Another look at distance-weighted discrimination

Distance-weighted discrimination (DWD) is a modern margin-based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 80; číslo 1; s. 177 - 198
Hlavní autori: Wang, Boxiang, Zou, Hui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford John Wiley & Sons Ltd 01.01.2018
Oxford University Press
Predmet:
ISSN:1369-7412, 1467-9868
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Distance-weighted discrimination (DWD) is a modern margin-based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and theoretical reasons. We greatly advance the current DWD methodology and its learning theory. We propose a novel thrifty algorithm for solving standard DWD and generalized DWD, and our algorithm can be several hundred times faster than the existing state of the art algorithm based on second-order cone programming. In addition, we exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore, we formulate a natural kernel DWD approach in a reproducing kernel Hubert space and then establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A comparison study on 16 benchmark data sets shows that data-driven generalized DWD consistently delivers higher classification accuracy with less computation time than the SVM.
AbstractList Summary Distance‐weighted discrimination (DWD) is a modern margin‐based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and theoretical reasons. We greatly advance the current DWD methodology and its learning theory. We propose a novel thrifty algorithm for solving standard DWD and generalized DWD, and our algorithm can be several hundred times faster than the existing state of the art algorithm based on second‐order cone programming. In addition, we exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore, we formulate a natural kernel DWD approach in a reproducing kernel Hilbert space and then establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A comparison study on 16 benchmark data sets shows that data‐driven generalized DWD consistently delivers higher classification accuracy with less computation time than the SVM.
Distance-weighted discrimination (DWD) is a modern margin-based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and theoretical reasons. We greatly advance the current DWD methodology and its learning theory. We propose a novel thrifty algorithm for solving standard DWD and generalized DWD, and our algorithm can be several hundred times faster than the existing state of the art algorithm based on second-order cone programming. In addition, we exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore, we formulate a natural kernel DWD approach in a reproducing kernel Hilbert space and then establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A comparison study on 16 benchmark data sets shows that data-driven generalized DWD consistently delivers higher classification accuracy with less computation time than the SVM.
Distance-weighted discrimination (DWD) is a modern margin-based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and theoretical reasons. We greatly advance the current DWD methodology and its learning theory. We propose a novel thrifty algorithm for solving standard DWD and generalized DWD, and our algorithm can be several hundred times faster than the existing state of the art algorithm based on second-order cone programming. In addition, we exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore, we formulate a natural kernel DWD approach in a reproducing kernel Hubert space and then establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A comparison study on 16 benchmark data sets shows that data-driven generalized DWD consistently delivers higher classification accuracy with less computation time than the SVM.
Author Zou, Hui
Wang, Boxiang
Author_xml – sequence: 1
  givenname: Boxiang
  surname: Wang
  fullname: Wang, Boxiang
– sequence: 2
  givenname: Hui
  surname: Zou
  fullname: Zou, Hui
BookMark eNp9kE1LAzEQhoNUsK1evAsFLyJsTbLZfBxr8QsKgtVzyKaJ3brd1CSl9N-bdtVDEeeSMDzPMPP2QKdxjQHgHMEhSnXjQyiHCGNCjkAXEcoywSnvpH9ORcYIwiegF8ICpqIs7wI4alycGz-onfsYqDiYVSGqRptsY6r3eTSzXUf7alk1KlauOQXHVtXBnH2_ffB2f_c6fswmzw9P49Ek0zkXJFOlxhSXWBlkRUGggooX3FJeCoxmvNCEWaEwNDlFxkBaUl1oM4OYldYyS_I-uGrnrrz7XJsQ5TLtYepaNcatg8QQQ04JYzihlwfowq19k7aTSDCOCgQRT9R1S2nvQvDGylW6SvmtRFDuwpO78OQ-vATDA1hXcX9_9Kqq_1ZQq2yq2mz_GS5fptPbH-eidRYhOv_rEEI5YkLkXwlNjLU
CitedBy_id crossref_primary_10_1080_00401706_2018_1529629
crossref_primary_10_1002_sta4_598
crossref_primary_10_1007_s00180_023_01448_z
crossref_primary_10_1016_j_neunet_2022_10_017
crossref_primary_10_1016_j_engappai_2022_104828
crossref_primary_10_1111_sjos_12484
crossref_primary_10_1016_j_knosys_2019_105420
crossref_primary_10_1002_wcms_70042
crossref_primary_10_1137_18M1202311
crossref_primary_10_1080_01621459_2024_2403788
crossref_primary_10_1088_1742_5468_abbed5
crossref_primary_10_1016_j_annonc_2024_12_010
crossref_primary_10_1038_s43856_025_00945_0
crossref_primary_10_3390_math12060855
crossref_primary_10_1080_10618600_2022_2138407
crossref_primary_10_3390_e22111257
crossref_primary_10_1016_j_neucom_2020_12_110
crossref_primary_10_1088_1742_5468_ac2edd
crossref_primary_10_1002_nla_2299
crossref_primary_10_1016_j_patcog_2019_107030
crossref_primary_10_1016_j_jco_2025_101931
crossref_primary_10_1080_10618600_2022_2069778
crossref_primary_10_1080_10618600_2017_1366915
crossref_primary_10_1007_s10107_019_01423_x
crossref_primary_10_1287_opre_2021_2115
crossref_primary_10_1016_j_patcog_2022_108828
Cites_doi 10.1198/0003130042836
10.1017/CBO9780511624216
10.1198/016214505000000907
10.1080/10618600.2012.700878
10.1002/wics.1345
10.1198/016214507000001120
10.4310/SII.2015.v8.n3.a7
10.1007/978-0-387-21706-2
10.1007/s10107-002-0339-5
10.1016/j.spl.2004.03.002
10.1093/bioinformatics/bts096
10.1007/978-1-4757-2440-0
10.1214/aos/1079120130
10.1198/jcgs.2010.09014
10.1198/jasa.2010.tm08487
10.1198/jasa.2011.tm10319
10.1214/009053605000000200
10.1080/10618600.2015.1049700
10.1017/CBO9780511804441
10.1023/A:1012406528296
10.1006/jcss.1997.1504
10.1080/10618600.2000.10474858
10.1111/j.1467-9868.2005.00510.x
10.1007/s10107-016-1007-5
10.1023/A:1015469627679
10.1007/s10107-012-0612-1
10.1007/s10107-014-0850-5
10.1007/978-0-387-84858-7
10.1214/08-STS264
10.1080/10618600.2012.680324
10.1198/106186005X25619
10.1137/1.9781611970128
10.1023/A:1010933404324
ContentType Journal Article
Copyright Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd.
2017 Royal Statistical Society
Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2017 Royal Statistical Society
– notice: Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12244
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef

International Bibliography of the Social Sciences (IBSS)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 198
ExternalDocumentID 10_1111_rssb_12244
RSSB12244
44681799
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐1505111
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAONW
AAPXW
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACCZN
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
.Y3
3-9
31~
AAHHS
AANHP
AARHZ
ABYAD
ACBWZ
ACCFJ
ACFRR
ACRPL
ACTWD
ACYXJ
ADNMO
ADQBN
ADULT
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ANFBD
AS~
ATGXG
AZFZN
COF
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
JSODD
NHB
RJQFR
ZGI
AAYXX
ABEJV
CITATION
O8X
OJZSN
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c3894-abc262b2ae1f9540a0a858f68b921d85c47f9a20e361ee06b6c5ced027bff7f43
IEDL.DBID DRFUL
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418339600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:08:58 EDT 2025
Mon Nov 10 00:42:49 EST 2025
Tue Nov 18 21:16:41 EST 2025
Sat Nov 29 05:52:03 EST 2025
Wed Jan 22 16:29:34 EST 2025
Thu Jul 03 22:07:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3894-abc262b2ae1f9540a0a858f68b921d85c47f9a20e361ee06b6c5ced027bff7f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1978151018
PQPubID 39359
PageCount 22
ParticipantIDs proquest_miscellaneous_2020864772
proquest_journals_1978151018
crossref_primary_10_1111_rssb_12244
crossref_citationtrail_10_1111_rssb_12244
wiley_primary_10_1111_rssb_12244_RSSB12244
jstor_primary_44681799
PublicationCentury 2000
PublicationDate 20180101
January 2018
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180101
  day: 1
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2018
Publisher John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: John Wiley & Sons Ltd
– name: Oxford University Press
References 2007; 102
2013; 22
2010; 19
2010; 105
2000; 9
2004; 68
2008; 36
2001; 45
2005; 67
1977
1994; 20
2004; 32
2010; 25
1997; 55
1990
2000
2002; 46
2015a; 8
2014; 15
1999; 12
2016; 155
2017; 161
2012; 28
2005; 33
2015; 16
2002; 6
2009
2006; 7
1998
2002; 2
1995
1964; 25
2004
2002
1999; 6
2015; 7
1999
2004; 11
2004; 95
2011; 106
2004; 58
2015b; 16
2017
2015
2001; 2
2014
2013
2014; 143
2006; 101
2016; 25
2005; 14
Hastie (2023022101111704700_) 2009
Vapnik (2023022101111704700_) 1998
Hunter (2023022101111704700_) 2004; 58
Lichman (2023022101111704700_) 2013
Vapnik (2023022101111704700_) 1995
Zhou (2023022101111704700_) 2010; 19
Meyer (2023022101111704700_) 2015
Bartlett (2023022101111704700_) 1999
Zhu (2023022101111704700_) 2005; 14
Liaw (2023022101111704700_) 2002; 2
Bartlett (2023022101111704700_) 2006; 101
Liu (2023022101111704700_) 2011; 106
Qiao (2023022101111704700_) 2010; 105
Qiao (2023022101111704700_) 2015; 8
Hall (2023022101111704700_) 2005; 67
Lin (2023022101111704700_) 2002; 46
Lam (2023022101111704700_) 2017
Marron (2023022101111704700_) 2013
Alizadeh (2023022101111704700_) 2004; 95
Chen (2023022101111704700_) 2017; 161
Lange (2023022101111704700_) 2014; 143
Marron (2023022101111704700_) 2015; 7
Yang (2023022101111704700_) 2013; 22
Shawe-Taylor (2023022101111704700_) 2000
Zhang (2023022101111704700_) 2004; 32
Platt (2023022101111704700_) 1999; 12
Wang (2023022101111704700_) 2016; 25
Qiao (2023022101111704700_) 2015; 16
Hunter (2023022101111704700_) 2005; 33
Micchelli (2023022101111704700_) 2006; 7
Zou (2023022101111704700_) 2008; 36
Freund (2023022101111704700_) 1997; 55
Steinwart (2023022101111704700_) 2001; 2
Huang (2023022101111704700_) 2013; 22
Wahba (2023022101111704700_) 1990
Anthony (2023022101111704700_) 1999
Chen (2023022101111704700_) 2015
Lin (2023022101111704700_) 2004; 68
Zhang (2023022101111704700_) 2015; 16
Venables (2023022101111704700_) 2002
Lin (2023022101111704700_) 2002; 6
Karatzoglou (2023022101111704700_) 2004; 11
Marron (2023022101111704700_) 2007; 102
Hsieh (2023022101111704700_) 2014
Breiman (2023022101111704700_) 2001; 45
Jaakkola (2023022101111704700_) 1999
Wu (2023022101111704700_) 2010; 25
De Leeuw (2023022101111704700_) 1977
Li (2023022101111704700_) 2016; 155
Fernández-Delgado (2023022101111704700_) 2014; 15
Wahba (2023022101111704700_) 1994; 20
Huang (2023022101111704700_) 2012; 28
Wahba (2023022101111704700_) 1999; 6
Aizerman (2023022101111704700_) 1964; 25
Ridgeway (2023022101111704700_) 2017
Boyd (2023022101111704700_) 2004
Lange (2023022101111704700_) 2000; 9
References_xml – volume: 11
  start-page: 1
  year: 2004
  end-page: 20
  article-title: kernlab—an S4 package for kernel methods in R
  publication-title: J. Statist. Softwr.
– volume: 16
  start-page: 1547
  year: 2015b
  end-page: 1572
  article-title: Flexible high‐dimensional classification machines and their asymptotic properties
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 67
  year: 2001
  end-page: 93
  article-title: On the influence of the kernel on the consistency of support vector machines
  publication-title: J. Mach. Learn. Res.
– year: 2009
– volume: 155
  start-page: 333
  year: 2016
  end-page: 373
  article-title: A Schur complement based semi‐proximal ADMM for convex quadratic conic programming and extensions
  publication-title: Math. Programmng
– volume: 9
  start-page: 1
  year: 2000
  end-page: 20
  article-title: Optimization transfer using surrogate objective functions
  publication-title: J. Computnl Graph. Statist.
– start-page: 566
  year: 2014
  end-page: 574
– volume: 25
  start-page: 821
  year: 1964
  end-page: 837
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Automn Remote Control
– volume: 46
  start-page: 191
  year: 2002
  end-page: 202
  article-title: Support vector machines for classification in nonstandard situations
  publication-title: Mach. Learn.
– volume: 106
  start-page: 166
  year: 2011
  end-page: 177
  article-title: Hard or soft classification?: Large‐margin unified machines
  publication-title: J. Am. Statist. Ass.
– volume: 12
  start-page: 185
  year: 1999
  end-page: 208
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods—Support Vector Learning
– volume: 19
  start-page: 645
  year: 2010
  end-page: 665
  article-title: MM algorithms for some discrete multivariate distributions
  publication-title: J. Computnl Graph. Statist.
– year: 1990
– year: 1998
– volume: 102
  start-page: 1267
  year: 2007
  end-page: 1271
  article-title: Distance weighted discrimination
  publication-title: J. Am. Statist. Ass.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  article-title: A decision‐theoretic generalization of on‐line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 101
  start-page: 138
  year: 2006
  end-page: 156
  article-title: Convexity, classification, and risk bounds
  publication-title: J. Am. Statist. Ass.
– volume: 7
  start-page: 2651
  year: 2006
  end-page: 2667
  article-title: Universal kernels
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 259
  year: 2002
  end-page: 275
  article-title: Support vector machines and the Bayes rule in classification
  publication-title: Data Minng Knowl. Discov.
– year: 2004
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 396
  year: 2013
  end-page: 415
  article-title: An efficient algorithm for computing the HHSVM and its generalizations
  publication-title: J. Computnl Graph. Statist.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomForest
  publication-title: R News
– year: 1999
  article-title: Probabilistic kernel regression models
  publication-title: Proc. 7th Int. Wrkshp Artificial Intelligence and Statistics
– year: 2015
– volume: 25
  start-page: 492
  year: 2010
  end-page: 505
  article-title: The MM alternative to EM
  publication-title: Statist. Sci.
– volume: 14
  start-page: 185
  year: 2005
  end-page: 205
  article-title: Kernel logistic regression and the import vector machine
  publication-title: J. Computnl Graph. Statist.
– volume: 22
  start-page: 953
  year: 2013
  end-page: 969
  article-title: Multiclass distance‐weighted discrimination
  publication-title: J. Computnl Graph. Statist.
– volume: 28
  start-page: 1182
  year: 2012
  end-page: 1183
  article-title: R/DWD: distance‐weighted discrimination for classification, visualization and batch adjustment
  publication-title: Bioinformatics
– volume: 32
  start-page: 56
  year: 2004
  end-page: 134
  article-title: Statistical behavior and consistency of classification methods based on convex risk minimization
  publication-title: Ann. Statist.
– volume: 25
  start-page: 826
  year: 2016
  end-page: 838
  article-title: Sparse distance weighted discrimination
  publication-title: J. Computnl Graph. Statist.
– volume: 16
  start-page: 3299
  year: 2015
  end-page: 3340
  article-title: Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 69
  year: 1999
  end-page: 87
  article-title: Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
  publication-title: Advances in Kernel Methods–Support Vector Learning
– volume: 8
  start-page: 331
  year: 2015a
  end-page: 345
  article-title: Distance‐weighted support vector machine
  publication-title: Statist. Interfc.
– volume: 7
  start-page: 109
  year: 2015
  end-page: 114
  article-title: Distance‐weighted discrimination
  publication-title: Wiley Interdisc. Rev. Computnl Statist.
– volume: 67
  start-page: 427
  year: 2005
  end-page: 444
  article-title: Geometric representation of high dimension, low sample size data
  publication-title: J. R. Statist. Soc.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 58
  start-page: 30
  year: 2004
  end-page: 37
  article-title: A tutorial on MM algorithms
  publication-title: Am. Statistn
– volume: 143
  start-page: 339
  year: 2014
  end-page: 356
  article-title: MM algorithms for geometric and signomial programming
  publication-title: Math. Programmng
– volume: 95
  start-page: 3
  year: 2004
  end-page: 51
  article-title: Second‐order cone programming
  publication-title: Math. Programmng
– year: 2002
– start-page: 43
  year: 1999
  end-page: 54
– volume: 161
  start-page: 237
  year: 2017
  end-page: 270
  article-title: An efficient inexact symmetric Gauss‐Seidel based majorized ADMM for high‐dimensional convex composite conic programming
  publication-title: Math. Programmng
– volume: 36
  start-page: 1509
  year: 2008
  end-page: 1533
  article-title: One‐step sparse estimates in nonconcave penalized likelihood models
  publication-title: Ann. Statist.
– year: 1995
– volume: 68
  start-page: 73
  year: 2004
  end-page: 82
  article-title: A note on margin‐based loss functions in classification
  publication-title: Statist. Probab. Lett.
– volume: 20
  start-page: 313
  year: 1994
  end-page: 331
  article-title: Soft classification, aka risk estimation, via penalized log likelihood and smoothing spline analysis of variance
  publication-title: Santa Fe Institute Studies in the Sciences of Complexity Proc.
– volume: 33
  start-page: 1617
  year: 2005
  end-page: 1642
  article-title: Variable selection using MM algorithms
  publication-title: Ann. Statist.
– year: 2017
– start-page: 735
  year: 1977
  end-page: 752
– volume: 105
  start-page: 401
  year: 2010
  end-page: 414
  article-title: Weighted distance weighted discrimination and its asymptotic properties
  publication-title: J. Am. Statist. Ass.
– start-page: 349
  year: 2000
  end-page: 358
– year: 1999
– year: 2013
– volume: 12
  start-page: 185
  year: 1999
  ident: 2023022101111704700_
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods—Support Vector Learning
– volume-title: Fast algorithms for large scale generalized distance weighted discrimination
  year: 2017
  ident: 2023022101111704700_
– year: 2015
  ident: 2023022101111704700_
– volume-title: gbm: generalized boosted regression models
  year: 2017
  ident: 2023022101111704700_
– volume: 58
  start-page: 30
  year: 2004
  ident: 2023022101111704700_
  article-title: A tutorial on MM algorithms
  publication-title: Am. Statistn
  doi: 10.1198/0003130042836
– volume-title: Neural Network Learning: Theoretical Foundations
  year: 1999
  ident: 2023022101111704700_
  doi: 10.1017/CBO9780511624216
– volume: 101
  start-page: 138
  year: 2006
  ident: 2023022101111704700_
  article-title: Convexity, classification, and risk bounds
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214505000000907
– volume: 20
  start-page: 313
  year: 1994
  ident: 2023022101111704700_
  article-title: Soft classification, aka risk estimation, via penalized log likelihood and smoothing spline analysis of variance
  publication-title: Santa Fe Institute Studies in the Sciences of Complexity Proc.
– volume: 22
  start-page: 953
  year: 2013
  ident: 2023022101111704700_
  article-title: Multiclass distance-weighted discrimination
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1080/10618600.2012.700878
– volume: 7
  start-page: 109
  year: 2015
  ident: 2023022101111704700_
  article-title: Distance-weighted discrimination
  publication-title: Wiley Interdisc. Rev. Computnl Statist.
  doi: 10.1002/wics.1345
– volume: 102
  start-page: 1267
  year: 2007
  ident: 2023022101111704700_
  article-title: Distance weighted discrimination
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214507000001120
– volume-title: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems
  year: 2015
  ident: 2023022101111704700_
– volume: 8
  start-page: 331
  year: 2015
  ident: 2023022101111704700_
  article-title: Distance-weighted support vector machine
  publication-title: Statist. Interfc.
  doi: 10.4310/SII.2015.v8.n3.a7
– start-page: 735
  volume-title: Convergence of correction matrix algorithms for multidimensional scaling.
  year: 1977
  ident: 2023022101111704700_
– volume-title: Modern Applied Statistics with S
  year: 2002
  ident: 2023022101111704700_
  doi: 10.1007/978-0-387-21706-2
– volume: 6
  start-page: 69
  year: 1999
  ident: 2023022101111704700_
  article-title: Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
  publication-title: Advances in Kernel Methods–Support Vector Learning
– volume: 95
  start-page: 3
  year: 2004
  ident: 2023022101111704700_
  article-title: Second-order cone programming
  publication-title: Math. Programmng
  doi: 10.1007/s10107-002-0339-5
– volume: 15
  start-page: 3133
  year: 2014
  ident: 2023022101111704700_
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 68
  start-page: 73
  year: 2004
  ident: 2023022101111704700_
  article-title: A note on margin-based loss functions in classification
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2004.03.002
– volume: 28
  start-page: 1182
  year: 2012
  ident: 2023022101111704700_
  article-title: R/DWD: distance-weighted discrimination for classification, visualization and batch adjustment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts096
– volume: 2
  start-page: 67
  year: 2001
  ident: 2023022101111704700_
  article-title: On the influence of the kernel on the consistency of support vector machines
  publication-title: J. Mach. Learn. Res.
– year: 1999
  ident: 2023022101111704700_
  article-title: Probabilistic kernel regression models
  publication-title: Proc. 7th Int. Wrkshp Artificial Intelligence and Statistics
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: 2023022101111704700_
  doi: 10.1007/978-1-4757-2440-0
– volume: 32
  start-page: 56
  year: 2004
  ident: 2023022101111704700_
  article-title: Statistical behavior and consistency of classification methods based on convex risk minimization
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1079120130
– volume: 19
  start-page: 645
  year: 2010
  ident: 2023022101111704700_
  article-title: MM algorithms for some discrete multivariate distributions
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1198/jcgs.2010.09014
– volume: 2
  start-page: 18
  year: 2002
  ident: 2023022101111704700_
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 105
  start-page: 401
  year: 2010
  ident: 2023022101111704700_
  article-title: Weighted distance weighted discrimination and its asymptotic properties
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/jasa.2010.tm08487
– start-page: 349
  volume-title: Advances in Kernel Methods—Support Vector Learning
  year: 2000
  ident: 2023022101111704700_
– volume: 106
  start-page: 166
  year: 2011
  ident: 2023022101111704700_
  article-title: Hard or soft classification?: Large-margin unified machines
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/jasa.2011.tm10319
– volume: 33
  start-page: 1617
  year: 2005
  ident: 2023022101111704700_
  article-title: Variable selection using MM algorithms
  publication-title: Ann. Statist.
  doi: 10.1214/009053605000000200
– start-page: 43
  volume-title: Advances in Kernel Methods–Support Vector Learning
  year: 1999
  ident: 2023022101111704700_
– volume: 25
  start-page: 826
  year: 2016
  ident: 2023022101111704700_
  article-title: Sparse distance weighted discrimination
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1080/10618600.2015.1049700
– volume: 7
  start-page: 2651
  year: 2006
  ident: 2023022101111704700_
  article-title: Universal kernels
  publication-title: J. Mach. Learn. Res.
– start-page: 566
  volume-title: Proc. Int. Conf. Machine Learning
  year: 2014
  ident: 2023022101111704700_
– volume-title: UCI Machine Learning Repository
  year: 2013
  ident: 2023022101111704700_
– volume-title: Smoothing, functional data analysis, and distance weighted discrimination software
  year: 2013
  ident: 2023022101111704700_
– volume-title: Convex Optimization
  year: 2004
  ident: 2023022101111704700_
  doi: 10.1017/CBO9780511804441
– volume: 16
  start-page: 1547
  year: 2015
  ident: 2023022101111704700_
  article-title: Flexible high-dimensional classification machines and their asymptotic properties
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 3299
  year: 2015
  ident: 2023022101111704700_
  article-title: Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 191
  year: 2002
  ident: 2023022101111704700_
  article-title: Support vector machines for classification in nonstandard situations
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012406528296
– volume: 25
  start-page: 821
  year: 1964
  ident: 2023022101111704700_
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Automn Remote Control
– volume: 55
  start-page: 119
  year: 1997
  ident: 2023022101111704700_
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 11
  start-page: 1
  year: 2004
  ident: 2023022101111704700_
  article-title: kernlab—an S4 package for kernel methods in R
  publication-title: J. Statist. Softwr.
– volume: 9
  start-page: 1
  year: 2000
  ident: 2023022101111704700_
  article-title: Optimization transfer using surrogate objective functions
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1080/10618600.2000.10474858
– volume: 67
  start-page: 427
  year: 2005
  ident: 2023022101111704700_
  article-title: Geometric representation of high dimension, low sample size data
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.1467-9868.2005.00510.x
– volume: 161
  start-page: 237
  year: 2017
  ident: 2023022101111704700_
  article-title: An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming
  publication-title: Math. Programmng
  doi: 10.1007/s10107-016-1007-5
– volume: 6
  start-page: 259
  year: 2002
  ident: 2023022101111704700_
  article-title: Support vector machines and the Bayes rule in classification
  publication-title: Data Minng Knowl. Discov.
  doi: 10.1023/A:1015469627679
– volume: 143
  start-page: 339
  year: 2014
  ident: 2023022101111704700_
  article-title: MM algorithms for geometric and signomial programming
  publication-title: Math. Programmng
  doi: 10.1007/s10107-012-0612-1
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 2023022101111704700_
– volume: 155
  start-page: 333
  year: 2016
  ident: 2023022101111704700_
  article-title: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions
  publication-title: Math. Programmng
  doi: 10.1007/s10107-014-0850-5
– volume: 36
  start-page: 1509
  year: 2008
  ident: 2023022101111704700_
  article-title: One-step sparse estimates in nonconcave penalized likelihood models
  publication-title: Ann. Statist.
– volume-title: The Elements of Statistical Learning: Prediction, Inference, and Data Mining
  year: 2009
  ident: 2023022101111704700_
  doi: 10.1007/978-0-387-84858-7
– volume: 25
  start-page: 492
  year: 2010
  ident: 2023022101111704700_
  article-title: The MM alternative to EM
  publication-title: Statist. Sci.
  doi: 10.1214/08-STS264
– volume: 22
  start-page: 396
  year: 2013
  ident: 2023022101111704700_
  article-title: An efficient algorithm for computing the HHSVM and its generalizations
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1080/10618600.2012.680324
– volume: 14
  start-page: 185
  year: 2005
  ident: 2023022101111704700_
  article-title: Kernel logistic regression and the import vector machine
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1198/106186005X25619
– volume-title: Spline Models for Observational Data
  year: 1990
  ident: 2023022101111704700_
  doi: 10.1137/1.9781611970128
– volume: 45
  start-page: 5
  year: 2001
  ident: 2023022101111704700_
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
SSID ssj0000673
Score 2.383777
Snippet Distance-weighted discrimination (DWD) is a modern margin-based classifier with an interesting geometric motivation. It was proposed as a competitor to the...
Summary Distance‐weighted discrimination (DWD) is a modern margin‐based classifier with an interesting geometric motivation. It was proposed as a competitor to...
Distance‐weighted discrimination (DWD) is a modern margin‐based classifier with an interesting geometric motivation. It was proposed as a competitor to the...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Algorithms
Bayes risk consistency
Bayesian analysis
Classification
Classifiers
Computation
data collection
Discrimination
Distance‐weighted discrimination
equations
Hilbert space
Kernel learning
Learning
Learning theories
Learning theory
Machine learning
Majorization–minimization principle
Motivation
Novels
Regression analysis
risk
Second‐order cone programming
Statistical methods
Statistics
Support vector machines
Title Another look at distance-weighted discrimination
URI https://www.jstor.org/stable/44681799
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12244
https://www.proquest.com/docview/1978151018
https://www.proquest.com/docview/2020864772
Volume 80
WOSCitedRecordID wos000418339600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q66EX38VolYheFCLJJptswIuv4qEUaa30FrKvU0mlafXqT_A3-kvc3aSxBRHEW0gmJMxj95vZ3W8AzmIaR5S70kGYUyfwuXAoFtKhKPYEYi7ipg_Zczfq9choFD_W4GpxFqbgh6gKbjoyzHitAzyl-VKQT_OcXup1oWANGkg5Lq5D467fGXaXR2K_OHcVO2rmRCU9qd7J8_32yoRU7ElcQZvLmNVMOp3N__3uFmyUYNO-LrxjG2oi24GmxpcFPfMuIJX-awhojxXYttOZzTWeVI7w-f7xZqqmgut7rOj-pa24B8PO_dPtg1O2UXCYQiOBk1KGQkRRKjwZK4CWuinBRIaExsjjBLMgknGKXOGHnhBuSEOGmeAqX6VSRjLwW1DPJpnYB5uqZDoQCoIoTB5gjggJsfR9xF0spRr7LDhf6DJhJce4bnUxTha5hlZDYtRgwWkl-1Iwa_wo1TImqURU-ko0i50F7YWNkjLs8sTTDF6GhMyCk-qxChi9CpJmYjLPE6Tbkurjt8iCC2OxXz6f9AeDG3N18BfhQ2gqYEWKUk0b6rPpXBzBOntV5p0el276BeiL62w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CvbiuxitGtGLQiTZPLo51kepWIu0Kt5C9nUqqfShV3-Cv9Ff4s4mrS2IIN5CMiFhZ2b3m9mdbwBOYhbXmHCVQ0LBnMAX0mGhVA4jsScJd4kwfcieWrV2mz4_x_fF2Ryshcn5IaYJN_QMM1-jg2NCesbLB8MhO8eNoWARlgJtR9rAl646jcfW7FTs54VXsaOXTlLwk-JRnu-351ak_FDiHNycBa1m1Wms_fN_12G1gJt2PbePDViQ2SaUEWHmBM1bQOqZKcKyexpu2-nIFogotSl8vn-8mbypFHiP5_2_UI_b8Ni4frhsOkUjBYdrPBI4KeMkIoyk0lOxhmipm9KQqoiymHiChjyoqTglrvQjT0o3YhEPuRQ6YmVK1VTgV6CU9TO5AzbT4XQgNQjRqDwIBaE0CpXvE-GGSunZz4LTyWAmvGAZx2YXvWQSbeAwJGYYLDieyr7k3Bo_SlWMTqYiOoClyGNnQXWipKRwvGHiIYeXoSGz4Gj6WLsM7oOkmeyPhwnBxqRYgEssODMq--XzSafbvTBXu38RPoSV5sNdK2ndtG_3oKxhFs0TN1UojQZjuQ_L_FWrenBQ2OwXAyfvXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60ivTiuxitGtGLQiTZPLo5VmtRLKW0Kt5C9nUqaelDr_4Ef6O_xJ1NWiuIIN5CMiFhZ2fnm9mdbwDOYhbXmHCVQ0LBnMAX0mGhVA4jsScJd4kwfcieWrV2mz4_x53ibA7WwuT8EPOEG1qGWa_RwOVQqAUrH43H7BI3hoJlWAmwi0wJVhrd5mNrcSn288Kr2NGukxT8pHiU5-vtbx4pP5T4DW4uglbjdZob__zfTVgv4KZdz-fHFizJbBvKiDBzguYdIPXMFGHZfQ237XRiC0SUeip8vL2_mrypFHiP5_2_UI-78Ni8ebi-dYpGCg7XeCRwUsZJRBhJpadiDdFSN6UhVRFlMfEEDXlQU3FKXOlHnpRuxCIecil0xMqUqqnAr0ApG2RyD2ymw-lAahCiUXkQCkJpFCrfJ8INldKrnwXns8FMeMEyjs0u-sks2sBhSMwwWHA6lx3m3Bo_SlWMTuYiOoClyGNnQXWmpKQwvHHiIYeXoSGz4GT-WJsM7oOkmRxMxwnBxqRYgEssuDAq--XzSbfXuzJX-38RPoa1TqOZtO7a9wdQ1iiL5nmbKpQmo6k8hFX-ojU9Oiqm7CenUu7X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Another+look+at+distance%E2%80%90weighted+discrimination&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Wang%2C+Boxiang&rft.au=Zou%2C+Hui&rft.date=2018-01-01&rft.issn=1369-7412&rft.volume=80&rft.issue=1+p.177-198&rft.spage=177&rft.epage=198&rft_id=info:doi/10.1111%2Frssb.12244&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon