Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection
There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant fea...
Gespeichert in:
| Veröffentlicht in: | SN computer science Jg. 2; H. 4; S. 295 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Singapore
01.07.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2662-995X, 2661-8907, 2661-8907 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm. |
|---|---|
| AbstractList | There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm.There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm.The online version contains supplementary material available at 10.1007/s42979-021-00687-5.SUPPLEMENTARY INFORMATIONThe online version contains supplementary material available at 10.1007/s42979-021-00687-5. There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm. The online version contains supplementary material available at 10.1007/s42979-021-00687-5. There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm. |
| ArticleNumber | 295 |
| Author | Essgaer, Mansour Tubishat, Mohammad Chantar, Hamouda Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Hamouda orcidid: 0000-0003-2794-8144 surname: Chantar fullname: Chantar, Hamouda email: hamoudak77@gmail.com organization: Faculty of Information Technology, Sebha University – sequence: 2 givenname: Mohammad surname: Tubishat fullname: Tubishat, Mohammad organization: School of Information Technology, Skyline University College – sequence: 3 givenname: Mansour surname: Essgaer fullname: Essgaer, Mansour organization: Faculty of Information Technology, Sebha University – sequence: 4 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali organization: Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Yonsei Frontier Lab, Yonsei University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34056623$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1PFTEUbQxEEPkDLkwTN25G-jntbEyeKEJCogmauGv6-jGUdFpsZzTv31t4iMKCTW-Te865597zAuyknBwArzB6hxESR5WRQQwdIrhDqJei48_APul73MkBiZ3bP-mGgf_YA4e1XiGECEeM9fw52KMM8dam--Dr6WZdgoUfQtJlAz8WPebk4wau4phLmC8n-Lu98CJMS9Szs3CVktMxpBH6XOCJ0_NSHLxw0Zk55PQS7Hodqzu8qwfg-8mnb8en3fmXz2fHq_POUDnwTlomGPfWe-kGYo0nSHJMHJVrYznjgntqMeuttBwjr4lBmAlkpeZaCGnoAXi_1b1e1pOzxqW56KiuS5jaIirroB52UrhUY_6lZNMZMG4Cb-8ESv65uDqrKVTjYtTJ5aUqwmmb3MyiBn3zCHqVl5LaeooMlAgpKWYN9fp_R_dW_h67AcgWYEqutTh_D8FI3YSqtqGqFqq6DVXxRpKPSCbM-ubSbasQn6bSLbW2OWl05Z_tJ1h_AKHKteA |
| CitedBy_id | crossref_primary_10_1007_s11042_023_16039_9 crossref_primary_10_1007_s11227_023_05413_x crossref_primary_10_1007_s12530_024_09584_7 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1038_s41598_022_18993_0 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1007_s00521_022_08015_5 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_1007_s11227_022_04507_2 crossref_primary_10_1177_14727978251363383 crossref_primary_10_1007_s11042_024_20221_y crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_1016_j_eswa_2024_124112 crossref_primary_10_1016_j_asoc_2022_109917 crossref_primary_10_1002_cpe_7239 crossref_primary_10_1007_s11277_023_10524_y crossref_primary_10_3233_IDA_230540 crossref_primary_10_1016_j_bpj_2024_06_024 crossref_primary_10_1186_s40537_025_01125_6 crossref_primary_10_1007_s11042_023_17724_5 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1038_s41598_025_92187_2 crossref_primary_10_1007_s00521_022_07780_7 crossref_primary_10_3390_mi14081577 crossref_primary_10_1007_s00521_023_08936_9 crossref_primary_10_1007_s13369_024_09587_1 crossref_primary_10_1186_s13321_024_00894_1 crossref_primary_10_3390_rs15163980 crossref_primary_10_1371_journal_pone_0274850 crossref_primary_10_1007_s00500_023_08274_x |
| Cites_doi | 10.1016/j.asoc.2007.10.007 10.1016/j.asoc.2016.01.044 10.1142/S0219876210002209 10.1016/S0031-3203(01)00046-2 10.1109/SIBGRAPI.2012.47 10.1109/CEC.2016.7744378 10.1109/ACTEA.2016.7560136 10.1109/ACCESS.2020.3029728 10.13052/jsn2445-9739.2016.010 10.1109/CEC.2009.4983263 10.1016/j.asoc.2011.05.010 10.1016/j.asoc.2009.11.014 10.1109/ICACI.2017.7974502 10.1016/j.ejor.2004.09.010 10.1109/ICoCS.2015.7483317 10.1007/BF02601639 10.1109/TPAMI.2004.105 10.1016/j.ins.2013.02.041 10.1145/3206185.3206198 10.1109/NaBIC.2011.6089647 10.1016/j.knosys.2018.08.003 10.1007/s10489-018-1261-8 10.1002/9780470496916 10.1023/A:1016540724870 10.1016/j.neucom.2014.06.067 10.1109/ICTCS.2017.43 10.1126/science.220.4598.671 10.1007/s00521-015-1920-1 10.1016/j.future.2020.08.019 10.1016/j.swevo.2011.02.002 10.1109/ACCESS.2019.2944089 10.33889/IJMEMS.2020.5.6.105 10.3233/IDA-1997-1302 10.1109/ICInfA.2017.8079080 10.1016/j.eswa.2020.113873 10.1016/j.neucom.2017.04.053 10.1016/j.knosys.2020.106553 10.1016/j.knosys.2020.106131 10.1109/ACCESS.2019.2919991 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. Copyright Springer Nature B.V. Jul 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. – notice: Copyright Springer Nature B.V. Jul 2021 |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s42979-021-00687-5 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | PMC8147911 34056623 10_1007_s42979_021_00687_5 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 2JN 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABHQN ABJNI ABMQK ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKFA ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFKRA AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS ATHPR AYFIA BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS PHGZM PHGZT PQGLB PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX AFFHD CITATION KOV NPM OK1 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c3895-8d4745fdff8e92dcf208512e38bcd54575f3d146d8d510fa2c01470d8a5a778c3 |
| IEDL.DBID | BENPR |
| ISSN | 2662-995X 2661-8907 |
| IngestDate | Tue Nov 04 01:54:16 EST 2025 Sun Nov 09 10:37:12 EST 2025 Wed Nov 05 15:41:00 EST 2025 Wed Feb 19 02:25:37 EST 2025 Sat Nov 29 08:04:56 EST 2025 Tue Nov 18 21:18:40 EST 2025 Mon Jul 21 06:07:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Simulated annealing algorithm Feature selection Dragonfly algorithm Optimization |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3895-8d4745fdff8e92dcf208512e38bcd54575f3d146d8d510fa2c01470d8a5a778c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2794-8144 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8147911 |
| PMID | 34056623 |
| PQID | 2932788314 |
| PQPubID | 6623307 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147911 proquest_miscellaneous_2535103890 proquest_journals_2932788314 pubmed_primary_34056623 crossref_primary_10_1007_s42979_021_00687_5 crossref_citationtrail_10_1007_s42979_021_00687_5 springer_journals_10_1007_s42979_021_00687_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationTitleAlternate | SN Comput Sci |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | LY Chuang (687_CR7) 2011; 11 J Han (687_CR16) 2012 O Qasim (687_CR34) 2020; 5 OC Martin (687_CR28) 1993; 63 687_CR31 687_CR4 687_CR11 687_CR3 687_CR10 687_CR32 687_CR13 687_CR35 687_CR1 687_CR12 687_CR14 687_CR36 687_CR6 687_CR38 R Meiri (687_CR29) 2006; 171 M Mafarja (687_CR25) 2017 EG Talbi (687_CR37) 2002; 8 CL Huang (687_CR17) 2008; 8 M Tubishat (687_CR41) 2020; 164 J Derrac (687_CR9) 2011; 1 M Dash (687_CR8) 1997; 1 687_CR40 687_CR20 687_CR42 J Too (687_CR39) 2020; 212 687_CR44 G Al-Rawashdeh (687_CR2) 2019; 7 687_CR21 M Mafarja (687_CR24) 2018; 161 687_CR43 A Hammouri (687_CR15) 2020; 203 687_CR23 687_CR26 O Olabiyisi Stephen (687_CR33) 2012; 3 H Zhang (687_CR45) 2002; 35 Oh Il-Seok (687_CR18) 2004; 26 I BoussaïD (687_CR5) 2013; 237 687_CR19 S Mirjalili (687_CR30) 2015; 27 K Manimala (687_CR27) 2011; 11 S Kashef (687_CR22) 2015; 147 |
| References_xml | – ident: 687_CR10 – ident: 687_CR14 – volume: 8 start-page: 1381 year: 2008 ident: 687_CR17 publication-title: Appl Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – ident: 687_CR31 doi: 10.1016/j.asoc.2016.01.044 – ident: 687_CR42 doi: 10.1142/S0219876210002209 – volume: 35 start-page: 701 year: 2002 ident: 687_CR45 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00046-2 – ident: 687_CR32 doi: 10.1109/SIBGRAPI.2012.47 – volume: 3 start-page: 1 issue: 8 year: 2012 ident: 687_CR33 publication-title: Int J Sci Eng Res USA. – ident: 687_CR44 doi: 10.1109/CEC.2016.7744378 – ident: 687_CR12 doi: 10.1109/ACTEA.2016.7560136 – ident: 687_CR11 doi: 10.1109/ACCESS.2020.3029728 – ident: 687_CR20 doi: 10.13052/jsn2445-9739.2016.010 – ident: 687_CR3 doi: 10.1109/CEC.2009.4983263 – volume: 11 start-page: 5485 year: 2011 ident: 687_CR27 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.05.010 – volume: 11 start-page: 239 year: 2011 ident: 687_CR7 publication-title: Appl Soft Comput. doi: 10.1016/j.asoc.2009.11.014 – ident: 687_CR35 doi: 10.1109/ICACI.2017.7974502 – volume: 171 start-page: 842 year: 2006 ident: 687_CR29 publication-title: Eur J Oper Res. doi: 10.1016/j.ejor.2004.09.010 – ident: 687_CR43 doi: 10.1109/ICoCS.2015.7483317 – volume: 63 start-page: 57 year: 1993 ident: 687_CR28 publication-title: Ann OR doi: 10.1007/BF02601639 – volume: 26 start-page: 1424 issue: 11 year: 2004 ident: 687_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell. doi: 10.1109/TPAMI.2004.105 – volume: 237 start-page: 82 year: 2013 ident: 687_CR5 publication-title: Inf Sci. doi: 10.1016/j.ins.2013.02.041 – ident: 687_CR1 doi: 10.1145/3206185.3206198 – ident: 687_CR6 doi: 10.1109/NaBIC.2011.6089647 – volume: 161 start-page: 185 year: 2018 ident: 687_CR24 publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2018.08.003 – ident: 687_CR4 – ident: 687_CR13 – ident: 687_CR19 doi: 10.1007/s10489-018-1261-8 – ident: 687_CR38 doi: 10.1002/9780470496916 – volume: 8 start-page: 541 year: 2002 ident: 687_CR37 publication-title: J Heuristics. doi: 10.1023/A:1016540724870 – volume: 147 start-page: 271 year: 2015 ident: 687_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.067 – ident: 687_CR26 doi: 10.1109/ICTCS.2017.43 – ident: 687_CR23 doi: 10.1126/science.220.4598.671 – volume: 27 start-page: 1053 issue: 4 year: 2015 ident: 687_CR30 publication-title: Neural Comput Appl. doi: 10.1007/s00521-015-1920-1 – ident: 687_CR40 doi: 10.1016/j.future.2020.08.019 – volume-title: Data Mining: Concepts and Techniques year: 2012 ident: 687_CR16 – volume: 1 start-page: 3 year: 2011 ident: 687_CR9 publication-title: Swarm Evol Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 7 start-page: 143721 year: 2019 ident: 687_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944089 – volume: 5 start-page: 1420 year: 2020 ident: 687_CR34 publication-title: Int J Math Eng Manag Sci doi: 10.33889/IJMEMS.2020.5.6.105 – volume: 1 start-page: 131 year: 1997 ident: 687_CR8 publication-title: Intell Data Anal. doi: 10.3233/IDA-1997-1302 – ident: 687_CR36 doi: 10.1109/ICInfA.2017.8079080 – volume: 164 start-page: 113873 year: 2020 ident: 687_CR41 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2020.113873 – year: 2017 ident: 687_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 212 start-page: 106553 year: 2020 ident: 687_CR39 publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2020.106553 – volume: 203 start-page: 106131 year: 2020 ident: 687_CR15 publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2020.106131 – ident: 687_CR21 doi: 10.1109/ACCESS.2019.2919991 |
| SSID | ssj0002504465 |
| Score | 2.3938756 |
| Snippet | There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 295 |
| SubjectTerms | Accuracy Algorithms Classification Computer Imaging Computer Science Computer Systems Organization and Communication Networks Coronaviruses Data mining Data Structures and Information Theory Exploitation Feature selection Genetic algorithms Heuristic Information Systems and Communication Service Machine learning Optimization algorithms Original Research Pattern Recognition and Graphics Performance evaluation Simulated annealing Simulation Software Engineering/Programming and Operating Systems Vision |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6IELtJRHeFSuxA0s5WXZPi5QxAkhbUF7i7yxDStBFmV3kfj3zHiTVFsoUjlnktjjedmemQ_gyKHX81YmvEyd4Xnic27i2HO0lUOldOysNgFsQl5dqcFAXzdFYZM22729kgyWuit2Q8spNaeUAqprkFwsw6qgbjO0R-_fdicr1JQrDxiS6HxSrrUYNNUy739m0SO9CTPfZkv-dWUaPNHFxufm8BXWm8iT9eai8g2WXLUJGy2qA2uU_DtcX75QFRc7DZW67Lw2d1Q68sJ6D3fjejS9f2R0eMv6o0eC_nKW9dBWGyprZxgBMwoqZ7Vj_YCwg8u-BTcXv36fXfIGd4GXGL4Irmwuc-Gt98rp1JaecDyT1GVqWFqMuKTwmUULa5VFjfYmLXGfJWOrjDBSqjLbhpVqXLldYFY6R7s6m8fDXAijZaK9J5hrEfvY2AiSlvdF2TQlJ2yMh6JrpxxYViDLisCyQkRw3L3zNG_J8SH1QbukRaOekwJjnBT3_lmSR_Cze4yKRbclpnLjGdKIjLoNorxGsDOXgO53GY4fZSuLQC7IRkdATbsXn1Sj-9C8WyGr0MFEcNJKyJ9h_XsWe_9Hvg9raRAySis-gJVpPXOH8KV8no4m9Y-gLq_XxQ6L priority: 102 providerName: Springer Nature |
| Title | Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection |
| URI | https://link.springer.com/article/10.1007/s42979-021-00687-5 https://www.ncbi.nlm.nih.gov/pubmed/34056623 https://www.proquest.com/docview/2932788314 https://www.proquest.com/docview/2535103890 https://pubmed.ncbi.nlm.nih.gov/PMC8147911 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9s60NfqqK2q7VE8E2D-xWSPMlVWwrCcfRUDl-WXD7ag3av3ofQ_96ZXG7LWeyLL4El2d0kM5mZTDLzA3jnUesFJwtuS294XYSamzwPHGXlWCmde6dNBJuQ_b4ajfQgOdzm6VrlWiZGQe2mlnzkH1Etlbhdq4r6080vTqhRdLqaIDS2YIcylSGf7xyf9AfnnZeFEnTVEU8SFVHJtRajFDkT4-dQGEvN6ZYChUpILja10z2T8_7Nyb-OT6NWOn3yv-N5CnvJHmW9FQM9g0e-fQ6Ds1sK5GLHMViXfZmZC4oeuWW9qwv8xuLympH_lg0n14T-5R3robg2FNnO0AhmZFcuZ54NI8gOUv4FfD89-fb5jCfoBW7RghFcuVrWIrgQlNels4GgPIvSV2psHRpdUoTKoZB1yuGiDqa0uNWSuVNGGCmVrV7Cdjtt_QEwJ72njZ2r83EthNGy0CEQ0rXIQ25cBsV6yhub8pITPMZV02VUjmRqkExNJFMjMnjfvXOzysrxYOvDNQmatELnzd38Z_C2q8a1RQcmpvXTJbYRFSUcRJbNYH9F-O53FfYfWarKQG6wRNeA8nZv1rSTy5i_W-FUoY7J4MOaee669e9RvHp4FK9ht4yMTDeJD2F7MVv6N_DY_l5M5rMj2JIjdZRWBz59lRzLgfiJ5fnwxx_EaRdE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkuPMRrSwEjwQks9mHX3gNCKW2VqiWKaJFyW5y13UZqk5IHKH-K38iMs7tVqOitB87r3fXj8zzsmfkA3jjUet6qhJepM1wkXnATx56jrBxoncfO5iaQTahuV_f7eW8Nfte5MBRWWcvEIKjtuKQz8g-ollJ017JEfLr4wYk1im5XawqNJSwO3OIXumzTj_s7uL5v03Rv9_hzh1esArxE5Sy5tkIJ6a332uWpLT2xVCapy_SgtGhPKOkzi_LDaot49SYt0YtQsdVGGqV0meF3b8G6yMSWbMH69m6397U51aGCYCLwV6LiS3mey36VqRPy9VD4q5xTVASlZiguV7XhFRP3aqTmX9e1QQvu3f_f5u8B3KvsbdZebpCHsOZGj6DXWVCiGtsOychsZ2JOKDtmwdpnJ9jn2ek5o_NpdjQ8J3YzZ1kb1ZGhzH2GRj4ju3k-cewokAghsh_DtxsZxBNojcYj9wyYVc6R42pFPBBSmlwluffE5C1jHxsbQVIvcVFWddeJ_uOsaCpGB1gUCIsiwKKQEbxr3rlYVh25tvVmveRFJYGmxeV6R_C6eYyygy6EzMiN59hGZlRQEbdkBE-XQGt-l2H_EcJZBGoFgk0Dqku--mQ0PA31yTVOFerQCN7XYL3s1r9HsXH9KF7Bnc7xl8PicL978BzupmETUdT0JrRmk7l7AbfLn7PhdPKy2pMMvt80jP8A8AhvkQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQGgvjO8FBhiJN7CWD1u2H8tGNQSqKgqob5Eb21ulLZ2yFmn_PXduElYGSIjnOIl9vvOd7fvdD-C1R68XnMp4lXvLRRYEt2kaOK6VM61N6p2xkWxCjUZ6OjXjKyj-mO3eXUmuMQ1Upale7p-7sN8D33AVVYZTegFhHBSXN-GWwJ0MJXV9nnzrT1moQJeIfJLoiHJujJy2yJnff2bTO10LOa9nTv5yfRq90nDn_8dzD-62ESkbrFXoPtzw9QPY6dgeWGv8D2F8dEnoLvYuInjZYWOPCVJyyQanx4tmvjw5Y3SoyybzM6IE844NcA23BHdnGBkzCjZXjWeTyLyD6vAIvg7ffzk44i0fA68wrJFcO6GEDC4E7U3uqkD8nlnuCz2rHEZiSobC4crrtENLDzavcP-lUqettErpqngMW_Wi9rvAnPKedntOpDMhpTUqMyEQ_bVMQ2pdAlk3D2XVFisnzozTsi-zHEVWosjKKLJSJvCmf-d8Xarjr633uuktW7O9KDH2yZXWRSYSeNU_RoOjWxRb-8UK28iCqhCiHifwZK0N_e8K7D_qWZGA2tCTvgEV8958Us9PYlFvjaJCx5PA205bfnbrz6N4-m_NX8Kd8eGw_PRh9PEZbOdR3yjzeA-2ls3KP4fb1ffl_KJ5Ea3oBwwdGlM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Binary+Dragonfly+Algorithm+with+Simulated+Annealing+for+Feature+Selection&rft.jtitle=SN+computer+science&rft.au=Chantar%2C+Hamouda&rft.au=Tubishat%2C+Mohammad&rft.au=Essgaer%2C+Mansour&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-07-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=2&rft.issue=4&rft.spage=295&rft_id=info:doi/10.1007%2Fs42979-021-00687-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |