Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete
Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artific...
Gespeichert in:
| Veröffentlicht in: | Applied system innovation Jg. 8; H. 2; S. 26 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.04.2025
|
| Schlagworte: | |
| ISSN: | 2571-5577, 2571-5577 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R2 of 0.93 and a mean squared error (MSE) of 0.0039. Results based on the sensitivity analysis and variable importance techniques showed that the percentage of aggregate passing the 4.75 mm sieve and the (rice) theoretical maximum specific gravity (Gmm) were the most significant factors in predicting axial permanent strain (εp). Furthermore, the connection weight method highlighted input variables’ distinct positive and negative impacts on permanent deformation. |
|---|---|
| AbstractList | Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R[sup.2] of 0.93 and a mean squared error (MSE) of 0.0039. Results based on the sensitivity analysis and variable importance techniques showed that the percentage of aggregate passing the 4.75 mm sieve and the (rice) theoretical maximum specific gravity (Gmm) were the most significant factors in predicting axial permanent strain (εp). Furthermore, the connection weight method highlighted input variables’ distinct positive and negative impacts on permanent deformation. Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R2 of 0.93 and a mean squared error (MSE) of 0.0039. Results based on the sensitivity analysis and variable importance techniques showed that the percentage of aggregate passing the 4.75 mm sieve and the (rice) theoretical maximum specific gravity (Gmm) were the most significant factors in predicting axial permanent strain (εp). Furthermore, the connection weight method highlighted input variables’ distinct positive and negative impacts on permanent deformation. |
| Audience | Academic |
| Author | Jweihan, Yazeed S. Al-Kheetan, Mazen J. Albayati, Amjad H. |
| Author_xml | – sequence: 1 givenname: Amjad H. orcidid: 0000-0003-0497-9060 surname: Albayati fullname: Albayati, Amjad H. – sequence: 2 givenname: Yazeed S. orcidid: 0000-0003-0200-2942 surname: Jweihan fullname: Jweihan, Yazeed S. – sequence: 3 givenname: Mazen J. orcidid: 0000-0001-8366-7932 surname: Al-Kheetan fullname: Al-Kheetan, Mazen J. |
| BookMark | eNptkV1rXCEQhiWkkDTJTX-B0LvCpn4e9XLZpm0g0EKSaxk8uutyjm7VhTa_vm43JC0UL2Yc33kY532LTlNOHqF3lFxzbshHqFETRggbTtA5k4oupFTq9K_8DF3VuiVdogyXxJwj99jiFJ9iWuP7HBpe5Xm3b4frg3ebFH_sfcUt45va4gzN47bxePkzwoS_-zJD8qnhTz7knreYE84BL-tuA9OBlVzxzV-iNwGm6q-e4wV6_HzzsPq6uPv25Xa1vFs4rk1bUNDGDcQF0EIGRzkPhHFNByeNNgyUC1KEwdBgnFF8oP0RBAwaNAflDb9At0fumGFrd6UPXH7ZDNH-KeSytlBadJO3Ax1Gxfko9QjCKGO4csJJQUBxxkbeWe-PrF3Jhx00u837kvr4llMjhDZa0FfVGjo0ppBbATfH6uxSc80o02zoquv_qPoZ_Rxd9zDEXv-n4cOxwZVca_Hh5TOU2IPV9tVq_httj5pN |
| Cites_doi | 10.1371/journal.pone.0287255 10.1016/j.rineng.2024.101749 10.1007/s42947-022-00194-7 10.1016/j.trd.2023.103968 10.1016/j.autcon.2022.104309 10.1016/j.conbuildmat.2023.131130 10.1016/j.autcon.2023.105021 10.1109/TITS.2022.3218692 10.3390/su16062362 10.1016/S0304-3800(02)00064-9 10.1016/j.conbuildmat.2015.03.060 10.3390/app112411867 10.3390/su15021166 10.1016/j.engappai.2024.107952 10.1515/rjti-2015-0027 10.11591/eei.v12i6.5345 10.1016/j.ijtst.2021.11.004 10.1155/2015/931629 10.1016/j.sbspro.2012.09.895 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/asi8020026 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2571-5577 |
| ExternalDocumentID | oai_doaj_org_article_616d733d58da4979937c4c540a7322d3 A838212826 10_3390_asi8020026 |
| GeographicLocations | Iraq Baghdad Iraq |
| GeographicLocations_xml | – name: Iraq – name: Baghdad Iraq |
| GroupedDBID | AADQD AAFWJ AAYXX ABJCF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS 8FE 8FG ABUWG AZQEC DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c389t-1a89c60cfa845fc133f023816c59892a7cf54f691f9c97361238a4a68a83a7e93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001474654800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2571-5577 |
| IngestDate | Fri Oct 03 12:45:32 EDT 2025 Fri Jul 25 11:46:58 EDT 2025 Tue Nov 11 10:50:25 EST 2025 Tue Nov 04 18:15:25 EST 2025 Sat Nov 29 07:16:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-1a89c60cfa845fc133f023816c59892a7cf54f691f9c97361238a4a68a83a7e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0200-2942 0000-0003-0497-9060 0000-0001-8366-7932 |
| OpenAccessLink | https://doaj.org/article/616d733d58da4979937c4c540a7322d3 |
| PQID | 3194489841 |
| PQPubID | 5046917 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_616d733d58da4979937c4c540a7322d3 proquest_journals_3194489841 gale_infotracmisc_A838212826 gale_infotracacademiconefile_A838212826 crossref_primary_10_3390_asi8020026 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied system innovation |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rabi (ref_21) 2024; 21 Golalipour (ref_24) 2012; 53 Pan (ref_1) 2023; 18 Olden (ref_26) 2002; 154 Wang (ref_5) 2015; 4 ref_13 Garson (ref_23) 1991; 6 ref_10 Ahmed (ref_4) 2023; 12 Luo (ref_11) 2023; 378 Abarkan (ref_20) 2024; 132 ref_19 ref_18 ref_17 Sousa (ref_27) 1994; 63 Ashraf (ref_16) 2023; 12 Jweihan (ref_9) 2023; 16 Yu (ref_15) 2022; 24 Szendefy (ref_2) 2024; 1 Yu (ref_14) 2023; 154 Zhang (ref_3) 2024; 126 ref_25 ref_28 Jin (ref_22) 2015; 2015 Shafabakhsh (ref_6) 2015; 85 ref_7 (ref_8) 2022; 139 Yang (ref_12) 2021; 8 |
| References_xml | – ident: ref_28 – ident: ref_17 doi: 10.1371/journal.pone.0287255 – volume: 21 start-page: 101749 year: 2024 ident: ref_21 article-title: Machine learning-driven web-post buckling resistance prediction for high-strength steel beams with elliptically-based web openings publication-title: Results Eng. doi: 10.1016/j.rineng.2024.101749 – volume: 16 start-page: 1255 year: 2023 ident: ref_9 article-title: Improvements to the duplicate shear test (DST) device for measuring the fundamental shear properties of asphalt concrete mixes publication-title: Int. J. Pavement Res. Technol. doi: 10.1007/s42947-022-00194-7 – volume: 63 start-page: 1 year: 1994 ident: ref_27 article-title: Asphalt-aggregate mix design using the repetitive simple shear test (constant height)(with discussion) publication-title: J. Assoc. Asphalt Paving Technol. – volume: 126 start-page: 103968 year: 2024 ident: ref_3 article-title: Regional variations of climate change impacts on asphalt pavement rutting distress publication-title: Transp. Res. Part D: Transp. Environ. doi: 10.1016/j.trd.2023.103968 – volume: 1 start-page: 1 year: 2024 ident: ref_2 article-title: Temperature effects on traffic load-induced accumulating strains in flexible pavement structures publication-title: Int. J. Pavement Res. Technol. – volume: 139 start-page: 104309 year: 2022 ident: ref_8 article-title: Machine learning algorithms for monitoring pavement performance publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104309 – volume: 378 start-page: 131130 year: 2023 ident: ref_11 article-title: Prediction and evaluation the moisture damage resistance of rejuvenated asphalt mixtures based on neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.131130 – volume: 154 start-page: 105021 year: 2023 ident: ref_14 article-title: Data sensing and compaction condition modeling for asphalt pavements publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.105021 – volume: 24 start-page: 778 year: 2022 ident: ref_15 article-title: Compaction prediction for asphalt mixtures using wireless sensor and machine learning algorithms publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3218692 – ident: ref_18 doi: 10.3390/su16062362 – volume: 154 start-page: 135 year: 2002 ident: ref_26 article-title: Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecol. Model. doi: 10.1016/S0304-3800(02)00064-9 – volume: 85 start-page: 136 year: 2015 ident: ref_6 article-title: Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.060 – volume: 18 start-page: e02148 year: 2023 ident: ref_1 article-title: A laboratory evaluation of factors affecting rutting resistance of asphalt mixtures using wheel tracking test publication-title: Case Stud. Constr. Mater. – ident: ref_10 doi: 10.3390/app112411867 – volume: 6 start-page: 47 year: 1991 ident: ref_23 article-title: Interpreting neural network connection weights publication-title: AI Expert – ident: ref_7 doi: 10.3390/su15021166 – volume: 132 start-page: 107952 year: 2024 ident: ref_20 article-title: Machine learning for optimal design of circular hollow section stainless steel stub columns: A comparative analysis with Eurocode 3 predictions publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.107952 – volume: 4 start-page: 1 year: 2015 ident: ref_5 article-title: Influence of hydrated lime on the properties and permanent deformation of the asphalt concrete layers in pavement publication-title: Rom. J. Transp. Infrastruct. doi: 10.1515/rjti-2015-0027 – ident: ref_25 – volume: 12 start-page: 3601 year: 2023 ident: ref_16 article-title: Machine learning-based pavement crack detection, classification, and characterization: A review publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v12i6.5345 – volume: 12 start-page: 46 year: 2023 ident: ref_4 article-title: Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides publication-title: Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2021.11.004 – ident: ref_13 – volume: 8 start-page: 1000 year: 2021 ident: ref_12 article-title: Research and applications of artificial neural network in pavement engineering: A state-of-the-art review publication-title: J. Traffic Transp. Eng. (Engl. Ed.) – volume: 2015 start-page: 931629 year: 2015 ident: ref_22 article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks publication-title: Math. Probl. Eng. doi: 10.1155/2015/931629 – volume: 53 start-page: 440 year: 2012 ident: ref_24 article-title: Effect of aggregate gradation on rutting of asphalt pavements publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.09.895 – ident: ref_19 |
| SSID | ssj0002793509 |
| Score | 2.287579 |
| Snippet | Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 26 |
| SubjectTerms | Aggregates Artificial intelligence Artificial neural networks Asphalt asphalt concrete Asphalt pavements Cement Concrete mixing Concrete pavements Data points Deformation Design parameters Independent variables Load Machine learning Methods Neural networks Physical properties Prediction models Repeated loading rutting Sensitivity analysis Shear tests Soft computing Specific gravity Temperature uniaxial load Viscosity |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZK4VAOLdBWbCnIUpE4Rd3ETmyf0FJacaoqtZV6s2YndrUSSrabFCF-PTPe7JY9wIVbEluJlXl7xt8I8bGkqIHsnM1KwHGmIycJMcRMhTwgwBTQ1KnZhLm8tHd37mrYcOuGssqVTkyKum6R98hPiVUoknBW55_nDxl3jeLs6tBC45l4zigJRSrdu17vsRTEfGQQl6ikiqL7U-hmdsx1CdWGHUpw_X9TysnSXOz97xpfid3Bx5STJVO8FluheSNe_oE8uC_wtp99n_2ia3lNilgumzvw7c0K1LWTfSvPSQOQTxsk-Yly8pOYVV6xLm_IVsmvYX30UbZRTro5J9_pXQ25on04ELcX5zdn37Kh30KG5Lb0WQ7WYTXGCFaXESl6jcmiV1g66wowGEsdK5dHh84oBm6xoKGyYBWY4NSh2G7aJrwVMjCsGoO7OTXW09xMDRROEy0cO1BoR-Jk9ff9fAmr4SkcYRr5JxqNxBcmzHoGQ2GnB-3i3g-S5au8qo1SdWlr0JykVAY1kiMKhpRVrUbiE5PVs8D2C0AYzh3QQhn6yk-ssmS_LX_ueGMmCRpuDq-o7gdB7_wTyY_-PfxO7BTcOjgV_RyL7X7xGN6LF_ijn3WLD4lvfwPIZPWL priority: 102 providerName: ProQuest |
| Title | Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete |
| URI | https://www.proquest.com/docview/3194489841 https://doaj.org/article/616d733d58da4979937c4c540a7322d3 |
| Volume | 8 |
| WOSCitedRecordID | wos001474654800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2571-5577 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793509 issn: 2571-5577 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2571-5577 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793509 issn: 2571-5577 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2571-5577 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793509 issn: 2571-5577 databaseCode: M7S dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2571-5577 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793509 issn: 2571-5577 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2571-5577 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793509 issn: 2571-5577 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2571-5577 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793509 issn: 2571-5577 databaseCode: PIMPY dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQxgM8oPElCqOyBBJP0Zraie3HbusED1QR26TBi3W92FIRSqcmIMRfz52TjvYB8cJLlMRWYt35vnTn3wnxtqCogeyczQrASaYjJwkxxEyFPCDAEtDUqdmEWSzszY2rdlp9cU1YDw_cE-6kzMvaKFUXtgbNOShlUCP5GWBoL9YJ55O8np1g6mtKpzlFprDHI1UU159Au7ITrkgo9yxQAur_mzpONubiSDwanEM56xf1WNwLzRPxcAcy8KnA6271bfWL7uUlaVDZd2Xgx6stGmsru7Wck-iSMxokOXhy9pN2maxYCTdkZOR5uDuzKNdRztpbzprTtxryIbvwTFxfzK_O3mdDo4QMyd_oshysw3KCEawuIlLYGZMpLrFw1k3BYCx0LF0eHTqjGHHFgobSglVgglPPxUGzbsILIQPjoTEqm1MTvczN0sDUaSKlY88H7Ui82RLP3_Z4GJ7iCCax_0PikThlut7NYAzr9II46wfO-n9xdiTeMVc8S1q3AYThwAAtlDGr_MwqS4bX8u-O92aShOD-8JavfpDQ1pPqocjUWZ2__B-LfSUeTLkzcKrpORYH3eZ7eC3u449u1W7G4vB0vqg-jdMmHXN96SVdq-ILjVQfPlaffwOnmetE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqggQ98I1YKGAJEKeoSezE9gGhhbZq1bKq1K3Um_FObLQSSrab8Pmj-I3M5GPLHuDWA7fNJkp245f3ZuLxG8ZeZpg1oM7pKHMQRzLQJCH4EAmfeHBu5kAVbbMJNZno83NzssF-DWthqKxy4MSWqIsK6B35DkIFMwmjZfJ2cRFR1yiaXR1aaHSwOPI_vmHKVr853MXxfZWm-3vT9wdR31UgAhTnJkqcNpDHEJyWWQDM0UKrWzlkRpvUKQiZDLlJggGjBNmTaCddrp0WTnkyX0LKvyaJ_dtSwdPVO50UwY4C3LmgCmHiHVfPdUx1EPma7rXtAf4mAq2y7d_-3-7JHXarj6H5uAP9Xbbhy3ts6w9nxfsMzpr55_lP_MxPUWh417yCNqeDaW3Nm4rvIcNhzO45xsF8_B0fRn5CWlWiFvNdv1rayavAx_WCigvwXCWG2o1_wM6u5F8-ZJtlVfpHjHuyjSPzOiNiOUvUTLnUSBx7QwEi6BF7MYy2XXS2IRbTLcKEvcTEiL0jIKyOIKvv9otq-cn2zGHzJC-UEEWmCydpElYokICBtlNIxoUYsdcEI0uE1CwduH5dBf5QsvayYy00xieaLre9diQSCazvHlBmeyKr7SXEHv9793N242D64dgeH06OnrCbKbVJbgucttlms_zin7Lr8LWZ18tn7TPD2cerBuRvRahQaQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VLUJwKJ8VKQVWAsTJiu21vbsHhAJpRFUURaKVKi7LZryLIiE7xKYt_DR-HTP-SMkBbj1wc2wrseO37814Z98w9iLFrAF1TgWphTBIPE0SgvOBcJEDa-cWZN40m5DTqTo707Mt9qtfC0NllT0nNkSdl0DvyIcIFcwktEqioe_KImbjyZvlt4A6SNFMa99Oo4XIsftxgelb9fpojM_6ZRxPDk_evQ-6DgMBoFDXQWSVhiwEb1WSesB8zTcalkGqlY6tBJ8mPtOR16ClIKsSZRObKauElY6MmJD-dyTmmJT4zdJP6_c7MQIfxbh1RBVCh0NbLVRINRHZhgY2rQL-JgiNyk3u_M__z12228XWfNQOhntsyxX32e0_HBcfMDitF18XP3Gbf0QB4m1TC_p40pvZVrwu-SEyH8byjmN8zEeXOEj5jDSsQI3mY7de8slLz0fVkooO8LsKDMFr95CdXstd7rHtoizcI8Yd2cmRqZ0WYTKP5FzaWCeIA02BI6gBe94_ebNs7UQMpmGED3OFjwF7S6BYn0EW4M2OcvXFdIxisijLpRB5qnKb0OSskJAABuBWIknnYsBeEaQMEVW9smC79RZ4oWT5ZUZKKIxbFP3cwcaZSDCwebhHnOkIrjJXcNv_9-Fn7Cbi0Hw4mh4_Zrdi6p7c1D0dsO169d09YTfgvF5Uq6fN8OHs83Xj8TfbYllM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Soft+Computing+Techniques+to+Estimate+the+Axial+Permanent+Deformation+of+Asphalt+Concrete&rft.jtitle=Applied+system+innovation&rft.au=Albayati%2C+Amjad+H&rft.au=Jweihan%2C+Yazeed+S&rft.au=Al-Kheetan%2C+Mazen+J&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.issn=2571-5577&rft.eissn=2571-5577&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fasi8020026&rft.externalDocID=A838212826 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-5577&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-5577&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-5577&client=summon |