A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition

In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M &...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 21; číslo 9; s. 1255 - 1262
Hlavní autoři: Yong Xu, Zhang, D., Jian Yang, Jing-Yu Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M "nearest neighbors" for the test sample. The second phase represents the test sample as a linear combination of the determined M nearest neighbors and uses the representation result to perform classification. We propose this method with the following assumption: the test sample and its some neighbors are probably from the same class. Thus, we use the first phase to detect the training samples that are far from the test sample and assume that these samples have no effects on the ultimate classification decision. This is helpful to accurately classify the test sample. We will also show the probability explanation of the proposed method. A number of face recognition experiments show that our method performs very well.
AbstractList In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M "nearest neighbors" for the test sample. The second phase represents the test sample as a linear combination of the determined M nearest neighbors and uses the representation result to perform classification. We propose this method with the following assumption: the test sample and its some neighbors are probably from the same class. Thus, we use the first phase to detect the training samples that are far from the test sample and assume that these samples have no effects on the ultimate classification decision. This is helpful to accurately classify the test sample. We will also show the probability explanation of the proposed method. A number of face recognition experiments show that our method performs very well.
Author Zhang, D.
Jing-Yu Yang
Jian Yang
Yong Xu
Author_xml – sequence: 1
  surname: Yong Xu
  fullname: Yong Xu
  email: laterfa112@yahoo.com.cn
  organization: Bio-Comput. Res. Center, Harbin Inst. of Technol., Shenzhen, China
– sequence: 2
  givenname: D.
  surname: Zhang
  fullname: Zhang, D.
  email: csdzhang@comp.polyu.edu.hk
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China
– sequence: 3
  surname: Jian Yang
  fullname: Jian Yang
  email: csjyang@mail.njust.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China
– sequence: 4
  surname: Jing-Yu Yang
  fullname: Jing-Yu Yang
  email: yangjy@mai.njust.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24504874$$DView record in Pascal Francis
BookMark eNp90U1v1DAQBuAItRL94A_AJUJC7SWLZ2LH9rFa0YJUBOqmcIyMd8y6ysbBzqri3-Owqx566MmW_cz44z0tjoYwUFG8BbYAYPpju1z9aBfIABYItZKavSpOQAhVITJxlOdMQKUQxOviNKUHxoArLk-Ku6uyfQzV941JVLaUpnJltmNP5Wo0MS_d0Rgp0TCZyYeh_ErTJqxLF2J5n3d_-mlTXhs7Oxt-D35G58WxM32iN4fxrLi__tQuP1e3326-LK9uK1srPVUIhjUC0dZOWkJlGyWkqxuHWtb4yxhFjrs1EjaWO7tmawJbgxEaUChU9Vlxse87xvBnl6_ebX2y1PdmoLBLncYGFdeSZXn5ogQGTGmJzdz0_TP6EHZxyO_oNDTZAWBGHw7IJGt6F81gferG6Lcm_u2QC8aV5Nnh3tkYUorkngiwbs6t-59bN-fWHXLLRepZkfX735-i8f3Lpe_2pZ6Ins4SkqNWqv4HBkGlig
CODEN ITCTEM
CitedBy_id crossref_primary_10_1007_s11042_018_6277_x
crossref_primary_10_1109_ACCESS_2017_2767907
crossref_primary_10_1109_TNNLS_2017_2712801
crossref_primary_10_1016_j_ijleo_2015_09_001
crossref_primary_10_1049_iet_bmt_2018_5130
crossref_primary_10_1016_j_ijleo_2014_01_171
crossref_primary_10_1080_09500340_2013_814815
crossref_primary_10_1007_s11042_022_13203_5
crossref_primary_10_1007_s11063_017_9721_4
crossref_primary_10_1049_iet_bmt_2017_0193
crossref_primary_10_1109_TIP_2022_3231083
crossref_primary_10_1016_j_dsp_2016_11_005
crossref_primary_10_1016_j_ins_2017_12_025
crossref_primary_10_1016_j_knosys_2013_12_016
crossref_primary_10_3390_s17112506
crossref_primary_10_1007_s13042_019_01049_7
crossref_primary_10_1016_j_compeleceng_2020_106632
crossref_primary_10_1016_j_sigpro_2020_107485
crossref_primary_10_1016_j_eswa_2017_01_039
crossref_primary_10_3390_app122311885
crossref_primary_10_1016_j_ijleo_2014_01_161
crossref_primary_10_14504_ajr_8_S1_19
crossref_primary_10_3233_JIFS_171342
crossref_primary_10_1016_j_neucom_2015_10_049
crossref_primary_10_1007_s11042_016_4035_5
crossref_primary_10_1016_j_neucom_2014_12_051
crossref_primary_10_1007_s11042_018_6166_3
crossref_primary_10_1007_s12555_017_0308_7
crossref_primary_10_1007_s13369_017_2952_x
crossref_primary_10_1109_TIP_2015_2479559
crossref_primary_10_1016_j_ijleo_2015_02_020
crossref_primary_10_1109_TCSVT_2018_2812802
crossref_primary_10_1016_j_knosys_2015_04_003
crossref_primary_10_1016_j_knosys_2018_06_018
crossref_primary_10_1016_j_ijleo_2013_11_042
crossref_primary_10_1145_3625235
crossref_primary_10_1016_j_ijleo_2015_09_142
crossref_primary_10_1080_00207160_2013_805212
crossref_primary_10_1002_int_22411
crossref_primary_10_1007_s10462_016_9537_z
crossref_primary_10_1016_j_patcog_2016_03_029
crossref_primary_10_1016_j_ijleo_2013_05_002
crossref_primary_10_1016_j_neunet_2022_02_021
crossref_primary_10_1007_s11042_014_1887_4
crossref_primary_10_1007_s11042_018_6110_6
crossref_primary_10_32604_cmc_2022_019975
crossref_primary_10_1177_17483026211044922
crossref_primary_10_1016_j_trit_2017_03_001
crossref_primary_10_1109_ACCESS_2018_2883527
crossref_primary_10_1016_j_patcog_2018_10_018
crossref_primary_10_1109_ACCESS_2018_2889506
crossref_primary_10_1007_s00138_018_0941_z
crossref_primary_10_1007_s00500_016_2064_7
crossref_primary_10_1016_j_ijleo_2014_04_044
crossref_primary_10_1016_j_ijleo_2013_11_072
crossref_primary_10_1016_j_dcmed_2022_12_004
crossref_primary_10_1007_s11042_017_4501_8
crossref_primary_10_1007_s00521_012_1252_3
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1007_s10462_016_9502_x
crossref_primary_10_1007_s41095_016_0061_5
crossref_primary_10_1016_j_patcog_2012_11_019
crossref_primary_10_1109_TIP_2015_2510498
crossref_primary_10_1016_j_neucom_2013_10_025
crossref_primary_10_1049_iet_ipr_2019_0683
crossref_primary_10_1007_s00138_015_0694_x
crossref_primary_10_1007_s00521_012_1019_x
crossref_primary_10_1049_joe_2018_8304
crossref_primary_10_1016_j_ijleo_2014_08_034
crossref_primary_10_1109_TNNLS_2018_2796133
crossref_primary_10_1007_s11042_017_5399_x
crossref_primary_10_1007_s11063_015_9442_5
crossref_primary_10_1007_s00521_012_1265_y
crossref_primary_10_1049_joe_2018_8306
crossref_primary_10_1007_s11042_016_3427_x
crossref_primary_10_1016_j_amc_2013_07_024
crossref_primary_10_1049_iet_ipr_2014_0078
crossref_primary_10_1049_iet_cvi_2018_5488
crossref_primary_10_1016_j_neucom_2021_11_065
crossref_primary_10_1016_j_patcog_2012_11_003
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1007_s11042_017_5264_y
crossref_primary_10_1016_j_neucom_2013_01_036
crossref_primary_10_1109_TMM_2016_2602062
crossref_primary_10_1145_3326919
crossref_primary_10_1016_j_ijleo_2013_03_133
crossref_primary_10_1016_j_imavis_2019_02_012
crossref_primary_10_1016_j_patcog_2014_05_011
crossref_primary_10_1016_j_patcog_2023_110219
crossref_primary_10_1016_j_jvcir_2020_102764
crossref_primary_10_1016_j_jvcir_2020_102763
crossref_primary_10_1007_s00521_017_3204_4
crossref_primary_10_1007_s11042_022_13604_6
crossref_primary_10_1007_s11063_018_9904_7
crossref_primary_10_1016_j_patrec_2018_10_016
crossref_primary_10_1109_TCYB_2014_2300175
crossref_primary_10_1007_s13042_016_0625_9
crossref_primary_10_1016_j_dsp_2018_02_009
crossref_primary_10_1007_s00521_012_1066_3
crossref_primary_10_1109_ACCESS_2020_2997953
crossref_primary_10_3390_electronics12204282
crossref_primary_10_1109_TCBB_2014_2383375
crossref_primary_10_1109_TNNLS_2013_2249088
crossref_primary_10_1007_s00521_014_1564_6
crossref_primary_10_1007_s11042_016_3824_1
crossref_primary_10_1016_j_ijleo_2013_05_099
crossref_primary_10_1109_TCSVT_2016_2615459
crossref_primary_10_1007_s11042_017_5542_8
crossref_primary_10_1007_s00521_013_1399_6
crossref_primary_10_1007_s11042_019_08211_x
crossref_primary_10_1007_s00521_012_1093_0
crossref_primary_10_1007_s11042_021_10516_9
crossref_primary_10_1016_j_neucom_2014_07_058
crossref_primary_10_1109_ACCESS_2017_2739807
crossref_primary_10_3390_app9020224
crossref_primary_10_1016_j_cogsys_2020_02_001
crossref_primary_10_1049_iet_cvi_2016_0186
crossref_primary_10_1109_TNNLS_2020_3041636
crossref_primary_10_1155_2015_280318
crossref_primary_10_1016_j_eswa_2015_09_058
crossref_primary_10_1155_2013_248380
crossref_primary_10_1007_s13042_019_00986_7
crossref_primary_10_1016_j_neucom_2018_06_089
crossref_primary_10_1109_TCYB_2016_2516239
crossref_primary_10_1016_j_ijleo_2013_10_074
crossref_primary_10_1016_j_jvcir_2015_01_001
crossref_primary_10_1109_TNNLS_2015_2508025
crossref_primary_10_1080_09500340_2018_1506055
crossref_primary_10_1007_s11063_013_9333_6
crossref_primary_10_1016_j_patcog_2016_04_024
crossref_primary_10_1007_s00500_012_0861_1
crossref_primary_10_1007_s11042_016_4338_6
crossref_primary_10_1016_j_neucom_2013_11_025
crossref_primary_10_3390_app8071210
crossref_primary_10_1007_s11042_017_5407_1
crossref_primary_10_1109_ACCESS_2018_2883288
crossref_primary_10_1109_TCSVT_2012_2202079
crossref_primary_10_1109_TIP_2014_2380171
crossref_primary_10_1016_j_neucom_2019_05_103
crossref_primary_10_1016_j_patcog_2025_111675
crossref_primary_10_1016_j_ins_2017_02_017
crossref_primary_10_1016_j_ins_2022_07_070
crossref_primary_10_1016_j_ijleo_2017_05_032
crossref_primary_10_1016_j_eswa_2019_05_009
crossref_primary_10_1016_j_neucom_2015_09_048
crossref_primary_10_1016_j_ijleo_2016_05_093
crossref_primary_10_1007_s00500_017_2898_7
crossref_primary_10_1155_2017_2691474
crossref_primary_10_1007_s11042_019_07897_3
crossref_primary_10_1109_TNNLS_2016_2580572
crossref_primary_10_1016_j_compeleceng_2019_106451
crossref_primary_10_1109_TCSVT_2015_2473415
crossref_primary_10_1109_TIFS_2018_2833052
crossref_primary_10_1007_s00521_013_1435_6
crossref_primary_10_1007_s11063_015_9448_z
crossref_primary_10_1049_iet_cvi_2014_0366
crossref_primary_10_1134_S1054661820010174
crossref_primary_10_1016_j_patcog_2017_10_001
crossref_primary_10_1016_j_patcog_2017_02_004
crossref_primary_10_1109_ACCESS_2019_2960928
crossref_primary_10_1007_s13042_020_01203_6
crossref_primary_10_1016_j_neucom_2014_06_058
crossref_primary_10_1109_ACCESS_2020_2989452
crossref_primary_10_1016_j_eswa_2022_118663
crossref_primary_10_1016_j_ijleo_2015_07_116
crossref_primary_10_1007_s00521_017_2897_8
crossref_primary_10_1007_s11042_021_10661_1
crossref_primary_10_1155_2014_415856
crossref_primary_10_1016_j_neunet_2017_08_002
crossref_primary_10_1049_cit2_12115
crossref_primary_10_7717_peerj_cs_192
crossref_primary_10_1016_j_patcog_2020_107529
crossref_primary_10_1016_j_patrec_2011_11_010
crossref_primary_10_1007_s13042_019_01045_x
crossref_primary_10_1016_j_neucom_2014_09_035
crossref_primary_10_1080_09500340_2017_1357850
crossref_primary_10_1109_TIP_2019_2919201
crossref_primary_10_1049_iet_ipr_2019_0613
crossref_primary_10_1016_j_ijleo_2013_05_057
crossref_primary_10_1109_TIP_2015_2405474
crossref_primary_10_1109_TIP_2015_2425545
crossref_primary_10_1007_s40747_022_00868_6
crossref_primary_10_1155_2013_373858
crossref_primary_10_1007_s10489_019_01612_3
crossref_primary_10_1016_j_ijleo_2012_09_015
crossref_primary_10_1109_ACCESS_2015_2430359
crossref_primary_10_1007_s11760_022_02468_w
crossref_primary_10_1016_j_ijleo_2015_08_153
crossref_primary_10_1080_09500340_2014_915064
crossref_primary_10_1155_2022_9934144
crossref_primary_10_1109_TCSVT_2021_3135316
crossref_primary_10_1007_s13042_020_01116_4
crossref_primary_10_1109_TIP_2019_2938307
crossref_primary_10_1016_j_neunet_2020_01_020
crossref_primary_10_1016_j_ijleo_2013_04_017
crossref_primary_10_1007_s11042_019_07943_0
crossref_primary_10_1007_s00521_014_1681_2
crossref_primary_10_1080_09500340_2015_1133857
crossref_primary_10_1007_s11063_021_10590_y
crossref_primary_10_1080_09500340_2016_1260781
crossref_primary_10_1177_1748302620930943
crossref_primary_10_1007_s00521_016_2299_3
crossref_primary_10_1109_TSMC_2016_2597291
crossref_primary_10_1080_09500340_2015_1005187
crossref_primary_10_1007_s00521_012_1218_5
crossref_primary_10_1155_2019_7835797
crossref_primary_10_1016_j_ijleo_2013_06_096
crossref_primary_10_1080_09500340_2018_1455923
crossref_primary_10_1080_09720529_2020_1726079
crossref_primary_10_1007_s11554_021_01167_y
crossref_primary_10_1016_j_ijleo_2014_05_018
crossref_primary_10_1109_TCSVT_2014_2351092
crossref_primary_10_1016_j_ijleo_2013_07_101
crossref_primary_10_1016_j_ijleo_2015_07_144
crossref_primary_10_1109_TCSVT_2014_2380195
crossref_primary_10_1016_j_ijleo_2015_08_172
crossref_primary_10_1016_j_neucom_2016_06_071
crossref_primary_10_3390_info14050278
crossref_primary_10_1007_s11042_017_4627_8
crossref_primary_10_1016_j_neucom_2014_06_044
crossref_primary_10_1080_09500340_2017_1380854
crossref_primary_10_1109_ACCESS_2020_3033093
crossref_primary_10_1109_ACCESS_2017_2730218
crossref_primary_10_1016_j_neucom_2014_10_041
crossref_primary_10_1109_ACCESS_2020_3041154
crossref_primary_10_1080_09500340_2015_1083131
crossref_primary_10_1108_SR_07_2016_0124
crossref_primary_10_1109_ACCESS_2019_2940876
crossref_primary_10_1016_j_compeleceng_2023_109020
crossref_primary_10_1007_s00500_015_1692_7
crossref_primary_10_1007_s10044_023_01151_1
crossref_primary_10_1109_LGRS_2021_3070074
crossref_primary_10_1109_ACCESS_2019_2944484
crossref_primary_10_1109_TAI_2021_3096489
crossref_primary_10_3233_IDA_150296
crossref_primary_10_1016_j_sigpro_2018_01_013
crossref_primary_10_1109_TCSVT_2023_3327012
crossref_primary_10_1007_s00521_014_1665_2
crossref_primary_10_1016_j_patcog_2015_09_035
crossref_primary_10_1016_j_patcog_2018_11_008
crossref_primary_10_3390_s19112609
crossref_primary_10_1016_j_patcog_2016_07_025
crossref_primary_10_1007_s11063_023_11234_z
crossref_primary_10_1016_j_ins_2020_09_062
crossref_primary_10_1109_TSP_2024_3446512
crossref_primary_10_1007_s13042_021_01461_y
crossref_primary_10_1007_s00521_015_1843_x
crossref_primary_10_1109_TSMC_2020_3003021
crossref_primary_10_1016_j_patcog_2020_107204
crossref_primary_10_3390_s19040759
crossref_primary_10_1007_s11042_019_08434_y
crossref_primary_10_1109_TIFS_2017_2680403
crossref_primary_10_1016_j_jvcir_2016_09_006
crossref_primary_10_1049_iet_cvi_2018_5096
crossref_primary_10_1007_s13369_018_3612_5
crossref_primary_10_1016_j_patrec_2020_04_027
crossref_primary_10_1109_TCSVT_2020_3032964
crossref_primary_10_1109_TIP_2018_2870946
crossref_primary_10_1016_j_ins_2013_02_051
crossref_primary_10_1016_j_ijleo_2013_05_017
crossref_primary_10_1109_TCYB_2018_2880290
crossref_primary_10_1016_j_ijleo_2014_07_025
crossref_primary_10_1016_j_ijleo_2017_04_055
crossref_primary_10_1016_j_sigpro_2019_03_015
crossref_primary_10_1007_s11042_020_08965_9
crossref_primary_10_1007_s11227_018_2606_0
crossref_primary_10_1016_j_eswa_2018_07_035
crossref_primary_10_1109_TPAMI_2014_2372764
crossref_primary_10_1016_j_image_2018_03_003
crossref_primary_10_1007_s11760_018_1316_7
crossref_primary_10_1016_j_measurement_2025_118368
crossref_primary_10_1016_j_eswa_2018_07_039
crossref_primary_10_1007_s10044_016_0547_x
crossref_primary_10_1007_s11063_016_9550_x
crossref_primary_10_1007_s11760_020_01755_8
crossref_primary_10_1016_j_ijleo_2016_01_033
crossref_primary_10_1016_j_neucom_2013_08_040
crossref_primary_10_1016_j_neucom_2011_10_013
crossref_primary_10_1109_JSYST_2022_3216547
crossref_primary_10_1109_TCYB_2015_2457234
crossref_primary_10_1016_j_sigpro_2019_03_007
crossref_primary_10_1109_TCYB_2013_2293391
crossref_primary_10_3390_e23091164
crossref_primary_10_1016_j_patrec_2015_05_005
crossref_primary_10_1016_j_cad_2020_102913
crossref_primary_10_1007_s11771_022_4995_8
crossref_primary_10_1109_ACCESS_2020_2975622
crossref_primary_10_1016_j_patcog_2014_07_009
crossref_primary_10_3390_s23073743
crossref_primary_10_1016_j_eswa_2017_05_035
crossref_primary_10_1016_j_asoc_2019_105579
crossref_primary_10_1016_j_patcog_2015_08_001
crossref_primary_10_1109_TNNLS_2019_2910146
crossref_primary_10_1016_j_neucom_2011_08_011
crossref_primary_10_1007_s11042_018_6740_8
crossref_primary_10_1016_j_sigpro_2018_06_005
crossref_primary_10_1016_j_knosys_2017_09_003
crossref_primary_10_1007_s13042_018_0862_1
crossref_primary_10_1016_j_neucom_2015_12_019
crossref_primary_10_1049_iet_cvi_2015_0462
crossref_primary_10_1007_s00138_020_01067_4
crossref_primary_10_1007_s12206_020_0414_y
crossref_primary_10_1016_j_artmed_2017_03_006
crossref_primary_10_1117_1_OE_51_1_017205
crossref_primary_10_1016_j_ijleo_2012_10_048
crossref_primary_10_1016_j_patrec_2019_10_026
crossref_primary_10_1016_j_measurement_2019_06_008
crossref_primary_10_1016_j_jvcir_2016_05_013
Cites_doi 10.1109/72.914517
10.1109/CVPR.2008.4587437
10.1117/1.3359514
10.1016/S0893-6080(03)00015-7
10.1016/j.neucom.2006.09.005
10.1016/j.neucom.2007.09.021
10.1109/CVPR.2009.5206547
10.1109/ICPR.2010.232
10.1155/2010/158395
10.1016/j.pnsc.2009.04.013
10.1109/JPROC.2010.2044470
10.1016/j.ins.2004.02.018
10.1016/j.eswa.2008.10.041
10.1109/CVPR.2006.21
10.1109/TPAMI.2008.79
10.1109/TPAMI.2004.1261097
10.1007/11788034_30
10.1109/34.879790
10.1109/34.41390
10.1007/s11634-010-0068-1
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TCSVT.2011.2138790
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-2205
EndPage 1262
ExternalDocumentID 2560421501
24504874
10_1109_TCSVT_2011_2138790
5742988
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c389t-21a06522c3f7ce28c6857f36f29732baa8ef4fd2e26c4fcd0de1c31a591258283
IEDL.DBID RIE
ISICitedReferencesCount 429
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294669900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Sep 28 02:50:44 EDT 2025
Thu Oct 02 07:40:50 EDT 2025
Sun Nov 09 07:13:52 EST 2025
Mon Jul 21 09:18:12 EDT 2025
Tue Nov 18 22:27:54 EST 2025
Sat Nov 29 01:44:02 EST 2025
Tue Aug 26 17:18:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Learning
Biometrics
Nearest neighbour
Computer vision
transform methods
Linear combination
Face recognition
Image processing
Test method
Sparse representation
Pattern recognition
Automatic recognition
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-21a06522c3f7ce28c6857f36f29732baa8ef4fd2e26c4fcd0de1c31a591258283
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 916010112
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_926284970
proquest_journals_916010112
pascalfrancis_primary_24504874
ieee_primary_5742988
crossref_primary_10_1109_TCSVT_2011_2138790
proquest_miscellaneous_1010897268
crossref_citationtrail_10_1109_TCSVT_2011_2138790
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref31
phillips (ref32) 0
ref11
vural (ref14) 2009; 10
ref2
ref1
ref17
fan (ref20) 2006
ref16
ref19
(ref33) 0
ref18
schlkopf (ref9) 1997
tipping (ref8) 2000
sugiyama (ref13) 2007; 8
ref23
tao (ref12) 2004
ref25
ref22
ref21
schlkopf (ref10) 2002
ref28
xu (ref29) 2008
ref27
dikmen (ref26) 2008
mairal (ref24) 2009; 21
(ref30) 0
ref7
ref4
ref3
ref6
ref5
References_xml – year: 2008
  ident: ref26
  article-title: Robust estimation of foreground in surveillance videos by sparse error estimation
  publication-title: Proc Int Conf Pattern Recog
– year: 2002
  ident: ref10
  publication-title: Learning with kernels
– ident: ref11
  doi: 10.1109/72.914517
– ident: ref28
  doi: 10.1109/CVPR.2008.4587437
– ident: ref4
  doi: 10.1117/1.3359514
– ident: ref15
  doi: 10.1016/S0893-6080(03)00015-7
– year: 0
  ident: ref33
– start-page: 1287
  year: 2004
  ident: ref12
  article-title: Kernel full-space biased discriminant analysis
  publication-title: Proc IEEE ICME
– ident: ref7
  doi: 10.1016/j.neucom.2006.09.005
– start-page: 633
  year: 2000
  ident: ref8
  publication-title: Neural Information Processing Systems
– ident: ref2
  doi: 10.1016/j.neucom.2007.09.021
– ident: ref27
  doi: 10.1109/CVPR.2009.5206547
– year: 0
  ident: ref30
– start-page: 583
  year: 1997
  ident: ref9
  article-title: Kernel principal component analysis
  publication-title: Proc ICANN
– ident: ref21
  doi: 10.1109/ICPR.2010.232
– volume: 10
  start-page: 183
  year: 2009
  ident: ref14
  article-title: Using local dependencies within batches to improve large margin classifiers
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1155/2010/158395
– ident: ref25
  doi: 10.1016/j.pnsc.2009.04.013
– ident: ref22
  doi: 10.1109/JPROC.2010.2044470
– volume: 21
  year: 2009
  ident: ref24
  article-title: Supervised dictionary learning
  publication-title: Proc Adv NIPS
– year: 0
  ident: ref32
  publication-title: The Facial Recognition Technology (FERET) Database
– ident: ref16
  doi: 10.1016/j.ins.2004.02.018
– ident: ref17
  doi: 10.1016/j.eswa.2008.10.041
– ident: ref19
  doi: 10.1109/CVPR.2006.21
– ident: ref23
  doi: 10.1109/TPAMI.2008.79
– ident: ref3
  doi: 10.1109/TPAMI.2004.1261097
– volume: 8
  start-page: 1027
  year: 2007
  ident: ref13
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: J Mach Learn Res
– ident: ref18
  doi: 10.1007/11788034_30
– ident: ref31
  doi: 10.1109/34.879790
– ident: ref1
  doi: 10.1109/34.41390
– ident: ref6
  doi: 10.1007/s11634-010-0068-1
– year: 2006
  ident: ref20
  publication-title: Learning a hierarchy of classifiers for multi-class shape detection
– start-page: 392
  year: 2008
  ident: ref29
  article-title: Down-sampling face images and low-resolution face recognition
  publication-title: Proc Int Conf Innovative Comput Inform Contr
SSID ssj0014847
Score 2.5406919
Snippet In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1255
SubjectTerms Applied sciences
Artificial intelligence
Circuits
Classification
Computer science; control theory; systems
Computer vision
Electronic mail
Exact sciences and technology
Face recognition
Image processing
Information, signal and communications theory
Materials
Nearest neighbor searches
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Principal component analysis
Representations
Signal processing
sparse representation
Studies
Telecommunications and information theory
Training
transform methods
Transforms
Title A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition
URI https://ieeexplore.ieee.org/document/5742988
https://www.proquest.com/docview/916010112
https://www.proquest.com/docview/1010897268
https://www.proquest.com/docview/926284970
Volume 21
WOSCitedRecordID wos000294669900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB_a4kEP2lrFtbZE8KbRJPuR5FiKDy8tpW-rvS152QktlN3S957--06y-5aKH-BtIQkJmWTmN5uZ3wC8I5su3CIITlCi5EVwghufKx4I7jo0KjKypGIT-uzMXF3Z8y34MOXCIGIKPsOP8TO95be9X8dfZeS8k_Y0Zhu2ta6GXK3pxaAwqZgYwQXJaYpykyAj7Kf6ZP61Htg6lcyNjvr3gRFKVVViTKRb0raEoZ7Fb6o52ZvZs_9b6S48HXElOx4Owh5sYfccnjxgG9yHi2NW_-j5-TUZLlbTlGzuIjcwm9-Rd4vsIgXFjrlIHTtNtaUZgVp2Sa3fblbXbOZ87DfGHPXdC7icfa5PvvCxpAL3hExWXElHmEMpnwftURlfmVKHvAqxhJVaOGcwFKFVqCpfBN-KFqXPpSstASFyzvKXsNP1Hb4CZkO5wEigFxwNkcFWC5TOmqps0VvRZiA3e9z4kW88lr24bZLfIWyT5NJEuTSjXDJ4P425G9g2_tl7P-781HPc9AyOfhHl1K6KkvSVLjI42Mi2GW_ssiGYHOn2pMrg7dRKVy2-n7gO-_UyRsMJY7WqaAr2lz6RftEUVovXf17cATwe_krHKLU3sLO6X-MhPPLfVzfL-6N0pH8CiaDysw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB6sFmoftK0trlabQt_a2CSb3U0eRXoo6iHe2vq25LIJCmVXvLv23-8ku7dY-gN8W0hCQiaZ-WYz8w3AB7TpzEw9owglMiq9YVTZVFCPcNc4JQIjSyw2UYzH6vpaX6zApyEXxjkXg8_cQfiMb_l1axfhVxk676g9lXoCa5mUgnXZWsObgVSxnBgCBk5xkmyZIsP05_Jo8rXs-DoFT1URNPADMxTrqoSoSDPDjfFdRYs_lHO0OKPNx631BWz0yJIcdkfhJay45hU8f8A3uAWXh6T82dKLGzRdpMQpycQEdmAyuUP_1pHLGBbbZyM15DxWlyYIa8kVtn67nd-QkbGhXx911Dav4Wr0pTw6pn1RBWoRm8yp4AZRhxA29YV1QtlcZYVPcx-KWImpMcp56WvhRG6ltzWrHbcpN5lGKITuWfoGVpu2cdtAtM-mLlDoeYNDuNf51HGjVZ7VzmpWJ8CXe1zZnnE8FL74XkXPg-kqyqUKcql6uSTwcRhz1_Ft_Lf3Vtj5oWe_6Qns_ybKoV3IDDVWIRPYXcq26u_srEKgHAj3uEjg_dCKly28oJjGtYtZiIdjShcixynIP_oEAkYldcF2_r64d_DsuDw_q85Oxqe7sN79ow4xa29hdX6_cHvw1P6Y387u9-Px_gVKevX6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Phase+Test+Sample+Sparse+Representation+Method+for+Use+With+Face+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Xu%2C+Yong&rft.au=Zhang%2C+David&rft.au=Yang%2C+Jian&rft.au=Yang%2C+Jing-Yu&rft.date=2011-09-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=21&rft.issue=9&rft.spage=1255&rft.epage=1262&rft_id=info:doi/10.1109%2FTCSVT.2011.2138790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon