=Yang%2C+Jian&rft.au=Yang%2C+Jing-Yu&rft.date=2011-09-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=21&rft.issue=9&rft.spage=1255&rft.epage=1262&rft_id=info:doi/10.1109%2FTCSVT.2011.2138790&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |