Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection

There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science Jg. 2; H. 4; S. 295
Hauptverfasser: Chantar, Hamouda, Tubishat, Mohammad, Essgaer, Mansour, Mirjalili, Seyedali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.07.2021
Springer Nature B.V
Schlagworte:
ISSN:2662-995X, 2661-8907, 2661-8907
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm.
AbstractList There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm.There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm.The online version contains supplementary material available at 10.1007/s42979-021-00687-5.SUPPLEMENTARY INFORMATIONThe online version contains supplementary material available at 10.1007/s42979-021-00687-5.
There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm. The online version contains supplementary material available at 10.1007/s42979-021-00687-5.
There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant features from the set of available features and the removal of irrelevant features will solve these problems. Therefore, to solve the feature selection problem, an improved version of Dragonfly Algorithm (DA) is proposed by combining it with Simulated Annealing (SA), where the improved algorithm named BDA-SA. To solve the local optima problem of DA and enhance its ability in selecting the best subset of features for classification problems, Simulated Annealing (SA) was applied to the best solution found by Binary Dragonfly algorithm in attempt to improve its accuracy. A set of frequently used data sets from UCI repository was utilized to evaluate the performance of the proposed FS approach. Results show that the proposed hybrid approach, named BDA-SA, has superior performance when compared to wrapper-based FS methods including a feature selection method based on the basic version of Binary Dragonfly Algorithm.
ArticleNumber 295
Author Essgaer, Mansour
Tubishat, Mohammad
Chantar, Hamouda
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Hamouda
  orcidid: 0000-0003-2794-8144
  surname: Chantar
  fullname: Chantar, Hamouda
  email: hamoudak77@gmail.com
  organization: Faculty of Information Technology, Sebha University
– sequence: 2
  givenname: Mohammad
  surname: Tubishat
  fullname: Tubishat, Mohammad
  organization: School of Information Technology, Skyline University College
– sequence: 3
  givenname: Mansour
  surname: Essgaer
  fullname: Essgaer, Mansour
  organization: Faculty of Information Technology, Sebha University
– sequence: 4
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Yonsei Frontier Lab, Yonsei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34056623$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1PFTEUbQxEEPkDLkwTN25G-jntbEyeKEJCogmauGv6-jGUdFpsZzTv31t4iMKCTW-Te865597zAuyknBwArzB6hxESR5WRQQwdIrhDqJei48_APul73MkBiZ3bP-mGgf_YA4e1XiGECEeM9fw52KMM8dam--Dr6WZdgoUfQtJlAz8WPebk4wau4phLmC8n-Lu98CJMS9Szs3CVktMxpBH6XOCJ0_NSHLxw0Zk55PQS7Hodqzu8qwfg-8mnb8en3fmXz2fHq_POUDnwTlomGPfWe-kGYo0nSHJMHJVrYznjgntqMeuttBwjr4lBmAlkpeZaCGnoAXi_1b1e1pOzxqW56KiuS5jaIirroB52UrhUY_6lZNMZMG4Cb-8ESv65uDqrKVTjYtTJ5aUqwmmb3MyiBn3zCHqVl5LaeooMlAgpKWYN9fp_R_dW_h67AcgWYEqutTh_D8FI3YSqtqGqFqq6DVXxRpKPSCbM-ubSbasQn6bSLbW2OWl05Z_tJ1h_AKHKteA
CitedBy_id crossref_primary_10_1007_s11042_023_16039_9
crossref_primary_10_1007_s11227_023_05413_x
crossref_primary_10_1007_s12530_024_09584_7
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1038_s41598_022_18993_0
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1007_s00521_022_08015_5
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_1007_s11227_022_04507_2
crossref_primary_10_1177_14727978251363383
crossref_primary_10_1007_s11042_024_20221_y
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1016_j_eswa_2024_124112
crossref_primary_10_1016_j_asoc_2022_109917
crossref_primary_10_1002_cpe_7239
crossref_primary_10_1007_s11277_023_10524_y
crossref_primary_10_3233_IDA_230540
crossref_primary_10_1016_j_bpj_2024_06_024
crossref_primary_10_1186_s40537_025_01125_6
crossref_primary_10_1007_s11042_023_17724_5
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1038_s41598_025_92187_2
crossref_primary_10_1007_s00521_022_07780_7
crossref_primary_10_3390_mi14081577
crossref_primary_10_1007_s00521_023_08936_9
crossref_primary_10_1007_s13369_024_09587_1
crossref_primary_10_1186_s13321_024_00894_1
crossref_primary_10_3390_rs15163980
crossref_primary_10_1371_journal_pone_0274850
crossref_primary_10_1007_s00500_023_08274_x
Cites_doi 10.1016/j.asoc.2007.10.007
10.1016/j.asoc.2016.01.044
10.1142/S0219876210002209
10.1016/S0031-3203(01)00046-2
10.1109/SIBGRAPI.2012.47
10.1109/CEC.2016.7744378
10.1109/ACTEA.2016.7560136
10.1109/ACCESS.2020.3029728
10.13052/jsn2445-9739.2016.010
10.1109/CEC.2009.4983263
10.1016/j.asoc.2011.05.010
10.1016/j.asoc.2009.11.014
10.1109/ICACI.2017.7974502
10.1016/j.ejor.2004.09.010
10.1109/ICoCS.2015.7483317
10.1007/BF02601639
10.1109/TPAMI.2004.105
10.1016/j.ins.2013.02.041
10.1145/3206185.3206198
10.1109/NaBIC.2011.6089647
10.1016/j.knosys.2018.08.003
10.1007/s10489-018-1261-8
10.1002/9780470496916
10.1023/A:1016540724870
10.1016/j.neucom.2014.06.067
10.1109/ICTCS.2017.43
10.1126/science.220.4598.671
10.1007/s00521-015-1920-1
10.1016/j.future.2020.08.019
10.1016/j.swevo.2011.02.002
10.1109/ACCESS.2019.2944089
10.33889/IJMEMS.2020.5.6.105
10.3233/IDA-1997-1302
10.1109/ICInfA.2017.8079080
10.1016/j.eswa.2020.113873
10.1016/j.neucom.2017.04.053
10.1016/j.knosys.2020.106553
10.1016/j.knosys.2020.106131
10.1109/ACCESS.2019.2919991
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
Copyright Springer Nature B.V. Jul 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
– notice: Copyright Springer Nature B.V. Jul 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s42979-021-00687-5
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID PMC8147911
34056623
10_1007_s42979_021_00687_5
Genre Journal Article
GroupedDBID 0R~
2JN
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABHQN
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKFA
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
ATHPR
AYFIA
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
PHGZM
PHGZT
PQGLB
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
AFFHD
CITATION
KOV
NPM
OK1
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c3895-8d4745fdff8e92dcf208512e38bcd54575f3d146d8d510fa2c01470d8a5a778c3
IEDL.DBID BENPR
ISSN 2662-995X
2661-8907
IngestDate Tue Nov 04 01:54:16 EST 2025
Sun Nov 09 10:37:12 EST 2025
Wed Nov 05 15:41:00 EST 2025
Wed Feb 19 02:25:37 EST 2025
Sat Nov 29 08:04:56 EST 2025
Tue Nov 18 21:18:40 EST 2025
Mon Jul 21 06:07:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Simulated annealing algorithm
Feature selection
Dragonfly algorithm
Optimization
Language English
License The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3895-8d4745fdff8e92dcf208512e38bcd54575f3d146d8d510fa2c01470d8a5a778c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2794-8144
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8147911
PMID 34056623
PQID 2932788314
PQPubID 6623307
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147911
proquest_miscellaneous_2535103890
proquest_journals_2932788314
pubmed_primary_34056623
crossref_primary_10_1007_s42979_021_00687_5
crossref_citationtrail_10_1007_s42979_021_00687_5
springer_journals_10_1007_s42979_021_00687_5
PublicationCentury 2000
PublicationDate 20210700
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References LY Chuang (687_CR7) 2011; 11
J Han (687_CR16) 2012
O Qasim (687_CR34) 2020; 5
OC Martin (687_CR28) 1993; 63
687_CR31
687_CR4
687_CR11
687_CR3
687_CR10
687_CR32
687_CR13
687_CR35
687_CR1
687_CR12
687_CR14
687_CR36
687_CR6
687_CR38
R Meiri (687_CR29) 2006; 171
M Mafarja (687_CR25) 2017
EG Talbi (687_CR37) 2002; 8
CL Huang (687_CR17) 2008; 8
M Tubishat (687_CR41) 2020; 164
J Derrac (687_CR9) 2011; 1
M Dash (687_CR8) 1997; 1
687_CR40
687_CR20
687_CR42
J Too (687_CR39) 2020; 212
687_CR44
G Al-Rawashdeh (687_CR2) 2019; 7
687_CR21
M Mafarja (687_CR24) 2018; 161
687_CR43
A Hammouri (687_CR15) 2020; 203
687_CR23
687_CR26
O Olabiyisi Stephen (687_CR33) 2012; 3
H Zhang (687_CR45) 2002; 35
Oh Il-Seok (687_CR18) 2004; 26
I BoussaïD (687_CR5) 2013; 237
687_CR19
S Mirjalili (687_CR30) 2015; 27
K Manimala (687_CR27) 2011; 11
S Kashef (687_CR22) 2015; 147
References_xml – ident: 687_CR10
– ident: 687_CR14
– volume: 8
  start-page: 1381
  year: 2008
  ident: 687_CR17
  publication-title: Appl Soft Comput.
  doi: 10.1016/j.asoc.2007.10.007
– ident: 687_CR31
  doi: 10.1016/j.asoc.2016.01.044
– ident: 687_CR42
  doi: 10.1142/S0219876210002209
– volume: 35
  start-page: 701
  year: 2002
  ident: 687_CR45
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00046-2
– ident: 687_CR32
  doi: 10.1109/SIBGRAPI.2012.47
– volume: 3
  start-page: 1
  issue: 8
  year: 2012
  ident: 687_CR33
  publication-title: Int J Sci Eng Res USA.
– ident: 687_CR44
  doi: 10.1109/CEC.2016.7744378
– ident: 687_CR12
  doi: 10.1109/ACTEA.2016.7560136
– ident: 687_CR11
  doi: 10.1109/ACCESS.2020.3029728
– ident: 687_CR20
  doi: 10.13052/jsn2445-9739.2016.010
– ident: 687_CR3
  doi: 10.1109/CEC.2009.4983263
– volume: 11
  start-page: 5485
  year: 2011
  ident: 687_CR27
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.010
– volume: 11
  start-page: 239
  year: 2011
  ident: 687_CR7
  publication-title: Appl Soft Comput.
  doi: 10.1016/j.asoc.2009.11.014
– ident: 687_CR35
  doi: 10.1109/ICACI.2017.7974502
– volume: 171
  start-page: 842
  year: 2006
  ident: 687_CR29
  publication-title: Eur J Oper Res.
  doi: 10.1016/j.ejor.2004.09.010
– ident: 687_CR43
  doi: 10.1109/ICoCS.2015.7483317
– volume: 63
  start-page: 57
  year: 1993
  ident: 687_CR28
  publication-title: Ann OR
  doi: 10.1007/BF02601639
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 687_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/TPAMI.2004.105
– volume: 237
  start-page: 82
  year: 2013
  ident: 687_CR5
  publication-title: Inf Sci.
  doi: 10.1016/j.ins.2013.02.041
– ident: 687_CR1
  doi: 10.1145/3206185.3206198
– ident: 687_CR6
  doi: 10.1109/NaBIC.2011.6089647
– volume: 161
  start-page: 185
  year: 2018
  ident: 687_CR24
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2018.08.003
– ident: 687_CR4
– ident: 687_CR13
– ident: 687_CR19
  doi: 10.1007/s10489-018-1261-8
– ident: 687_CR38
  doi: 10.1002/9780470496916
– volume: 8
  start-page: 541
  year: 2002
  ident: 687_CR37
  publication-title: J Heuristics.
  doi: 10.1023/A:1016540724870
– volume: 147
  start-page: 271
  year: 2015
  ident: 687_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.067
– ident: 687_CR26
  doi: 10.1109/ICTCS.2017.43
– ident: 687_CR23
  doi: 10.1126/science.220.4598.671
– volume: 27
  start-page: 1053
  issue: 4
  year: 2015
  ident: 687_CR30
  publication-title: Neural Comput Appl.
  doi: 10.1007/s00521-015-1920-1
– ident: 687_CR40
  doi: 10.1016/j.future.2020.08.019
– volume-title: Data Mining: Concepts and Techniques
  year: 2012
  ident: 687_CR16
– volume: 1
  start-page: 3
  year: 2011
  ident: 687_CR9
  publication-title: Swarm Evol Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 7
  start-page: 143721
  year: 2019
  ident: 687_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944089
– volume: 5
  start-page: 1420
  year: 2020
  ident: 687_CR34
  publication-title: Int J Math Eng Manag Sci
  doi: 10.33889/IJMEMS.2020.5.6.105
– volume: 1
  start-page: 131
  year: 1997
  ident: 687_CR8
  publication-title: Intell Data Anal.
  doi: 10.3233/IDA-1997-1302
– ident: 687_CR36
  doi: 10.1109/ICInfA.2017.8079080
– volume: 164
  start-page: 113873
  year: 2020
  ident: 687_CR41
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2020.113873
– year: 2017
  ident: 687_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 212
  start-page: 106553
  year: 2020
  ident: 687_CR39
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2020.106553
– volume: 203
  start-page: 106131
  year: 2020
  ident: 687_CR15
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2020.106131
– ident: 687_CR21
  doi: 10.1109/ACCESS.2019.2919991
SSID ssj0002504465
Score 2.3938756
Snippet There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 295
SubjectTerms Accuracy
Algorithms
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Coronaviruses
Data mining
Data Structures and Information Theory
Exploitation
Feature selection
Genetic algorithms
Heuristic
Information Systems and Communication Service
Machine learning
Optimization algorithms
Original Research
Pattern Recognition and Graphics
Performance evaluation
Simulated annealing
Simulation
Software Engineering/Programming and Operating Systems
Vision
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6IELtJRHeFSuxA0s5WXZPi5QxAkhbUF7i7yxDStBFmV3kfj3zHiTVFsoUjlnktjjedmemQ_gyKHX81YmvEyd4Xnic27i2HO0lUOldOysNgFsQl5dqcFAXzdFYZM22729kgyWuit2Q8spNaeUAqprkFwsw6qgbjO0R-_fdicr1JQrDxiS6HxSrrUYNNUy739m0SO9CTPfZkv-dWUaPNHFxufm8BXWm8iT9eai8g2WXLUJGy2qA2uU_DtcX75QFRc7DZW67Lw2d1Q68sJ6D3fjejS9f2R0eMv6o0eC_nKW9dBWGyprZxgBMwoqZ7Vj_YCwg8u-BTcXv36fXfIGd4GXGL4Irmwuc-Gt98rp1JaecDyT1GVqWFqMuKTwmUULa5VFjfYmLXGfJWOrjDBSqjLbhpVqXLldYFY6R7s6m8fDXAijZaK9J5hrEfvY2AiSlvdF2TQlJ2yMh6JrpxxYViDLisCyQkRw3L3zNG_J8SH1QbukRaOekwJjnBT3_lmSR_Cze4yKRbclpnLjGdKIjLoNorxGsDOXgO53GY4fZSuLQC7IRkdATbsXn1Sj-9C8WyGr0MFEcNJKyJ9h_XsWe_9Hvg9raRAySis-gJVpPXOH8KV8no4m9Y-gLq_XxQ6L
  priority: 102
  providerName: Springer Nature
Title Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection
URI https://link.springer.com/article/10.1007/s42979-021-00687-5
https://www.ncbi.nlm.nih.gov/pubmed/34056623
https://www.proquest.com/docview/2932788314
https://www.proquest.com/docview/2535103890
https://pubmed.ncbi.nlm.nih.gov/PMC8147911
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9s60NfqqK2q7VE8E2D-xWSPMlVWwrCcfRUDl-WXD7ag3av3ofQ_96ZXG7LWeyLL4El2d0kM5mZTDLzA3jnUesFJwtuS294XYSamzwPHGXlWCmde6dNBJuQ_b4ajfQgOdzm6VrlWiZGQe2mlnzkH1Etlbhdq4r6080vTqhRdLqaIDS2YIcylSGf7xyf9AfnnZeFEnTVEU8SFVHJtRajFDkT4-dQGEvN6ZYChUpILja10z2T8_7Nyb-OT6NWOn3yv-N5CnvJHmW9FQM9g0e-fQ6Ds1sK5GLHMViXfZmZC4oeuWW9qwv8xuLympH_lg0n14T-5R3robg2FNnO0AhmZFcuZ54NI8gOUv4FfD89-fb5jCfoBW7RghFcuVrWIrgQlNels4GgPIvSV2psHRpdUoTKoZB1yuGiDqa0uNWSuVNGGCmVrV7Cdjtt_QEwJ72njZ2r83EthNGy0CEQ0rXIQ25cBsV6yhub8pITPMZV02VUjmRqkExNJFMjMnjfvXOzysrxYOvDNQmatELnzd38Z_C2q8a1RQcmpvXTJbYRFSUcRJbNYH9F-O53FfYfWarKQG6wRNeA8nZv1rSTy5i_W-FUoY7J4MOaee669e9RvHp4FK9ht4yMTDeJD2F7MVv6N_DY_l5M5rMj2JIjdZRWBz59lRzLgfiJ5fnwxx_EaRdE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkuPMRrSwEjwQks9mHX3gNCKW2VqiWKaJFyW5y13UZqk5IHKH-K38iMs7tVqOitB87r3fXj8zzsmfkA3jjUet6qhJepM1wkXnATx56jrBxoncfO5iaQTahuV_f7eW8Nfte5MBRWWcvEIKjtuKQz8g-ollJ017JEfLr4wYk1im5XawqNJSwO3OIXumzTj_s7uL5v03Rv9_hzh1esArxE5Sy5tkIJ6a332uWpLT2xVCapy_SgtGhPKOkzi_LDaot49SYt0YtQsdVGGqV0meF3b8G6yMSWbMH69m6397U51aGCYCLwV6LiS3mey36VqRPy9VD4q5xTVASlZiguV7XhFRP3aqTmX9e1QQvu3f_f5u8B3KvsbdZebpCHsOZGj6DXWVCiGtsOychsZ2JOKDtmwdpnJ9jn2ek5o_NpdjQ8J3YzZ1kb1ZGhzH2GRj4ju3k-cewokAghsh_DtxsZxBNojcYj9wyYVc6R42pFPBBSmlwluffE5C1jHxsbQVIvcVFWddeJ_uOsaCpGB1gUCIsiwKKQEbxr3rlYVh25tvVmveRFJYGmxeV6R_C6eYyygy6EzMiN59hGZlRQEbdkBE-XQGt-l2H_EcJZBGoFgk0Dqku--mQ0PA31yTVOFerQCN7XYL3s1r9HsXH9KF7Bnc7xl8PicL978BzupmETUdT0JrRmk7l7AbfLn7PhdPKy2pMMvt80jP8A8AhvkQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQGgvjO8FBhiJN7CWD1u2H8tGNQSqKgqob5Eb21ulLZ2yFmn_PXduElYGSIjnOIl9vvOd7fvdD-C1R68XnMp4lXvLRRYEt2kaOK6VM61N6p2xkWxCjUZ6OjXjKyj-mO3eXUmuMQ1Upale7p-7sN8D33AVVYZTegFhHBSXN-GWwJ0MJXV9nnzrT1moQJeIfJLoiHJujJy2yJnff2bTO10LOa9nTv5yfRq90nDn_8dzD-62ESkbrFXoPtzw9QPY6dgeWGv8D2F8dEnoLvYuInjZYWOPCVJyyQanx4tmvjw5Y3SoyybzM6IE844NcA23BHdnGBkzCjZXjWeTyLyD6vAIvg7ffzk44i0fA68wrJFcO6GEDC4E7U3uqkD8nlnuCz2rHEZiSobC4crrtENLDzavcP-lUqettErpqngMW_Wi9rvAnPKedntOpDMhpTUqMyEQ_bVMQ2pdAlk3D2XVFisnzozTsi-zHEVWosjKKLJSJvCmf-d8Xarjr633uuktW7O9KDH2yZXWRSYSeNU_RoOjWxRb-8UK28iCqhCiHifwZK0N_e8K7D_qWZGA2tCTvgEV8958Us9PYlFvjaJCx5PA205bfnbrz6N4-m_NX8Kd8eGw_PRh9PEZbOdR3yjzeA-2ls3KP4fb1ffl_KJ5Ea3oBwwdGlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Binary+Dragonfly+Algorithm+with+Simulated+Annealing+for+Feature+Selection&rft.jtitle=SN+computer+science&rft.au=Chantar%2C+Hamouda&rft.au=Tubishat%2C+Mohammad&rft.au=Essgaer%2C+Mansour&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-07-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=2&rft.issue=4&rft.spage=295&rft_id=info:doi/10.1007%2Fs42979-021-00687-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon