Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete

Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied system innovation Jg. 8; H. 2; S. 26
Hauptverfasser: Albayati, Amjad H., Jweihan, Yazeed S., Al-Kheetan, Mazen J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.04.2025
Schlagworte:
ISSN:2571-5577, 2571-5577
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R2 of 0.93 and a mean squared error (MSE) of 0.0039. Results based on the sensitivity analysis and variable importance techniques showed that the percentage of aggregate passing the 4.75 mm sieve and the (rice) theoretical maximum specific gravity (Gmm) were the most significant factors in predicting axial permanent strain (εp). Furthermore, the connection weight method highlighted input variables’ distinct positive and negative impacts on permanent deformation.
AbstractList Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R[sup.2] of 0.93 and a mean squared error (MSE) of 0.0039. Results based on the sensitivity analysis and variable importance techniques showed that the percentage of aggregate passing the 4.75 mm sieve and the (rice) theoretical maximum specific gravity (Gmm) were the most significant factors in predicting axial permanent strain (εp). Furthermore, the connection weight method highlighted input variables’ distinct positive and negative impacts on permanent deformation.
Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R2 of 0.93 and a mean squared error (MSE) of 0.0039. Results based on the sensitivity analysis and variable importance techniques showed that the percentage of aggregate passing the 4.75 mm sieve and the (rice) theoretical maximum specific gravity (Gmm) were the most significant factors in predicting axial permanent strain (εp). Furthermore, the connection weight method highlighted input variables’ distinct positive and negative impacts on permanent deformation.
Audience Academic
Author Jweihan, Yazeed S.
Al-Kheetan, Mazen J.
Albayati, Amjad H.
Author_xml – sequence: 1
  givenname: Amjad H.
  orcidid: 0000-0003-0497-9060
  surname: Albayati
  fullname: Albayati, Amjad H.
– sequence: 2
  givenname: Yazeed S.
  orcidid: 0000-0003-0200-2942
  surname: Jweihan
  fullname: Jweihan, Yazeed S.
– sequence: 3
  givenname: Mazen J.
  orcidid: 0000-0001-8366-7932
  surname: Al-Kheetan
  fullname: Al-Kheetan, Mazen J.
BookMark eNptkV1rXCEQhiWkkDTJTX-B0LvCpn4e9XLZpm0g0EKSaxk8uutyjm7VhTa_vm43JC0UL2Yc33kY532LTlNOHqF3lFxzbshHqFETRggbTtA5k4oupFTq9K_8DF3VuiVdogyXxJwj99jiFJ9iWuP7HBpe5Xm3b4frg3ebFH_sfcUt45va4gzN47bxePkzwoS_-zJD8qnhTz7knreYE84BL-tuA9OBlVzxzV-iNwGm6q-e4wV6_HzzsPq6uPv25Xa1vFs4rk1bUNDGDcQF0EIGRzkPhHFNByeNNgyUC1KEwdBgnFF8oP0RBAwaNAflDb9At0fumGFrd6UPXH7ZDNH-KeSytlBadJO3Ax1Gxfko9QjCKGO4csJJQUBxxkbeWe-PrF3Jhx00u837kvr4llMjhDZa0FfVGjo0ppBbATfH6uxSc80o02zoquv_qPoZ_Rxd9zDEXv-n4cOxwZVca_Hh5TOU2IPV9tVq_httj5pN
Cites_doi 10.1371/journal.pone.0287255
10.1016/j.rineng.2024.101749
10.1007/s42947-022-00194-7
10.1016/j.trd.2023.103968
10.1016/j.autcon.2022.104309
10.1016/j.conbuildmat.2023.131130
10.1016/j.autcon.2023.105021
10.1109/TITS.2022.3218692
10.3390/su16062362
10.1016/S0304-3800(02)00064-9
10.1016/j.conbuildmat.2015.03.060
10.3390/app112411867
10.3390/su15021166
10.1016/j.engappai.2024.107952
10.1515/rjti-2015-0027
10.11591/eei.v12i6.5345
10.1016/j.ijtst.2021.11.004
10.1155/2015/931629
10.1016/j.sbspro.2012.09.895
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/asi8020026
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2571-5577
ExternalDocumentID oai_doaj_org_article_616d733d58da4979937c4c540a7322d3
A838212826
10_3390_asi8020026
GeographicLocations Iraq
Baghdad Iraq
GeographicLocations_xml – name: Iraq
– name: Baghdad Iraq
GroupedDBID AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-1a89c60cfa845fc133f023816c59892a7cf54f691f9c97361238a4a68a83a7e93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001474654800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2571-5577
IngestDate Fri Oct 03 12:45:32 EDT 2025
Fri Jul 25 11:46:58 EDT 2025
Tue Nov 11 10:50:25 EST 2025
Tue Nov 04 18:15:25 EST 2025
Sat Nov 29 07:16:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-1a89c60cfa845fc133f023816c59892a7cf54f691f9c97361238a4a68a83a7e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0200-2942
0000-0003-0497-9060
0000-0001-8366-7932
OpenAccessLink https://doaj.org/article/616d733d58da4979937c4c540a7322d3
PQID 3194489841
PQPubID 5046917
ParticipantIDs doaj_primary_oai_doaj_org_article_616d733d58da4979937c4c540a7322d3
proquest_journals_3194489841
gale_infotracmisc_A838212826
gale_infotracacademiconefile_A838212826
crossref_primary_10_3390_asi8020026
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied system innovation
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rabi (ref_21) 2024; 21
Golalipour (ref_24) 2012; 53
Pan (ref_1) 2023; 18
Olden (ref_26) 2002; 154
Wang (ref_5) 2015; 4
ref_13
Garson (ref_23) 1991; 6
ref_10
Ahmed (ref_4) 2023; 12
Luo (ref_11) 2023; 378
Abarkan (ref_20) 2024; 132
ref_19
ref_18
ref_17
Sousa (ref_27) 1994; 63
Ashraf (ref_16) 2023; 12
Jweihan (ref_9) 2023; 16
Yu (ref_15) 2022; 24
Szendefy (ref_2) 2024; 1
Yu (ref_14) 2023; 154
Zhang (ref_3) 2024; 126
ref_25
ref_28
Jin (ref_22) 2015; 2015
Shafabakhsh (ref_6) 2015; 85
ref_7
(ref_8) 2022; 139
Yang (ref_12) 2021; 8
References_xml – ident: ref_28
– ident: ref_17
  doi: 10.1371/journal.pone.0287255
– volume: 21
  start-page: 101749
  year: 2024
  ident: ref_21
  article-title: Machine learning-driven web-post buckling resistance prediction for high-strength steel beams with elliptically-based web openings
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.101749
– volume: 16
  start-page: 1255
  year: 2023
  ident: ref_9
  article-title: Improvements to the duplicate shear test (DST) device for measuring the fundamental shear properties of asphalt concrete mixes
  publication-title: Int. J. Pavement Res. Technol.
  doi: 10.1007/s42947-022-00194-7
– volume: 63
  start-page: 1
  year: 1994
  ident: ref_27
  article-title: Asphalt-aggregate mix design using the repetitive simple shear test (constant height)(with discussion)
  publication-title: J. Assoc. Asphalt Paving Technol.
– volume: 126
  start-page: 103968
  year: 2024
  ident: ref_3
  article-title: Regional variations of climate change impacts on asphalt pavement rutting distress
  publication-title: Transp. Res. Part D: Transp. Environ.
  doi: 10.1016/j.trd.2023.103968
– volume: 1
  start-page: 1
  year: 2024
  ident: ref_2
  article-title: Temperature effects on traffic load-induced accumulating strains in flexible pavement structures
  publication-title: Int. J. Pavement Res. Technol.
– volume: 139
  start-page: 104309
  year: 2022
  ident: ref_8
  article-title: Machine learning algorithms for monitoring pavement performance
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104309
– volume: 378
  start-page: 131130
  year: 2023
  ident: ref_11
  article-title: Prediction and evaluation the moisture damage resistance of rejuvenated asphalt mixtures based on neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131130
– volume: 154
  start-page: 105021
  year: 2023
  ident: ref_14
  article-title: Data sensing and compaction condition modeling for asphalt pavements
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105021
– volume: 24
  start-page: 778
  year: 2022
  ident: ref_15
  article-title: Compaction prediction for asphalt mixtures using wireless sensor and machine learning algorithms
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3218692
– ident: ref_18
  doi: 10.3390/su16062362
– volume: 154
  start-page: 135
  year: 2002
  ident: ref_26
  article-title: Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 85
  start-page: 136
  year: 2015
  ident: ref_6
  article-title: Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.060
– volume: 18
  start-page: e02148
  year: 2023
  ident: ref_1
  article-title: A laboratory evaluation of factors affecting rutting resistance of asphalt mixtures using wheel tracking test
  publication-title: Case Stud. Constr. Mater.
– ident: ref_10
  doi: 10.3390/app112411867
– volume: 6
  start-page: 47
  year: 1991
  ident: ref_23
  article-title: Interpreting neural network connection weights
  publication-title: AI Expert
– ident: ref_7
  doi: 10.3390/su15021166
– volume: 132
  start-page: 107952
  year: 2024
  ident: ref_20
  article-title: Machine learning for optimal design of circular hollow section stainless steel stub columns: A comparative analysis with Eurocode 3 predictions
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.107952
– volume: 4
  start-page: 1
  year: 2015
  ident: ref_5
  article-title: Influence of hydrated lime on the properties and permanent deformation of the asphalt concrete layers in pavement
  publication-title: Rom. J. Transp. Infrastruct.
  doi: 10.1515/rjti-2015-0027
– ident: ref_25
– volume: 12
  start-page: 3601
  year: 2023
  ident: ref_16
  article-title: Machine learning-based pavement crack detection, classification, and characterization: A review
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v12i6.5345
– volume: 12
  start-page: 46
  year: 2023
  ident: ref_4
  article-title: Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1016/j.ijtst.2021.11.004
– ident: ref_13
– volume: 8
  start-page: 1000
  year: 2021
  ident: ref_12
  article-title: Research and applications of artificial neural network in pavement engineering: A state-of-the-art review
  publication-title: J. Traffic Transp. Eng. (Engl. Ed.)
– volume: 2015
  start-page: 931629
  year: 2015
  ident: ref_22
  article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/931629
– volume: 53
  start-page: 440
  year: 2012
  ident: ref_24
  article-title: Effect of aggregate gradation on rutting of asphalt pavements
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.09.895
– ident: ref_19
SSID ssj0002793509
Score 2.287579
Snippet Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 26
SubjectTerms Aggregates
Artificial intelligence
Artificial neural networks
Asphalt
asphalt concrete
Asphalt pavements
Cement
Concrete mixing
Concrete pavements
Data points
Deformation
Design parameters
Independent variables
Load
Machine learning
Methods
Neural networks
Physical properties
Prediction models
Repeated loading
rutting
Sensitivity analysis
Shear tests
Soft computing
Specific gravity
Temperature
uniaxial load
Viscosity
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZK4VAOLdBWbCnIUpE4Rd3ETmyf0FJacaoqtZV6s2YndrUSSrabFCF-PTPe7JY9wIVbEluJlXl7xt8I8bGkqIHsnM1KwHGmIycJMcRMhTwgwBTQ1KnZhLm8tHd37mrYcOuGssqVTkyKum6R98hPiVUoknBW55_nDxl3jeLs6tBC45l4zigJRSrdu17vsRTEfGQQl6ikiqL7U-hmdsx1CdWGHUpw_X9TysnSXOz97xpfid3Bx5STJVO8FluheSNe_oE8uC_wtp99n_2ia3lNilgumzvw7c0K1LWTfSvPSQOQTxsk-Yly8pOYVV6xLm_IVsmvYX30UbZRTro5J9_pXQ25on04ELcX5zdn37Kh30KG5Lb0WQ7WYTXGCFaXESl6jcmiV1g66wowGEsdK5dHh84oBm6xoKGyYBWY4NSh2G7aJrwVMjCsGoO7OTXW09xMDRROEy0cO1BoR-Jk9ff9fAmr4SkcYRr5JxqNxBcmzHoGQ2GnB-3i3g-S5au8qo1SdWlr0JykVAY1kiMKhpRVrUbiE5PVs8D2C0AYzh3QQhn6yk-ssmS_LX_ueGMmCRpuDq-o7gdB7_wTyY_-PfxO7BTcOjgV_RyL7X7xGN6LF_ijn3WLD4lvfwPIZPWL
  priority: 102
  providerName: ProQuest
Title Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete
URI https://www.proquest.com/docview/3194489841
https://doaj.org/article/616d733d58da4979937c4c540a7322d3
Volume 8
WOSCitedRecordID wos001474654800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2571-5577
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793509
  issn: 2571-5577
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2571-5577
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793509
  issn: 2571-5577
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2571-5577
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793509
  issn: 2571-5577
  databaseCode: M7S
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2571-5577
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793509
  issn: 2571-5577
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2571-5577
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793509
  issn: 2571-5577
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2571-5577
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793509
  issn: 2571-5577
  databaseCode: PIMPY
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQxgM8oPElCqOyBBJP0Zraie3HbusED1QR26TBi3W92FIRSqcmIMRfz52TjvYB8cJLlMRWYt35vnTn3wnxtqCogeyczQrASaYjJwkxxEyFPCDAEtDUqdmEWSzszY2rdlp9cU1YDw_cE-6kzMvaKFUXtgbNOShlUCP5GWBoL9YJ55O8np1g6mtKpzlFprDHI1UU159Au7ITrkgo9yxQAur_mzpONubiSDwanEM56xf1WNwLzRPxcAcy8KnA6271bfWL7uUlaVDZd2Xgx6stGmsru7Wck-iSMxokOXhy9pN2maxYCTdkZOR5uDuzKNdRztpbzprTtxryIbvwTFxfzK_O3mdDo4QMyd_oshysw3KCEawuIlLYGZMpLrFw1k3BYCx0LF0eHTqjGHHFgobSglVgglPPxUGzbsILIQPjoTEqm1MTvczN0sDUaSKlY88H7Ui82RLP3_Z4GJ7iCCax_0PikThlut7NYAzr9II46wfO-n9xdiTeMVc8S1q3AYThwAAtlDGr_MwqS4bX8u-O92aShOD-8JavfpDQ1pPqocjUWZ2__B-LfSUeTLkzcKrpORYH3eZ7eC3u449u1W7G4vB0vqg-jdMmHXN96SVdq-ILjVQfPlaffwOnmetE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqggQ98I1YKGAJEKeoSezE9gGhhbZq1bKq1K3Um_FObLQSSrab8Pmj-I3M5GPLHuDWA7fNJkp245f3ZuLxG8ZeZpg1oM7pKHMQRzLQJCH4EAmfeHBu5kAVbbMJNZno83NzssF-DWthqKxy4MSWqIsK6B35DkIFMwmjZfJ2cRFR1yiaXR1aaHSwOPI_vmHKVr853MXxfZWm-3vT9wdR31UgAhTnJkqcNpDHEJyWWQDM0UKrWzlkRpvUKQiZDLlJggGjBNmTaCddrp0WTnkyX0LKvyaJ_dtSwdPVO50UwY4C3LmgCmHiHVfPdUx1EPma7rXtAf4mAq2y7d_-3-7JHXarj6H5uAP9Xbbhy3ts6w9nxfsMzpr55_lP_MxPUWh417yCNqeDaW3Nm4rvIcNhzO45xsF8_B0fRn5CWlWiFvNdv1rayavAx_WCigvwXCWG2o1_wM6u5F8-ZJtlVfpHjHuyjSPzOiNiOUvUTLnUSBx7QwEi6BF7MYy2XXS2IRbTLcKEvcTEiL0jIKyOIKvv9otq-cn2zGHzJC-UEEWmCydpElYokICBtlNIxoUYsdcEI0uE1CwduH5dBf5QsvayYy00xieaLre9diQSCazvHlBmeyKr7SXEHv9793N242D64dgeH06OnrCbKbVJbgucttlms_zin7Lr8LWZ18tn7TPD2cerBuRvRahQaQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VLUJwKJ8VKQVWAsTJiu21vbsHhAJpRFUURaKVKi7LZryLIiE7xKYt_DR-HTP-SMkBbj1wc2wrseO37814Z98w9iLFrAF1TgWphTBIPE0SgvOBcJEDa-cWZN40m5DTqTo707Mt9qtfC0NllT0nNkSdl0DvyIcIFcwktEqioe_KImbjyZvlt4A6SNFMa99Oo4XIsftxgelb9fpojM_6ZRxPDk_evQ-6DgMBoFDXQWSVhiwEb1WSesB8zTcalkGqlY6tBJ8mPtOR16ClIKsSZRObKauElY6MmJD-dyTmmJT4zdJP6_c7MQIfxbh1RBVCh0NbLVRINRHZhgY2rQL-JgiNyk3u_M__z12228XWfNQOhntsyxX32e0_HBcfMDitF18XP3Gbf0QB4m1TC_p40pvZVrwu-SEyH8byjmN8zEeXOEj5jDSsQI3mY7de8slLz0fVkooO8LsKDMFr95CdXstd7rHtoizcI8Yd2cmRqZ0WYTKP5FzaWCeIA02BI6gBe94_ebNs7UQMpmGED3OFjwF7S6BYn0EW4M2OcvXFdIxisijLpRB5qnKb0OSskJAABuBWIknnYsBeEaQMEVW9smC79RZ4oWT5ZUZKKIxbFP3cwcaZSDCwebhHnOkIrjJXcNv_9-Fn7Cbi0Hw4mh4_Zrdi6p7c1D0dsO169d09YTfgvF5Uq6fN8OHs83Xj8TfbYllM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Soft+Computing+Techniques+to+Estimate+the+Axial+Permanent+Deformation+of+Asphalt+Concrete&rft.jtitle=Applied+system+innovation&rft.au=Albayati%2C+Amjad+H&rft.au=Jweihan%2C+Yazeed+S&rft.au=Al-Kheetan%2C+Mazen+J&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.issn=2571-5577&rft.eissn=2571-5577&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fasi8020026&rft.externalDocID=A838212826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-5577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-5577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-5577&client=summon